Files
serai/coordinator/tributary/src/tests/blockchain.rs
2023-11-19 18:31:37 -05:00

547 lines
19 KiB
Rust

use core::ops::Deref;
use std::{
collections::{VecDeque, HashMap},
sync::Arc,
io,
};
use zeroize::Zeroizing;
use rand::rngs::OsRng;
use blake2::{Digest, Blake2s256};
use ciphersuite::{group::ff::Field, Ciphersuite, Ristretto};
use serai_db::{DbTxn, Db, MemDb};
use crate::{
ReadWrite, TransactionKind,
transaction::Transaction as TransactionTrait,
TransactionError, Transaction, ProvidedError, ProvidedTransactions, merkle, BlockError, Block,
Blockchain,
tendermint::{TendermintNetwork, Validators, Signer, TendermintBlock},
tests::{
ProvidedTransaction, SignedTransaction, random_provided_transaction, p2p::DummyP2p,
new_genesis, random_evidence_tx,
},
};
type N = TendermintNetwork<MemDb, SignedTransaction, DummyP2p>;
fn new_blockchain<T: TransactionTrait>(
genesis: [u8; 32],
participants: &[<Ristretto as Ciphersuite>::G],
) -> (MemDb, Blockchain<MemDb, T>) {
let db = MemDb::new();
let blockchain = Blockchain::new(db.clone(), genesis, participants);
assert_eq!(blockchain.tip(), genesis);
assert_eq!(blockchain.block_number(), 0);
(db, blockchain)
}
#[test]
fn block_addition() {
let genesis = new_genesis();
let validators = Arc::new(Validators::new(genesis, vec![]).unwrap());
let (db, mut blockchain) = new_blockchain::<SignedTransaction>(genesis, &[]);
let block = blockchain.build_block::<N>(validators.clone());
assert_eq!(block.header.parent, genesis);
assert_eq!(block.header.transactions, [0; 32]);
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap();
assert!(blockchain.add_block::<N>(&block, vec![], validators).is_ok());
assert_eq!(blockchain.tip(), block.hash());
assert_eq!(blockchain.block_number(), 1);
assert_eq!(
Blockchain::<MemDb, SignedTransaction>::block_after(&db, genesis, &block.parent()).unwrap(),
block.hash()
);
}
#[test]
fn invalid_block() {
let genesis = new_genesis();
let validators = Arc::new(Validators::new(genesis, vec![]).unwrap());
let (_, mut blockchain) = new_blockchain::<SignedTransaction>(genesis, &[]);
let block = blockchain.build_block::<N>(validators.clone());
// Mutate parent
{
#[allow(clippy::redundant_clone)] // False positive
let mut block = block.clone();
block.header.parent = Blake2s256::digest(block.header.parent).into();
assert!(blockchain.verify_block::<N>(&block, validators.clone(), false).is_err());
}
// Mutate tranactions merkle
{
let mut block = block;
block.header.transactions = Blake2s256::digest(block.header.transactions).into();
assert!(blockchain.verify_block::<N>(&block, validators.clone(), false).is_err());
}
let key = Zeroizing::new(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
let tx = crate::tests::signed_transaction(&mut OsRng, genesis, &key, 0);
// Not a participant
{
// Manually create the block to bypass build_block's checks
let block = Block::new(blockchain.tip(), vec![], vec![Transaction::Application(tx.clone())]);
assert_eq!(block.header.transactions, merkle(&[tx.hash()]));
assert!(blockchain.verify_block::<N>(&block, validators.clone(), false).is_err());
}
// Run the rest of the tests with them as a participant
let (_, blockchain) = new_blockchain(genesis, &[tx.1.signer]);
// Re-run the not a participant block to make sure it now works
{
let block = Block::new(blockchain.tip(), vec![], vec![Transaction::Application(tx.clone())]);
assert_eq!(block.header.transactions, merkle(&[tx.hash()]));
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap();
}
{
// Add a valid transaction
let (_, mut blockchain) = new_blockchain(genesis, &[tx.1.signer]);
blockchain
.add_transaction::<N>(true, Transaction::Application(tx.clone()), validators.clone())
.unwrap();
let mut block = blockchain.build_block::<N>(validators.clone());
assert_eq!(block.header.transactions, merkle(&[tx.hash()]));
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap();
// And verify mutating the transactions merkle now causes a failure
block.header.transactions = merkle(&[]);
assert!(blockchain.verify_block::<N>(&block, validators.clone(), false).is_err());
}
{
// Invalid nonce
let tx = crate::tests::signed_transaction(&mut OsRng, genesis, &key, 5);
// Manually create the block to bypass build_block's checks
let block = Block::new(blockchain.tip(), vec![], vec![Transaction::Application(tx)]);
assert!(blockchain.verify_block::<N>(&block, validators.clone(), false).is_err());
}
{
// Invalid signature
let (_, mut blockchain) = new_blockchain(genesis, &[tx.1.signer]);
blockchain
.add_transaction::<N>(true, Transaction::Application(tx), validators.clone())
.unwrap();
let mut block = blockchain.build_block::<N>(validators.clone());
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap();
match &mut block.transactions[0] {
Transaction::Application(tx) => {
tx.1.signature.s += <Ristretto as Ciphersuite>::F::ONE;
}
_ => panic!("non-signed tx found"),
}
assert!(blockchain.verify_block::<N>(&block, validators.clone(), false).is_err());
// Make sure this isn't because the merkle changed due to the transaction hash including the
// signature (which it explicitly isn't allowed to anyways)
assert_eq!(block.header.transactions, merkle(&[block.transactions[0].hash()]));
}
}
#[test]
fn signed_transaction() {
let genesis = new_genesis();
let validators = Arc::new(Validators::new(genesis, vec![]).unwrap());
let key = Zeroizing::new(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
let tx = crate::tests::signed_transaction(&mut OsRng, genesis, &key, 0);
let signer = tx.1.signer;
let (_, mut blockchain) = new_blockchain::<SignedTransaction>(genesis, &[signer]);
assert_eq!(blockchain.next_nonce(signer), Some(0));
let test = |blockchain: &mut Blockchain<MemDb, SignedTransaction>,
mempool: Vec<Transaction<SignedTransaction>>| {
let tip = blockchain.tip();
for tx in mempool.clone() {
let Transaction::Application(tx) = tx else {
panic!("tendermint tx found");
};
let next_nonce = blockchain.next_nonce(signer).unwrap();
blockchain
.add_transaction::<N>(true, Transaction::Application(tx), validators.clone())
.unwrap();
assert_eq!(next_nonce + 1, blockchain.next_nonce(signer).unwrap());
}
let block = blockchain.build_block::<N>(validators.clone());
assert_eq!(block, Block::new(blockchain.tip(), vec![], mempool.clone()));
assert_eq!(blockchain.tip(), tip);
assert_eq!(block.header.parent, tip);
// Make sure all transactions were included
assert_eq!(block.transactions, mempool);
// Make sure the merkle was correct
assert_eq!(
block.header.transactions,
merkle(&mempool.iter().map(Transaction::hash).collect::<Vec<_>>())
);
// Verify and add the block
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap();
assert!(blockchain.add_block::<N>(&block, vec![], validators.clone()).is_ok());
assert_eq!(blockchain.tip(), block.hash());
};
// Test with a single nonce
test(&mut blockchain, vec![Transaction::Application(tx)]);
assert_eq!(blockchain.next_nonce(signer), Some(1));
// Test with a flood of nonces
let mut mempool = vec![];
for nonce in 1 .. 64 {
mempool.push(Transaction::Application(crate::tests::signed_transaction(
&mut OsRng, genesis, &key, nonce,
)));
}
test(&mut blockchain, mempool);
assert_eq!(blockchain.next_nonce(signer), Some(64));
}
#[test]
fn provided_transaction() {
let genesis = new_genesis();
let validators = Arc::new(Validators::new(genesis, vec![]).unwrap());
let (db, mut blockchain) = new_blockchain::<ProvidedTransaction>(genesis, &[]);
let tx = random_provided_transaction(&mut OsRng, "order1");
// This should be providable
let mut temp_db = MemDb::new();
let mut txs = ProvidedTransactions::<_, ProvidedTransaction>::new(temp_db.clone(), genesis);
txs.provide(tx.clone()).unwrap();
assert_eq!(txs.provide(tx.clone()), Err(ProvidedError::AlreadyProvided));
assert_eq!(
ProvidedTransactions::<_, ProvidedTransaction>::new(temp_db.clone(), genesis).transactions,
HashMap::from([("order1", VecDeque::from([tx.clone()]))]),
);
let mut txn = temp_db.txn();
txs.complete(&mut txn, "order1", [0u8; 32], tx.hash());
txn.commit();
assert!(ProvidedTransactions::<_, ProvidedTransaction>::new(db.clone(), genesis)
.transactions
.is_empty());
// case we have the block's provided txs in our local as well
{
// Non-provided transactions should fail verification because we don't have them locally.
let block = Block::new(blockchain.tip(), vec![tx.clone()], vec![]);
assert!(blockchain.verify_block::<N>(&block, validators.clone(), false).is_err());
// Provided transactions should pass verification
blockchain.provide_transaction(tx.clone()).unwrap();
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap();
// add_block should work for verified blocks
assert!(blockchain.add_block::<N>(&block, vec![], validators.clone()).is_ok());
let block = Block::new(blockchain.tip(), vec![tx.clone()], vec![]);
// The provided transaction should no longer considered provided but added to chain,
// causing this error
assert_eq!(
blockchain.verify_block::<N>(&block, validators.clone(), false),
Err(BlockError::ProvidedAlreadyIncluded)
);
}
// case we don't have the block's provided txs in our local
{
let tx1 = random_provided_transaction(&mut OsRng, "order1");
let tx2 = random_provided_transaction(&mut OsRng, "order1");
let tx3 = random_provided_transaction(&mut OsRng, "order2");
let tx4 = random_provided_transaction(&mut OsRng, "order2");
// add_block DOES NOT fail for unverified provided transactions if told to add them,
// since now we can have them later.
let block1 = Block::new(blockchain.tip(), vec![tx1.clone(), tx3.clone()], vec![]);
assert!(blockchain.add_block::<N>(&block1, vec![], validators.clone()).is_ok());
// in fact, we can have many blocks that have provided txs that we don't have locally.
let block2 = Block::new(blockchain.tip(), vec![tx2.clone(), tx4.clone()], vec![]);
assert!(blockchain.add_block::<N>(&block2, vec![], validators.clone()).is_ok());
// make sure we won't return ok for the block before we actually got the txs
let TransactionKind::Provided(order) = tx1.kind() else { panic!("tx wasn't provided") };
assert!(!Blockchain::<MemDb, ProvidedTransaction>::locally_provided_txs_in_block(
&db,
&genesis,
&block1.hash(),
order
));
// provide the first tx
blockchain.provide_transaction(tx1).unwrap();
// it should be ok for this order now, since the second tx has different order.
assert!(Blockchain::<MemDb, ProvidedTransaction>::locally_provided_txs_in_block(
&db,
&genesis,
&block1.hash(),
order
));
// give the second tx
let TransactionKind::Provided(order) = tx3.kind() else { panic!("tx wasn't provided") };
assert!(!Blockchain::<MemDb, ProvidedTransaction>::locally_provided_txs_in_block(
&db,
&genesis,
&block1.hash(),
order
));
blockchain.provide_transaction(tx3).unwrap();
// it should be ok now for the first block
assert!(Blockchain::<MemDb, ProvidedTransaction>::locally_provided_txs_in_block(
&db,
&genesis,
&block1.hash(),
order
));
// provide the second block txs
let TransactionKind::Provided(order) = tx4.kind() else { panic!("tx wasn't provided") };
// not ok yet
assert!(!Blockchain::<MemDb, ProvidedTransaction>::locally_provided_txs_in_block(
&db,
&genesis,
&block2.hash(),
order
));
blockchain.provide_transaction(tx4).unwrap();
// ok now
assert!(Blockchain::<MemDb, ProvidedTransaction>::locally_provided_txs_in_block(
&db,
&genesis,
&block2.hash(),
order
));
// provide the second block txs
let TransactionKind::Provided(order) = tx2.kind() else { panic!("tx wasn't provided") };
assert!(!Blockchain::<MemDb, ProvidedTransaction>::locally_provided_txs_in_block(
&db,
&genesis,
&block2.hash(),
order
));
blockchain.provide_transaction(tx2).unwrap();
assert!(Blockchain::<MemDb, ProvidedTransaction>::locally_provided_txs_in_block(
&db,
&genesis,
&block2.hash(),
order
));
}
}
#[tokio::test]
async fn tendermint_evidence_tx() {
let genesis = new_genesis();
let key = Zeroizing::new(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
let signer = Signer::new(genesis, key.clone());
let signer_id = Ristretto::generator() * key.deref();
let validators = Arc::new(Validators::new(genesis, vec![(signer_id, 1)]).unwrap());
let (_, mut blockchain) = new_blockchain::<SignedTransaction>(genesis, &[]);
let test = |blockchain: &mut Blockchain<MemDb, SignedTransaction>,
mempool: Vec<Transaction<SignedTransaction>>,
validators: Arc<Validators>| {
let tip = blockchain.tip();
for tx in mempool.clone() {
let Transaction::Tendermint(tx) = tx else {
panic!("non-tendermint tx found");
};
blockchain
.add_transaction::<N>(true, Transaction::Tendermint(tx), validators.clone())
.unwrap();
}
let block = blockchain.build_block::<N>(validators.clone());
assert_eq!(blockchain.tip(), tip);
assert_eq!(block.header.parent, tip);
// Make sure all transactions were included
for bt in &block.transactions {
assert!(mempool.contains(bt));
}
// Verify and add the block
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap();
assert!(blockchain.add_block::<N>(&block, vec![], validators.clone()).is_ok());
assert_eq!(blockchain.tip(), block.hash());
};
// test with single tx
let tx = random_evidence_tx::<N>(signer.into(), TendermintBlock(vec![0x12])).await;
test(&mut blockchain, vec![Transaction::Tendermint(tx)], validators);
// test with multiple txs
let mut mempool: Vec<Transaction<SignedTransaction>> = vec![];
let mut signers = vec![];
for _ in 0 .. 5 {
let key = Zeroizing::new(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
let signer = Signer::new(genesis, key.clone());
let signer_id = Ristretto::generator() * key.deref();
signers.push((signer_id, 1));
mempool.push(Transaction::Tendermint(
random_evidence_tx::<N>(signer.into(), TendermintBlock(vec![0x12])).await,
));
}
// update validators
let validators = Arc::new(Validators::new(genesis, signers).unwrap());
test(&mut blockchain, mempool, validators);
}
#[tokio::test]
async fn block_tx_ordering() {
#[derive(Debug, PartialEq, Eq, Clone)]
enum SignedTx {
Signed(Box<SignedTransaction>),
Provided(Box<ProvidedTransaction>),
}
impl ReadWrite for SignedTx {
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut kind = [0];
reader.read_exact(&mut kind)?;
match kind[0] {
0 => Ok(SignedTx::Signed(Box::new(SignedTransaction::read(reader)?))),
1 => Ok(SignedTx::Provided(Box::new(ProvidedTransaction::read(reader)?))),
_ => Err(io::Error::other("invalid transaction type")),
}
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
match self {
SignedTx::Signed(signed) => {
writer.write_all(&[0])?;
signed.write(writer)
}
SignedTx::Provided(pro) => {
writer.write_all(&[1])?;
pro.write(writer)
}
}
}
}
impl TransactionTrait for SignedTx {
fn kind(&self) -> TransactionKind<'_> {
match self {
SignedTx::Signed(signed) => signed.kind(),
SignedTx::Provided(pro) => pro.kind(),
}
}
fn hash(&self) -> [u8; 32] {
match self {
SignedTx::Signed(signed) => signed.hash(),
SignedTx::Provided(pro) => pro.hash(),
}
}
fn verify(&self) -> Result<(), TransactionError> {
Ok(())
}
}
let genesis = new_genesis();
let key = Zeroizing::new(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
// signer
let signer = crate::tests::signed_transaction(&mut OsRng, genesis, &key, 0).1.signer;
let validators = Arc::new(Validators::new(genesis, vec![(signer, 1)]).unwrap());
let (_, mut blockchain) = new_blockchain::<SignedTx>(genesis, &[signer]);
let tip = blockchain.tip();
// add txs
let mut mempool = vec![];
let mut provided_txs = vec![];
for i in 0 .. 128 {
let signed_tx = Transaction::Application(SignedTx::Signed(Box::new(
crate::tests::signed_transaction(&mut OsRng, genesis, &key, i),
)));
blockchain.add_transaction::<N>(true, signed_tx.clone(), validators.clone()).unwrap();
mempool.push(signed_tx);
let unsigned_tx = Transaction::Tendermint(
random_evidence_tx::<N>(
Signer::new(genesis, key.clone()).into(),
TendermintBlock(vec![u8::try_from(i).unwrap()]),
)
.await,
);
blockchain.add_transaction::<N>(true, unsigned_tx.clone(), validators.clone()).unwrap();
mempool.push(unsigned_tx);
let provided_tx =
SignedTx::Provided(Box::new(random_provided_transaction(&mut OsRng, "order1")));
blockchain.provide_transaction(provided_tx.clone()).unwrap();
provided_txs.push(provided_tx);
}
let block = blockchain.build_block::<N>(validators.clone());
assert_eq!(blockchain.tip(), tip);
assert_eq!(block.header.parent, tip);
// Make sure all transactions were included
assert_eq!(block.transactions.len(), 3 * 128);
for bt in &block.transactions[128 ..] {
assert!(mempool.contains(bt));
}
// check the tx order
let txs = &block.transactions;
for tx in txs.iter().take(128) {
assert!(matches!(tx.kind(), TransactionKind::Provided(..)));
}
for tx in txs.iter().take(128).skip(128) {
assert!(matches!(tx.kind(), TransactionKind::Unsigned));
}
for tx in txs.iter().take(128).skip(256) {
assert!(matches!(tx.kind(), TransactionKind::Signed(..)));
}
// should be a valid block
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap();
// Unsigned before Provided
{
let mut block = block.clone();
// Doesn't use swap to preserve the order of Provided, as that's checked before kind ordering
let unsigned = block.transactions.remove(128);
block.transactions.insert(0, unsigned);
assert_eq!(
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap_err(),
BlockError::WrongTransactionOrder
);
}
// Signed before Provided
{
let mut block = block.clone();
let signed = block.transactions.remove(256);
block.transactions.insert(0, signed);
assert_eq!(
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap_err(),
BlockError::WrongTransactionOrder
);
}
// Signed before Unsigned
{
let mut block = block;
block.transactions.swap(128, 256);
assert_eq!(
blockchain.verify_block::<N>(&block, validators.clone(), false).unwrap_err(),
BlockError::WrongTransactionOrder
);
}
}