Files
serai/coins/monero/src/clsag/multisig.rs

251 lines
7.5 KiB
Rust
Raw Normal View History

use core::fmt::Debug;
2022-04-30 04:32:19 -04:00
use std::{rc::Rc, cell::RefCell};
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
traits::Identity,
scalar::Scalar,
edwards::EdwardsPoint
};
use monero::util::ringct::{Key, Clsag};
use group::Group;
use transcript::Transcript as TranscriptTrait;
2022-04-30 04:32:19 -04:00
use frost::{Curve, FrostError, algorithm::Algorithm, MultisigView};
use dalek_ff_group as dfg;
use crate::{
hash_to_point,
frost::{Transcript, MultisigError, Ed25519, DLEqProof},
key_image,
2022-04-28 17:29:56 -04:00
clsag::{Input, sign_core, verify}
};
impl Input {
pub fn transcript<T: TranscriptTrait>(&self, transcript: &mut T) {
// Ring index
transcript.append_message(b"ring_index", &[self.i]);
// Ring
let mut ring = vec![];
for pair in &self.ring {
// Doesn't include global output indexes as CLSAG doesn't care and won't be affected by it
// They're just a mutable reference to this data
ring.extend(&pair[0].compress().to_bytes());
ring.extend(&pair[1].compress().to_bytes());
}
transcript.append_message(b"ring", &ring);
// Doesn't include the commitment's parts as the above ring + index includes the commitment
// The only potential malleability would be if the G/H relationship is known breaking the
// discrete log problem, which breaks everything already
}
}
#[allow(non_snake_case)]
#[derive(Clone, Debug)]
struct ClsagSignInterim {
c: Scalar,
2022-04-28 12:01:20 -04:00
s: Scalar,
clsag: Clsag,
C_out: EdwardsPoint
}
#[allow(non_snake_case)]
#[derive(Clone, Debug)]
2022-04-30 04:32:19 -04:00
pub struct Multisig {
commitments_H: Vec<u8>,
image: EdwardsPoint,
AH: (dfg::EdwardsPoint, dfg::EdwardsPoint),
2022-04-28 17:29:56 -04:00
input: Input,
2022-04-30 04:32:19 -04:00
msg: Rc<RefCell<[u8; 32]>>,
mask: Rc<RefCell<Scalar>>,
interim: Option<ClsagSignInterim>
}
2022-04-30 04:32:19 -04:00
impl Multisig {
2022-04-29 15:28:04 -04:00
pub fn new(
input: Input,
2022-04-30 04:32:19 -04:00
msg: Rc<RefCell<[u8; 32]>>,
mask: Rc<RefCell<Scalar>>,
2022-04-30 04:32:19 -04:00
) -> Result<Multisig, MultisigError> {
Ok(
Multisig {
commitments_H: vec![],
image: EdwardsPoint::identity(),
AH: (dfg::EdwardsPoint::identity(), dfg::EdwardsPoint::identity()),
2022-04-28 12:01:20 -04:00
input,
2022-04-30 04:32:19 -04:00
msg,
mask,
interim: None
}
)
}
2022-04-30 04:32:19 -04:00
pub fn serialized_len() -> usize {
3 * (32 + 64)
}
}
2022-04-30 04:32:19 -04:00
impl Algorithm<Ed25519> for Multisig {
type Transcript = Transcript;
type Signature = (Clsag, EdwardsPoint);
fn preprocess_addendum<R: RngCore + CryptoRng>(
rng: &mut R,
2022-04-30 04:32:19 -04:00
view: &MultisigView<Ed25519>,
nonces: &[dfg::Scalar; 2]
) -> Vec<u8> {
2022-04-30 04:32:19 -04:00
let (share, proof) = key_image::generate_share(rng, view);
#[allow(non_snake_case)]
let H = hash_to_point(&view.group_key().0);
#[allow(non_snake_case)]
let nH = (nonces[0].0 * H, nonces[1].0 * H);
2022-04-30 04:32:19 -04:00
let mut serialized = Vec::with_capacity(Multisig::serialized_len());
serialized.extend(share.compress().to_bytes());
serialized.extend(nH.0.compress().to_bytes());
serialized.extend(nH.1.compress().to_bytes());
serialized.extend(&DLEqProof::prove(rng, &nonces[0].0, &H, &nH.0).serialize());
serialized.extend(&DLEqProof::prove(rng, &nonces[1].0, &H, &nH.1).serialize());
serialized.extend(proof);
serialized
}
fn process_addendum(
&mut self,
2022-04-30 04:32:19 -04:00
view: &MultisigView<Ed25519>,
l: usize,
commitments: &[dfg::EdwardsPoint; 2],
serialized: &[u8]
) -> Result<(), FrostError> {
2022-04-30 04:32:19 -04:00
if serialized.len() != Multisig::serialized_len() {
// Not an optimal error but...
Err(FrostError::InvalidCommitmentQuantity(l, 9, serialized.len() / 32))?;
}
let (share, serialized) = key_image::verify_share(view, l, serialized).map_err(|_| FrostError::InvalidShare(l))?;
self.image += share;
let alt = &hash_to_point(&self.input.ring[usize::from(self.input.i)][0]);
// Uses the same format FROST does for the expected commitments (nonce * G where this is nonce * H)
self.commitments_H.extend(&u64::try_from(l).unwrap().to_le_bytes());
self.commitments_H.extend(&serialized[0 .. 64]);
#[allow(non_snake_case)]
let H = (
<Ed25519 as Curve>::G_from_slice(&serialized[0 .. 32]).map_err(|_| FrostError::InvalidCommitment(l))?,
<Ed25519 as Curve>::G_from_slice(&serialized[32 .. 64]).map_err(|_| FrostError::InvalidCommitment(l))?
);
DLEqProof::deserialize(&serialized[64 .. 128]).ok_or(FrostError::InvalidCommitment(l))?.verify(
&alt,
&commitments[0],
&H.0
).map_err(|_| FrostError::InvalidCommitment(l))?;
DLEqProof::deserialize(&serialized[128 .. 192]).ok_or(FrostError::InvalidCommitment(l))?.verify(
&alt,
&commitments[1],
&H.1
).map_err(|_| FrostError::InvalidCommitment(l))?;
self.AH.0 += H.0;
self.AH.1 += H.1;
Ok(())
}
fn transcript(&self) -> Option<Self::Transcript> {
let mut transcript = Self::Transcript::new(b"CLSAG");
self.input.transcript(&mut transcript);
// Given the fact there's only ever one possible value for this, this may technically not need
// to be committed to. If signing a TX, it's be double committed to thanks to the message
// It doesn't hurt to have though and ensures security boundaries are well formed
transcript.append_message(b"image", &self.image.compress().to_bytes());
// Given this is guaranteed to match commitments, which FROST commits to, this also technically
// doesn't need to be committed to if a canonical serialization is guaranteed
// It, again, doesn't hurt to include and ensures security boundaries are well formed
transcript.append_message(b"commitments_H", &self.commitments_H);
transcript.append_message(b"message", &*self.msg.borrow());
transcript.append_message(b"mask", &self.mask.borrow().to_bytes());
Some(transcript)
2022-04-29 15:28:04 -04:00
}
fn sign_share(
&mut self,
2022-04-30 04:32:19 -04:00
view: &MultisigView<Ed25519>,
nonce_sum: dfg::EdwardsPoint,
b: dfg::Scalar,
nonce: dfg::Scalar,
_: &[u8]
) -> dfg::Scalar {
// Apply the binding factor to the H variant of the nonce
self.AH.0 += self.AH.1 * b;
// Use the transcript to get a seeded random number generator
// The transcript contains private data, preventing passive adversaries from recreating this
// process even if they have access to commitments (specifically, the ring index being signed
// for, along with the mask which should not only require knowing the shared keys yet also the
// input commitment mask)
let mut rng = self.transcript().unwrap().seeded_rng(b"decoy_responses", None);
2022-04-28 12:01:20 -04:00
#[allow(non_snake_case)]
let (clsag, c, mu_C, z, mu_P, C_out) = sign_core(
&mut rng,
2022-04-30 04:32:19 -04:00
&self.msg.borrow(),
2022-04-28 12:01:20 -04:00
&self.input,
&self.image,
*self.mask.borrow(),
nonce_sum.0,
self.AH.0.0
);
2022-04-28 12:01:20 -04:00
self.interim = Some(ClsagSignInterim { c: c * mu_P, s: c * mu_C * z, clsag, C_out });
2022-04-28 12:01:20 -04:00
let share = dfg::Scalar(nonce.0 - (c * mu_P * view.secret_share().0));
share
}
fn verify(
&self,
_: dfg::EdwardsPoint,
_: dfg::EdwardsPoint,
sum: dfg::Scalar
) -> Option<Self::Signature> {
let interim = self.interim.as_ref().unwrap();
let mut clsag = interim.clsag.clone();
clsag.s[usize::from(self.input.i)] = Key { key: (sum.0 - interim.s).to_bytes() };
2022-04-30 04:32:19 -04:00
if verify(&clsag, &self.msg.borrow(), self.image, &self.input.ring, interim.C_out) {
return Some((clsag, interim.C_out));
}
return None;
}
fn verify_share(
&self,
verification_share: dfg::EdwardsPoint,
nonce: dfg::EdwardsPoint,
share: dfg::Scalar,
) -> bool {
let interim = self.interim.as_ref().unwrap();
return (&share.0 * &ED25519_BASEPOINT_TABLE) == (
2022-04-28 12:01:20 -04:00
nonce.0 - (interim.c * verification_share.0)
);
}
}