Files
serai/sign/monero/src/clsag/multisig.rs

199 lines
5.4 KiB
Rust
Raw Normal View History

use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use blake2::Blake2b;
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
scalar::Scalar,
edwards::EdwardsPoint
};
use dalek_ff_group as dfg;
use group::Group;
use frost::{Curve, FrostError, algorithm::Algorithm};
use monero::util::ringct::{Key, Clsag};
use crate::{
SignError,
hash_to_point,
frost::{Ed25519, DLEqProof},
clsag::{SemiSignableRing, validate_sign_args, sign_core, verify}
};
#[allow(non_snake_case)]
#[derive(Clone, Debug)]
struct ClsagSignInterim {
c: Scalar,
mu_C: Scalar,
z: Scalar,
mu_P: Scalar,
clsag: Clsag,
C_out: EdwardsPoint
}
#[allow(non_snake_case)]
#[derive(Clone, Debug)]
pub struct Multisig {
b: Vec<u8>,
AH: dfg::EdwardsPoint,
image: EdwardsPoint,
msg: [u8; 32],
ssr: SemiSignableRing,
interim: Option<ClsagSignInterim>
}
impl Multisig {
pub fn new(
image: EdwardsPoint,
msg: [u8; 32],
ring: Vec<[EdwardsPoint; 2]>,
i: u8,
randomness: &Scalar,
amount: u64
) -> Result<Multisig, SignError> {
let ssr = validate_sign_args(ring, i, None, randomness, amount)?;
Ok(
Multisig {
b: vec![],
AH: dfg::EdwardsPoint::identity(),
image,
msg,
ssr,
interim: None
}
)
}
}
impl Algorithm<Ed25519> for Multisig {
type Signature = (Clsag, EdwardsPoint);
fn context(&self) -> Vec<u8> {
let mut context = self.image.compress().to_bytes().to_vec();
for pair in &self.ssr.ring {
context.extend(&pair[0].compress().to_bytes());
}
context.extend(&u8::try_from(self.ssr.i).unwrap().to_le_bytes());
context.extend(&self.ssr.randomness.to_bytes());
context.extend(&self.ssr.amount.to_le_bytes());
context
}
// We arguably don't have to commit to at all thanks to xG and yG being committed to, both of
// those being proven to have the same scalar as xH and yH, yet it doesn't hurt
fn addendum_commit_len() -> usize {
64
}
fn preprocess_addendum<R: RngCore + CryptoRng>(
rng: &mut R,
group_key: &dfg::EdwardsPoint,
nonces: &[dfg::Scalar; 2]
) -> Vec<u8> {
#[allow(non_snake_case)]
let H = hash_to_point(&group_key.0);
let h0 = nonces[0].0 * H;
let h1 = nonces[1].0 * H;
// 32 + 32 + 64 + 64
let mut serialized = Vec::with_capacity(192);
serialized.extend(h0.compress().to_bytes());
serialized.extend(h1.compress().to_bytes());
serialized.extend(&DLEqProof::prove(rng, &nonces[0].0, &H, &h0).serialize());
serialized.extend(&DLEqProof::prove(rng, &nonces[1].0, &H, &h1).serialize());
serialized
}
fn process_addendum(
&mut self,
l: usize,
commitments: &[dfg::EdwardsPoint; 2],
p: &dfg::Scalar,
serialized: &[u8]
) -> Result<(), FrostError> {
if serialized.len() != 192 {
// Not an optimal error but...
Err(FrostError::InvalidCommitmentQuantity(l, 6, serialized.len() / 32))?;
}
let alt = &hash_to_point(&self.ssr.ring[self.ssr.i][0]);
let h0 = <Ed25519 as Curve>::G_from_slice(&serialized[0 .. 32]).map_err(|_| FrostError::InvalidCommitment(l))?;
DLEqProof::deserialize(&serialized[64 .. 128]).ok_or(FrostError::InvalidCommitment(l))?.verify(
&alt,
&commitments[0],
&h0
).map_err(|_| FrostError::InvalidCommitment(l))?;
let h1 = <Ed25519 as Curve>::G_from_slice(&serialized[32 .. 64]).map_err(|_| FrostError::InvalidCommitment(l))?;
DLEqProof::deserialize(&serialized[128 .. 192]).ok_or(FrostError::InvalidCommitment(l))?.verify(
&alt,
&commitments[1],
&h1
).map_err(|_| FrostError::InvalidCommitment(l))?;
self.b.extend(&l.to_le_bytes());
self.b.extend(&serialized[0 .. 64]);
self.AH += h0 + (h1 * p);
Ok(())
}
fn sign_share(
&mut self,
_: dfg::EdwardsPoint,
secret: dfg::Scalar,
nonce: dfg::Scalar,
nonce_sum: dfg::EdwardsPoint,
_: &[u8],
) -> dfg::Scalar {
// Use everyone's commitments to derive a random source all signers can agree upon
// Cannot be manipulated to effect and all signers must, and will, know this
let rand_source = Blake2b::new().chain("Clsag_randomness").chain(&self.b).finalize().as_slice().try_into().unwrap();
#[allow(non_snake_case)]
let (clsag, c, mu_C, z, mu_P, C_out) = sign_core(rand_source, self.image, &self.msg, &self.ssr, nonce_sum.0, self.AH.0);
let share = dfg::Scalar(nonce.0 - (c * (mu_P * secret.0)));
self.interim = Some(ClsagSignInterim { c, mu_C, z, mu_P, clsag, C_out });
share
}
fn verify(
&self,
_: dfg::EdwardsPoint,
_: dfg::EdwardsPoint,
sum: dfg::Scalar
) -> Option<Self::Signature> {
let interim = self.interim.as_ref().unwrap();
// Subtract the randomness's presence, which is done once and not fractionalized among shares
let s = sum.0 - (interim.c * (interim.mu_C * interim.z));
let mut clsag = interim.clsag.clone();
clsag.s[self.ssr.i] = Key { key: s.to_bytes() };
if verify(&clsag, self.image, &self.msg, &self.ssr.ring, interim.C_out).is_ok() {
return Some((clsag, interim.C_out));
}
return None;
}
fn verify_share(
&self,
verification_share: dfg::EdwardsPoint,
nonce: dfg::EdwardsPoint,
share: dfg::Scalar,
) -> bool {
let interim = self.interim.as_ref().unwrap();
return (&share.0 * &ED25519_BASEPOINT_TABLE) == (
nonce.0 - (interim.c * (interim.mu_P * verification_share.0))
);
}
}