Files
serai/coins/monero/src/ringct/clsag/multisig.rs

305 lines
8.8 KiB
Rust
Raw Normal View History

use core::{ops::Deref, fmt::Debug};
use std_shims::io::{self, Read, Write};
use std::sync::{Arc, RwLock};
2022-05-06 07:33:08 -04:00
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha20Rng;
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
Utilize zeroize (#76) * Apply Zeroize to nonces used in Bulletproofs Also makes bit decomposition constant time for a given amount of outputs. * Fix nonce reuse for single-signer CLSAG * Attach Zeroize to most structures in Monero, and ZOnDrop to anything with private data * Zeroize private keys and nonces * Merge prepare_outputs and prepare_transactions * Ensure CLSAG is constant time * Pass by borrow where needed, bug fixes The past few commitments have been one in-progress chunk which I've broken up as best read. * Add Zeroize to FROST structs Still needs to zeroize internally, yet next step. Not quite as aggressive as Monero, partially due to the limitations of HashMaps, partially due to less concern about metadata, yet does still delete a few smaller items of metadata (group key, context string...). * Remove Zeroize from most Monero multisig structs These structs largely didn't have private data, just fields with private data, yet those fields implemented ZeroizeOnDrop making them already covered. While there is still traces of the transaction left in RAM, fully purging that was never the intent. * Use Zeroize within dleq bitvec doesn't offer Zeroize, so a manual zeroing has been implemented. * Use Zeroize for random_nonce It isn't perfect, due to the inability to zeroize the digest, and due to kp256 requiring a few transformations. It does the best it can though. Does move the per-curve random_nonce to a provided one, which is allowed as of https://github.com/cfrg/draft-irtf-cfrg-frost/pull/231. * Use Zeroize on FROST keygen/signing * Zeroize constant time multiexp. * Correct when FROST keygen zeroizes * Move the FROST keys Arc into FrostKeys Reduces amount of instances in memory. * Manually implement Debug for FrostCore to not leak the secret share * Misc bug fixes * clippy + multiexp test bug fixes * Correct FROST key gen share summation It leaked our own share for ourself. * Fix cross-group DLEq tests
2022-08-03 03:25:18 -05:00
2023-09-12 10:02:20 -04:00
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
use group::{ff::Field, Group, GroupEncoding};
use transcript::{Transcript, RecommendedTranscript};
use dalek_ff_group as dfg;
use dleq::DLEqProof;
use frost::{
dkg::lagrange,
curve::Ed25519,
Participant, FrostError, ThresholdKeys, ThresholdView,
algorithm::{WriteAddendum, Algorithm},
};
use crate::ringct::{
hash_to_point,
clsag::{ClsagInput, Clsag},
};
fn dleq_transcript() -> RecommendedTranscript {
RecommendedTranscript::new(b"monero_key_image_dleq")
}
impl ClsagInput {
fn transcript<T: Transcript>(&self, transcript: &mut T) {
2022-05-06 07:33:08 -04:00
// Doesn't domain separate as this is considered part of the larger CLSAG proof
// Ring index
transcript.append_message(b"real_spend", [self.decoys.i]);
// Ring
for (i, pair) in self.decoys.ring.iter().enumerate() {
// Doesn't include global output indexes as CLSAG doesn't care and won't be affected by it
2022-05-06 19:07:37 -04:00
// They're just a unreliable reference to this data which will be included in the message
// if in use
transcript.append_message(b"member", [u8::try_from(i).expect("ring size exceeded 255")]);
transcript.append_message(b"key", pair[0].compress().to_bytes());
transcript.append_message(b"commitment", pair[1].compress().to_bytes())
}
// Doesn't include the commitment's parts as the above ring + index includes the commitment
// The only potential malleability would be if the G/H relationship is known breaking the
// discrete log problem, which breaks everything already
}
}
/// CLSAG input and the mask to use for it.
Utilize zeroize (#76) * Apply Zeroize to nonces used in Bulletproofs Also makes bit decomposition constant time for a given amount of outputs. * Fix nonce reuse for single-signer CLSAG * Attach Zeroize to most structures in Monero, and ZOnDrop to anything with private data * Zeroize private keys and nonces * Merge prepare_outputs and prepare_transactions * Ensure CLSAG is constant time * Pass by borrow where needed, bug fixes The past few commitments have been one in-progress chunk which I've broken up as best read. * Add Zeroize to FROST structs Still needs to zeroize internally, yet next step. Not quite as aggressive as Monero, partially due to the limitations of HashMaps, partially due to less concern about metadata, yet does still delete a few smaller items of metadata (group key, context string...). * Remove Zeroize from most Monero multisig structs These structs largely didn't have private data, just fields with private data, yet those fields implemented ZeroizeOnDrop making them already covered. While there is still traces of the transaction left in RAM, fully purging that was never the intent. * Use Zeroize within dleq bitvec doesn't offer Zeroize, so a manual zeroing has been implemented. * Use Zeroize for random_nonce It isn't perfect, due to the inability to zeroize the digest, and due to kp256 requiring a few transformations. It does the best it can though. Does move the per-curve random_nonce to a provided one, which is allowed as of https://github.com/cfrg/draft-irtf-cfrg-frost/pull/231. * Use Zeroize on FROST keygen/signing * Zeroize constant time multiexp. * Correct when FROST keygen zeroizes * Move the FROST keys Arc into FrostKeys Reduces amount of instances in memory. * Manually implement Debug for FrostCore to not leak the secret share * Misc bug fixes * clippy + multiexp test bug fixes * Correct FROST key gen share summation It leaked our own share for ourself. * Fix cross-group DLEq tests
2022-08-03 03:25:18 -05:00
#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
2022-08-21 11:29:01 -04:00
pub struct ClsagDetails {
input: ClsagInput,
2022-07-15 01:26:07 -04:00
mask: Scalar,
2022-05-06 19:07:37 -04:00
}
impl ClsagDetails {
2022-08-21 11:29:01 -04:00
pub fn new(input: ClsagInput, mask: Scalar) -> ClsagDetails {
ClsagDetails { input, mask }
2022-05-06 19:07:37 -04:00
}
}
/// Addendum produced during the FROST signing process with relevant data.
#[derive(Clone, PartialEq, Eq, Zeroize, Debug)]
pub struct ClsagAddendum {
pub(crate) key_image: dfg::EdwardsPoint,
dleq: DLEqProof<dfg::EdwardsPoint>,
}
impl WriteAddendum for ClsagAddendum {
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.key_image.compress().to_bytes().as_ref())?;
DKG Blame (#196) * Standardize the DLEq serialization function naming They mismatched from the rest of the project. This commit is technically incomplete as it doesn't update the dkg crate. * Rewrite DKG encryption to enable per-message decryption without side effects This isn't technically true as I already know a break in this which I'll correct for shortly. Does update documentation to explain the new scheme. Required for blame. * Add a verifiable system for blame during the FROST DKG Previously, if sent an invalid key share, the participant would realize that and could accuse the sender. Without further evidence, either the accuser or the accused could be guilty. Now, the accuser has a proof the accused is in the wrong. Reworks KeyMachine to return BlameMachine. This explicitly acknowledges how locally complete keys still need group acknowledgement before the protocol can be complete and provides a way for others to verify blame, even after a locally successful run. If any blame is cast, the protocol is no longer considered complete-able (instead aborting). Further accusations of blame can still be handled however. Updates documentation on network behavior. Also starts to remove "OnDrop". We now use Zeroizing for anything which should be zeroized on drop. This is a lot more piece-meal and reduces clones. * Tweak Zeroizing and Debug impls Expands Zeroizing to be more comprehensive. Also updates Zeroizing<CachedPreprocess([u8; 32])> to CachedPreprocess(Zeroizing<[u8; 32]>) so zeroizing is the first thing done and last step before exposing the copy-able [u8; 32]. Removes private keys from Debug. * Fix a bug where adversaries could claim to be using another user's encryption keys to learn their messages Mentioned a few commits ago, now fixed. This wouldn't have affected Serai, which aborts on failure, nor any DKG currently supported. It's just about ensuring the DKG encryption is robust and proper. * Finish moving dleq from ser/deser to write/read * Add tests for dkg blame * Add a FROST test for invalid signature shares * Batch verify encrypted messages' ephemeral keys' PoP
2023-01-01 01:54:18 -05:00
self.dleq.write(writer)
}
}
#[allow(non_snake_case)]
#[derive(Clone, PartialEq, Eq, Debug)]
2022-05-06 19:07:37 -04:00
struct Interim {
p: Scalar,
c: Scalar,
clsag: Clsag,
2022-07-15 01:26:07 -04:00
pseudo_out: EdwardsPoint,
}
/// FROST algorithm for producing a CLSAG signature.
#[allow(non_snake_case)]
2022-06-05 07:33:15 -04:00
#[derive(Clone, Debug)]
pub struct ClsagMultisig {
transcript: RecommendedTranscript,
2022-05-06 07:33:08 -04:00
pub(crate) H: EdwardsPoint,
2022-07-15 01:26:07 -04:00
// Merged here as CLSAG needs it, passing it would be a mess, yet having it beforehand requires
// an extra round
image: EdwardsPoint,
2022-06-05 07:33:15 -04:00
details: Arc<RwLock<Option<ClsagDetails>>>,
msg: Option<[u8; 32]>,
2022-07-15 01:26:07 -04:00
interim: Option<Interim>,
}
impl ClsagMultisig {
2022-04-29 15:28:04 -04:00
pub fn new(
transcript: RecommendedTranscript,
output_key: EdwardsPoint,
2022-07-15 01:26:07 -04:00
details: Arc<RwLock<Option<ClsagDetails>>>,
) -> ClsagMultisig {
ClsagMultisig {
2022-07-15 01:26:07 -04:00
transcript,
2022-05-06 07:33:08 -04:00
Monero: add more legacy verify functions (#383) * Add v1 ring sig verifying * allow calculating signature hash for v1 txs * add unreduced scalar type with recovery I have added this type for borromen sigs, the ee field can be a normal scalar as in the verify function the ee field is checked against a reduced scalar mean for it to verify as correct ee must be reduced * change block major/ minor versions to u8 this matches Monero I have also changed a couple varint functions to accept the `VarInt` trait * expose `serialize_hashable` on `Block` * add back MLSAG verifying functions I still need to revert the commit removing support for >1 input MLSAG FULL This adds a new rct type to separate Full and simple rct * add back support for multiple inputs for RCT FULL * comment `non_adjacent_form` function also added `#[allow(clippy::needless_range_loop)]` around a loop as without a re-write satisfying clippy without it will make the function worse. * Improve Mlsag verifying API * fix rebase errors * revert the changes on `reserialize_chain` plus other misc changes * fix no-std * Reduce the amount of rpc calls needed for `get_block_by_number`. This function was causing me problems, every now and then a node would return a block with a different number than requested. * change `serialize_hashable` to give the POW hashing blob. Monero calculates the POW hash and the block hash using *slightly* different blobs :/ * make ring_signatures public and add length check when verifying. * Misc improvements and bug fixes --------- Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2023-11-12 15:18:18 +00:00
H: hash_to_point(&output_key),
2022-07-15 01:26:07 -04:00
image: EdwardsPoint::identity(),
2022-07-15 01:26:07 -04:00
details,
2022-07-15 01:26:07 -04:00
msg: None,
interim: None,
}
}
2022-04-30 04:32:19 -04:00
fn input(&self) -> ClsagInput {
2022-06-05 07:33:15 -04:00
(*self.details.read().unwrap()).as_ref().unwrap().input.clone()
2022-05-06 19:07:37 -04:00
}
fn mask(&self) -> Scalar {
2022-06-05 07:33:15 -04:00
(*self.details.read().unwrap()).as_ref().unwrap().mask
2022-05-06 19:07:37 -04:00
}
}
pub(crate) fn add_key_image_share(
image: &mut EdwardsPoint,
generator: EdwardsPoint,
offset: Scalar,
included: &[Participant],
participant: Participant,
share: EdwardsPoint,
) {
2023-09-12 10:02:20 -04:00
if image.is_identity().into() {
*image = generator * offset;
}
*image += share * lagrange::<dfg::Scalar>(participant, included).0;
}
impl Algorithm<Ed25519> for ClsagMultisig {
type Transcript = RecommendedTranscript;
type Addendum = ClsagAddendum;
type Signature = (Clsag, EdwardsPoint);
fn nonces(&self) -> Vec<Vec<dfg::EdwardsPoint>> {
vec![vec![dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(self.H)]]
}
fn preprocess_addendum<R: RngCore + CryptoRng>(
2022-05-17 19:15:53 -04:00
&mut self,
rng: &mut R,
keys: &ThresholdKeys<Ed25519>,
) -> ClsagAddendum {
ClsagAddendum {
key_image: dfg::EdwardsPoint(self.H) * keys.secret_share().deref(),
dleq: DLEqProof::prove(
rng,
// Doesn't take in a larger transcript object due to the usage of this
// Every prover would immediately write their own DLEq proof, when they can only do so in
// the proper order if they want to reach consensus
// It'd be a poor API to have CLSAG define a new transcript solely to pass here, just to
// try to merge later in some form, when it should instead just merge xH (as it does)
&mut dleq_transcript(),
&[dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(self.H)],
keys.secret_share(),
),
}
}
fn read_addendum<R: Read>(&self, reader: &mut R) -> io::Result<ClsagAddendum> {
let mut bytes = [0; 32];
reader.read_exact(&mut bytes)?;
// dfg ensures the point is torsion free
let xH = Option::<dfg::EdwardsPoint>::from(dfg::EdwardsPoint::from_bytes(&bytes))
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid key image"))?;
// Ensure this is a canonical point
if xH.to_bytes() != bytes {
Err(io::Error::new(io::ErrorKind::Other, "non-canonical key image"))?;
}
DKG Blame (#196) * Standardize the DLEq serialization function naming They mismatched from the rest of the project. This commit is technically incomplete as it doesn't update the dkg crate. * Rewrite DKG encryption to enable per-message decryption without side effects This isn't technically true as I already know a break in this which I'll correct for shortly. Does update documentation to explain the new scheme. Required for blame. * Add a verifiable system for blame during the FROST DKG Previously, if sent an invalid key share, the participant would realize that and could accuse the sender. Without further evidence, either the accuser or the accused could be guilty. Now, the accuser has a proof the accused is in the wrong. Reworks KeyMachine to return BlameMachine. This explicitly acknowledges how locally complete keys still need group acknowledgement before the protocol can be complete and provides a way for others to verify blame, even after a locally successful run. If any blame is cast, the protocol is no longer considered complete-able (instead aborting). Further accusations of blame can still be handled however. Updates documentation on network behavior. Also starts to remove "OnDrop". We now use Zeroizing for anything which should be zeroized on drop. This is a lot more piece-meal and reduces clones. * Tweak Zeroizing and Debug impls Expands Zeroizing to be more comprehensive. Also updates Zeroizing<CachedPreprocess([u8; 32])> to CachedPreprocess(Zeroizing<[u8; 32]>) so zeroizing is the first thing done and last step before exposing the copy-able [u8; 32]. Removes private keys from Debug. * Fix a bug where adversaries could claim to be using another user's encryption keys to learn their messages Mentioned a few commits ago, now fixed. This wouldn't have affected Serai, which aborts on failure, nor any DKG currently supported. It's just about ensuring the DKG encryption is robust and proper. * Finish moving dleq from ser/deser to write/read * Add tests for dkg blame * Add a FROST test for invalid signature shares * Batch verify encrypted messages' ephemeral keys' PoP
2023-01-01 01:54:18 -05:00
Ok(ClsagAddendum { key_image: xH, dleq: DLEqProof::<dfg::EdwardsPoint>::read(reader)? })
}
fn process_addendum(
&mut self,
view: &ThresholdView<Ed25519>,
l: Participant,
addendum: ClsagAddendum,
) -> Result<(), FrostError> {
2023-09-12 10:02:20 -04:00
if self.image.is_identity().into() {
2022-05-06 07:33:08 -04:00
self.transcript.domain_separate(b"CLSAG");
2022-05-06 19:07:37 -04:00
self.input().transcript(&mut self.transcript);
self.transcript.append_message(b"mask", self.mask().to_bytes());
2022-05-06 07:33:08 -04:00
}
self.transcript.append_message(b"participant", l.to_bytes());
addendum
.dleq
.verify(
&mut dleq_transcript(),
&[dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(self.H)],
&[view.original_verification_share(l), addendum.key_image],
)
.map_err(|_| FrostError::InvalidPreprocess(l))?;
2022-11-05 18:47:57 -04:00
self.transcript.append_message(b"key_image_share", addendum.key_image.compress().to_bytes());
add_key_image_share(
&mut self.image,
self.H,
view.offset().0,
view.included(),
l,
addendum.key_image.0,
);
Ok(())
}
2022-05-06 07:33:08 -04:00
fn transcript(&mut self) -> &mut Self::Transcript {
&mut self.transcript
2022-04-29 15:28:04 -04:00
}
fn sign_share(
&mut self,
view: &ThresholdView<Ed25519>,
nonce_sums: &[Vec<dfg::EdwardsPoint>],
nonces: Vec<Zeroizing<dfg::Scalar>>,
2022-07-15 01:26:07 -04:00
msg: &[u8],
) -> dfg::Scalar {
// Use the transcript to get a seeded random number generator
// The transcript contains private data, preventing passive adversaries from recreating this
// process even if they have access to commitments (specifically, the ring index being signed
// for, along with the mask which should not only require knowing the shared keys yet also the
2022-05-06 07:33:08 -04:00
// input commitment masks)
let mut rng = ChaCha20Rng::from_seed(self.transcript.rng_seed(b"decoy_responses"));
2022-04-28 12:01:20 -04:00
self.msg = Some(msg.try_into().expect("CLSAG message should be 32-bytes"));
#[allow(non_snake_case)]
let (clsag, pseudo_out, p, c) = Clsag::sign_core(
&mut rng,
&self.image,
2022-05-06 19:07:37 -04:00
&self.input(),
self.mask(),
self.msg.as_ref().unwrap(),
nonce_sums[0][0].0,
2022-07-15 01:26:07 -04:00
nonce_sums[0][1].0,
);
self.interim = Some(Interim { p, c, clsag, pseudo_out });
(-(dfg::Scalar(p) * view.secret_share().deref())) + nonces[0].deref()
}
2022-07-07 14:28:42 -04:00
#[must_use]
fn verify(
&self,
_: dfg::EdwardsPoint,
_: &[Vec<dfg::EdwardsPoint>],
2022-07-15 01:26:07 -04:00
sum: dfg::Scalar,
) -> Option<Self::Signature> {
let interim = self.interim.as_ref().unwrap();
let mut clsag = interim.clsag.clone();
clsag.s[usize::from(self.input().decoys.i)] = sum.0 - interim.c;
2022-07-15 01:26:07 -04:00
if clsag
.verify(
&self.input().decoys.ring,
&self.image,
&interim.pseudo_out,
self.msg.as_ref().unwrap(),
2022-07-15 01:26:07 -04:00
)
.is_ok()
{
return Some((clsag, interim.pseudo_out));
}
None
}
fn verify_share(
&self,
verification_share: dfg::EdwardsPoint,
nonces: &[Vec<dfg::EdwardsPoint>],
share: dfg::Scalar,
) -> Result<Vec<(dfg::Scalar, dfg::EdwardsPoint)>, ()> {
let interim = self.interim.as_ref().unwrap();
Ok(vec![
(share, dfg::EdwardsPoint::generator()),
(dfg::Scalar(interim.p), verification_share),
(-dfg::Scalar::ONE, nonces[0][0]),
])
}
}