Files
serai/processor/src/coins/monero.rs

600 lines
18 KiB
Rust

use std::{time::Duration, collections::HashMap, io};
use async_trait::async_trait;
use zeroize::Zeroizing;
use transcript::RecommendedTranscript;
use group::{ff::Field, Group};
use dalek_ff_group::{Scalar, EdwardsPoint};
use frost::{curve::Ed25519, ThresholdKeys};
use monero_serai::{
Protocol,
transaction::Transaction,
block::Block as MBlock,
rpc::{RpcError, Rpc},
wallet::{
ViewPair, Scanner,
address::{Network, SubaddressIndex, AddressSpec},
Fee, SpendableOutput, Change, TransactionError, SignableTransaction as MSignableTransaction,
Eventuality, TransactionMachine,
},
};
use tokio::time::sleep;
pub use serai_client::{
primitives::{MAX_DATA_LEN, MONERO, MONERO_NET_ID, NetworkId, Amount, Balance},
coins::monero::Address,
};
use crate::{
Payment, Plan, additional_key,
coins::{
CoinError, Block as BlockTrait, OutputType, Output as OutputTrait,
Transaction as TransactionTrait, Eventuality as EventualityTrait, EventualitiesTracker,
PostFeeBranch, Coin, drop_branches, amortize_fee,
},
};
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Output(SpendableOutput, Vec<u8>);
const EXTERNAL_SUBADDRESS: Option<SubaddressIndex> = SubaddressIndex::new(0, 0);
const BRANCH_SUBADDRESS: Option<SubaddressIndex> = SubaddressIndex::new(1, 0);
const CHANGE_SUBADDRESS: Option<SubaddressIndex> = SubaddressIndex::new(2, 0);
impl OutputTrait for Output {
// While we could use (tx, o), using the key ensures we won't be susceptible to the burning bug.
// While we already are immune, thanks to using featured address, this doesn't hurt and is
// technically more efficient.
type Id = [u8; 32];
fn kind(&self) -> OutputType {
match self.0.output.metadata.subaddress {
EXTERNAL_SUBADDRESS => OutputType::External,
BRANCH_SUBADDRESS => OutputType::Branch,
CHANGE_SUBADDRESS => OutputType::Change,
_ => panic!("unrecognized address was scanned for"),
}
}
fn id(&self) -> Self::Id {
self.0.output.data.key.compress().to_bytes()
}
fn balance(&self) -> Balance {
Balance { coin: MONERO, amount: Amount(self.0.commitment().amount) }
}
fn data(&self) -> &[u8] {
&self.1
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
self.0.write(writer)?;
writer.write_all(&u16::try_from(self.1.len()).unwrap().to_le_bytes())?;
writer.write_all(&self.1)?;
Ok(())
}
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let output = SpendableOutput::read(reader)?;
let mut data_len = [0; 2];
reader.read_exact(&mut data_len)?;
let mut data = vec![0; usize::from(u16::from_le_bytes(data_len))];
reader.read_exact(&mut data)?;
Ok(Output(output, data))
}
}
#[async_trait]
impl TransactionTrait<Monero> for Transaction {
type Id = [u8; 32];
fn id(&self) -> Self::Id {
self.hash()
}
fn serialize(&self) -> Vec<u8> {
self.serialize()
}
#[cfg(test)]
async fn fee(&self, _: &Monero) -> u64 {
self.rct_signatures.base.fee
}
}
impl EventualityTrait for Eventuality {
// Use the TX extra to look up potential matches
// While anyone can forge this, a transaction with distinct outputs won't actually match
// Extra includess the one time keys which are derived from the plan ID, so a collision here is a
// hash collision
fn lookup(&self) -> Vec<u8> {
self.extra().to_vec()
}
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
Eventuality::read(reader)
}
fn serialize(&self) -> Vec<u8> {
self.serialize()
}
}
#[derive(Clone, Debug)]
pub struct SignableTransaction {
keys: ThresholdKeys<Ed25519>,
transcript: RecommendedTranscript,
// Monero height, defined as the length of the chain
height: usize,
actual: MSignableTransaction,
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Block([u8; 32], MBlock);
impl BlockTrait<Monero> for Block {
type Id = [u8; 32];
fn id(&self) -> Self::Id {
self.0
}
fn median_fee(&self) -> Fee {
// TODO
Fee { per_weight: 80000, mask: 10000 }
}
}
#[derive(Clone, Debug)]
pub struct Monero {
rpc: Rpc,
}
// Shim required for testing/debugging purposes due to generic arguments also necessitating trait
// bounds
impl PartialEq for Monero {
fn eq(&self, _: &Self) -> bool {
true
}
}
impl Eq for Monero {}
impl Monero {
pub fn new(url: String) -> Monero {
Monero { rpc: Rpc::new(url).unwrap() }
}
fn view_pair(spend: EdwardsPoint) -> ViewPair {
ViewPair::new(spend.0, Zeroizing::new(additional_key::<Monero>(0).0))
}
fn address_internal(spend: EdwardsPoint, subaddress: Option<SubaddressIndex>) -> Address {
Address::new(Self::view_pair(spend).address(
Network::Mainnet,
AddressSpec::Featured { subaddress, payment_id: None, guaranteed: true },
))
.unwrap()
}
fn scanner(spend: EdwardsPoint) -> Scanner {
let mut scanner = Scanner::from_view(Self::view_pair(spend), None);
debug_assert!(EXTERNAL_SUBADDRESS.is_none());
scanner.register_subaddress(BRANCH_SUBADDRESS.unwrap());
scanner.register_subaddress(CHANGE_SUBADDRESS.unwrap());
scanner
}
#[cfg(test)]
fn test_view_pair() -> ViewPair {
ViewPair::new(*EdwardsPoint::generator(), Zeroizing::new(Scalar::ONE.0))
}
#[cfg(test)]
fn test_scanner() -> Scanner {
Scanner::from_view(Self::test_view_pair(), Some(std::collections::HashSet::new()))
}
#[cfg(test)]
fn test_address() -> Address {
Address::new(Self::test_view_pair().address(Network::Mainnet, AddressSpec::Standard)).unwrap()
}
}
#[async_trait]
impl Coin for Monero {
type Curve = Ed25519;
type Fee = Fee;
type Transaction = Transaction;
type Block = Block;
type Output = Output;
type SignableTransaction = SignableTransaction;
type Eventuality = Eventuality;
type TransactionMachine = TransactionMachine;
type Address = Address;
const NETWORK: NetworkId = MONERO_NET_ID;
const ID: &'static str = "Monero";
const CONFIRMATIONS: usize = 10;
// wallet2 will not create a transaction larger than 100kb, and Monero won't relay a transaction
// larger than 150kb. This fits within the 100kb mark
// Technically, it can be ~124, yet a small bit of buffer is appreciated
// TODO: Test creating a TX this big
const MAX_INPUTS: usize = 120;
const MAX_OUTPUTS: usize = 16;
// 0.01 XMR
const DUST: u64 = 10000000000;
// Monero doesn't require/benefit from tweaking
fn tweak_keys(_: &mut ThresholdKeys<Self::Curve>) {}
fn address(key: EdwardsPoint) -> Self::Address {
Self::address_internal(key, EXTERNAL_SUBADDRESS)
}
fn branch_address(key: EdwardsPoint) -> Self::Address {
Self::address_internal(key, BRANCH_SUBADDRESS)
}
async fn get_latest_block_number(&self) -> Result<usize, CoinError> {
// Monero defines height as chain length, so subtract 1 for block number
Ok(self.rpc.get_height().await.map_err(|_| CoinError::ConnectionError)? - 1)
}
async fn get_block(&self, number: usize) -> Result<Self::Block, CoinError> {
let hash = self.rpc.get_block_hash(number).await.map_err(|_| CoinError::ConnectionError)?;
let block = self.rpc.get_block(hash).await.map_err(|_| CoinError::ConnectionError)?;
Ok(Block(hash, block))
}
async fn get_outputs(
&self,
block: &Self::Block,
key: EdwardsPoint,
) -> Result<Vec<Self::Output>, CoinError> {
let mut txs = Self::scanner(key)
.scan(&self.rpc, &block.1)
.await
.map_err(|_| CoinError::ConnectionError)?
.iter()
.filter_map(|outputs| Some(outputs.not_locked()).filter(|outputs| !outputs.is_empty()))
.collect::<Vec<_>>();
// This should be pointless as we shouldn't be able to scan for any other subaddress
// This just ensures nothing invalid makes it through
for tx_outputs in &txs {
for output in tx_outputs {
assert!([EXTERNAL_SUBADDRESS, BRANCH_SUBADDRESS, CHANGE_SUBADDRESS]
.contains(&output.output.metadata.subaddress));
}
}
let mut outputs = Vec::with_capacity(txs.len());
for mut tx_outputs in txs.drain(..) {
for output in tx_outputs.drain(..) {
let mut data = output.arbitrary_data().get(0).cloned().unwrap_or(vec![]);
// The Output serialization code above uses u16 to represent length
data.truncate(u16::MAX.into());
// Monero data segments should be <= 255 already, and MAX_DATA_LEN is currently 512
// This just allows either Monero to change, or MAX_DATA_LEN to change, without introducing
// complicationso
data.truncate(MAX_DATA_LEN.try_into().unwrap());
outputs.push(Output(output, data));
}
}
Ok(outputs)
}
async fn get_eventuality_completions(
&self,
eventualities: &mut EventualitiesTracker<Eventuality>,
block: &Self::Block,
) -> HashMap<[u8; 32], [u8; 32]> {
let block = &block.1;
let mut res = HashMap::new();
if eventualities.map.is_empty() {
return res;
}
async fn check_block(
coin: &Monero,
eventualities: &mut EventualitiesTracker<Eventuality>,
block: &MBlock,
res: &mut HashMap<[u8; 32], [u8; 32]>,
) {
for hash in &block.txs {
let tx = {
let mut tx;
while {
tx = coin.get_transaction(hash).await;
tx.is_err()
} {
log::error!("couldn't get transaction {}: {}", hex::encode(hash), tx.err().unwrap());
sleep(Duration::from_secs(60)).await;
}
tx.unwrap()
};
if let Some((_, eventuality)) = eventualities.map.get(&tx.prefix.extra) {
if eventuality.matches(&tx) {
res.insert(eventualities.map.remove(&tx.prefix.extra).unwrap().0, tx.hash());
}
}
}
eventualities.block_number += 1;
assert_eq!(eventualities.block_number, block.number());
}
for block_num in (eventualities.block_number + 1) .. block.number() {
let block = {
let mut block;
while {
block = self.get_block(block_num).await;
block.is_err()
} {
log::error!("couldn't get block {}: {}", block_num, block.err().unwrap());
sleep(Duration::from_secs(60)).await;
}
block.unwrap()
};
check_block(self, eventualities, &block.1, &mut res).await;
}
// Also check the current block
check_block(self, eventualities, block, &mut res).await;
assert_eq!(eventualities.block_number, block.number());
res
}
async fn prepare_send(
&self,
keys: ThresholdKeys<Ed25519>,
block_number: usize,
mut plan: Plan<Self>,
fee: Fee,
) -> Result<(Option<(SignableTransaction, Eventuality)>, Vec<PostFeeBranch>), CoinError> {
// Sanity check this has at least one output planned
assert!((!plan.payments.is_empty()) || plan.change.is_some());
// Get the protocol for the specified block number
// For now, this should just be v16, the latest deployed protocol, since there's no upcoming
// hard fork to be mindful of
let get_protocol = || Protocol::v16;
#[cfg(not(test))]
let protocol = get_protocol();
// If this is a test, we won't be using a mainnet node and need a distinct protocol
// determination
// Just use whatever the node expects
#[cfg(test)]
let protocol = self.rpc.get_protocol().await.unwrap();
// Hedge against the above codegen failing by having an always included runtime check
if !cfg!(test) {
assert_eq!(protocol, get_protocol());
}
// Check a fork hasn't occurred which this processor hasn't been updated for
assert_eq!(protocol, self.rpc.get_protocol().await.map_err(|_| CoinError::ConnectionError)?);
let signable = |plan: &mut Plan<Self>, tx_fee: Option<_>| {
// Monero requires at least two outputs
// If we only have one output planned, add a dummy payment
let outputs = plan.payments.len() + usize::from(u8::from(plan.change.is_some()));
if outputs == 0 {
return Ok(None);
} else if outputs == 1 {
plan.payments.push(Payment {
address: Address::new(
ViewPair::new(EdwardsPoint::generator().0, Zeroizing::new(Scalar::ONE.0))
.address(Network::Mainnet, AddressSpec::Standard),
)
.unwrap(),
amount: 0,
data: None,
});
}
let mut payments = vec![];
for payment in &plan.payments {
// If we're solely estimating the fee, don't actually specify an amount
// This won't affect the fee calculation yet will ensure we don't hit an out of funds error
payments.push((
payment.address.clone().into(),
if tx_fee.is_none() { 0 } else { payment.amount },
));
}
match MSignableTransaction::new(
protocol,
// Use the plan ID as the r_seed
// This perfectly binds the plan while simultaneously allowing verifying the plan was
// executed with no additional communication
Some(Zeroizing::new(plan.id())),
plan.inputs.iter().cloned().map(|input| input.0).collect(),
payments,
plan.change.map(|key| {
Change::fingerprintable(Self::address_internal(key, CHANGE_SUBADDRESS).into())
}),
vec![],
fee,
) {
Ok(signable) => Ok(Some(signable)),
Err(e) => match e {
TransactionError::MultiplePaymentIds => {
panic!("multiple payment IDs despite not supporting integrated addresses");
}
TransactionError::NoInputs |
TransactionError::NoOutputs |
TransactionError::NoChange |
TransactionError::TooManyOutputs |
TransactionError::TooMuchData |
TransactionError::TooLargeTransaction |
TransactionError::WrongPrivateKey => {
panic!("created an Monero invalid transaction: {e}");
}
TransactionError::ClsagError(_) |
TransactionError::InvalidTransaction(_) |
TransactionError::FrostError(_) => {
panic!("supposedly unreachable (at this time) Monero error: {e}");
}
TransactionError::NotEnoughFunds(_, _) => {
if tx_fee.is_none() {
Ok(None)
} else {
panic!("didn't have enough funds for a Monero TX");
}
}
TransactionError::RpcError(e) => {
log::error!("RpcError when preparing transaction: {e:?}");
Err(CoinError::ConnectionError)
}
},
}
};
let tx_fee = match signable(&mut plan, None)? {
Some(tx) => tx.fee(),
None => return Ok((None, drop_branches(&plan))),
};
let branch_outputs = amortize_fee(&mut plan, tx_fee);
let signable = SignableTransaction {
keys,
transcript: plan.transcript(),
height: block_number + 1,
actual: match signable(&mut plan, Some(tx_fee))? {
Some(signable) => signable,
None => return Ok((None, branch_outputs)),
},
};
let eventuality = signable.actual.eventuality().unwrap();
Ok((Some((signable, eventuality)), branch_outputs))
}
async fn attempt_send(
&self,
transaction: SignableTransaction,
) -> Result<Self::TransactionMachine, CoinError> {
transaction
.actual
.clone()
.multisig(
&self.rpc,
transaction.keys.clone(),
transaction.transcript.clone(),
transaction.height,
)
.await
.map_err(|_| CoinError::ConnectionError)
}
async fn publish_transaction(&self, tx: &Self::Transaction) -> Result<(), CoinError> {
match self.rpc.publish_transaction(tx).await {
Ok(_) => Ok(()),
Err(RpcError::ConnectionError) => Err(CoinError::ConnectionError)?,
// TODO: Distinguish already in pool vs double spend (other signing attempt succeeded) vs
// invalid transaction
Err(e) => panic!("failed to publish TX {:?}: {e}", tx.hash()),
}
}
async fn get_transaction(&self, id: &[u8; 32]) -> Result<Transaction, CoinError> {
self.rpc.get_transaction(*id).await.map_err(|_| CoinError::ConnectionError)
}
fn confirm_completion(&self, eventuality: &Eventuality, tx: &Transaction) -> bool {
eventuality.matches(tx)
}
#[cfg(test)]
async fn get_block_number(&self, id: &[u8; 32]) -> usize {
self.rpc.get_block(*id).await.unwrap().number()
}
#[cfg(test)]
async fn get_fee(&self) -> Self::Fee {
self.rpc.get_fee().await.unwrap()
}
#[cfg(test)]
async fn mine_block(&self) {
// https://github.com/serai-dex/serai/issues/198
sleep(std::time::Duration::from_millis(100)).await;
#[derive(serde::Deserialize, Debug)]
struct EmptyResponse {}
let _: EmptyResponse = self
.rpc
.rpc_call(
"json_rpc",
Some(serde_json::json!({
"method": "generateblocks",
"params": {
"wallet_address": Self::test_address().to_string(),
"amount_of_blocks": 1
},
})),
)
.await
.unwrap();
}
#[cfg(test)]
async fn test_send(&self, address: Self::Address) -> Block {
use zeroize::Zeroizing;
use rand_core::OsRng;
let new_block = self.get_latest_block_number().await.unwrap() + 1;
for _ in 0 .. 80 {
self.mine_block().await;
}
let outputs = Self::test_scanner()
.scan(&self.rpc, &self.rpc.get_block_by_number(new_block).await.unwrap())
.await
.unwrap()
.swap_remove(0)
.ignore_timelock();
let amount = outputs[0].commitment().amount;
// The dust should always be sufficient for the fee
let fee = Monero::DUST;
let tx = MSignableTransaction::new(
self.rpc.get_protocol().await.unwrap(),
None,
outputs,
vec![(address.into(), amount - fee)],
Some(Change::fingerprintable(Self::test_address().into())),
vec![],
self.rpc.get_fee().await.unwrap(),
)
.unwrap()
.sign(&mut OsRng, &self.rpc, &Zeroizing::new(Scalar::ONE.0))
.await
.unwrap();
let block = self.get_latest_block_number().await.unwrap() + 1;
self.rpc.publish_transaction(&tx).await.unwrap();
for _ in 0 .. 10 {
self.mine_block().await;
}
self.get_block(block).await.unwrap()
}
}