Files
serai/coordinator/tributary/src/tendermint/mod.rs
Luke Parker 523d2ac911 Rewrite tendermint's message handling loop to much more clearly match the paper (#560)
* Rewrite tendermint's message handling loop to much more clearly match the paper

No longer checks relevant branches upon messages, yet all branches upon any
state change. This is slower, yet easier to review and likely without one or
two rare edge cases.

When reviewing, please see page 5 of https://arxiv.org/pdf/1807.04938.pdf.
Lines from the specified algorithm can be found in the code by searching for
"// L".

* Sane rebroadcasting of consensus messages

Instead of broadcasting the last n messages on the Tributary side of things, we
now have the machine rebroadcast the message tape for the current block.

* Only rebroadcast messages which didn't error in some way

* Only rebroadcast our own messages for tendermint
2024-04-21 05:30:31 -04:00

411 lines
12 KiB
Rust

use core::ops::Deref;
use std::{sync::Arc, collections::HashMap};
use async_trait::async_trait;
use subtle::ConstantTimeEq;
use zeroize::{Zeroize, Zeroizing};
use rand::{SeedableRng, seq::SliceRandom};
use rand_chacha::ChaCha12Rng;
use transcript::{Transcript, RecommendedTranscript};
use ciphersuite::{
group::{
GroupEncoding,
ff::{Field, PrimeField},
},
Ciphersuite, Ristretto,
};
use schnorr::{
SchnorrSignature,
aggregate::{SchnorrAggregator, SchnorrAggregate},
};
use serai_db::Db;
use scale::{Encode, Decode};
use tendermint::{
SignedMessageFor,
ext::{
BlockNumber, RoundNumber, Signer as SignerTrait, SignatureScheme, Weights, Block as BlockTrait,
BlockError as TendermintBlockError, Commit, Network,
},
SlashEvent,
};
use tokio::sync::RwLock;
use crate::{
TENDERMINT_MESSAGE, TRANSACTION_MESSAGE, ReadWrite, transaction::Transaction as TransactionTrait,
Transaction, BlockHeader, Block, BlockError, Blockchain, P2p,
};
pub mod tx;
use tx::TendermintTx;
const DST: &[u8] = b"Tributary Tendermint Commit Aggregator";
fn challenge(
genesis: [u8; 32],
key: [u8; 32],
nonce: &[u8],
msg: &[u8],
) -> <Ristretto as Ciphersuite>::F {
let mut transcript = RecommendedTranscript::new(b"Tributary Chain Tendermint Message");
transcript.append_message(b"genesis", genesis);
transcript.append_message(b"key", key);
transcript.append_message(b"nonce", nonce);
transcript.append_message(b"message", msg);
<Ristretto as Ciphersuite>::F::from_bytes_mod_order_wide(&transcript.challenge(b"schnorr").into())
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Signer {
genesis: [u8; 32],
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
}
impl Signer {
pub(crate) fn new(genesis: [u8; 32], key: Zeroizing<<Ristretto as Ciphersuite>::F>) -> Signer {
Signer { genesis, key }
}
}
#[async_trait]
impl SignerTrait for Signer {
type ValidatorId = [u8; 32];
type Signature = [u8; 64];
/// Returns the validator's current ID. Returns None if they aren't a current validator.
async fn validator_id(&self) -> Option<Self::ValidatorId> {
Some((Ristretto::generator() * self.key.deref()).to_bytes())
}
/// Sign a signature with the current validator's private key.
async fn sign(&self, msg: &[u8]) -> Self::Signature {
let mut nonce = Zeroizing::new(RecommendedTranscript::new(b"Tributary Chain Tendermint Nonce"));
nonce.append_message(b"genesis", self.genesis);
nonce.append_message(b"key", Zeroizing::new(self.key.deref().to_repr()).as_ref());
nonce.append_message(b"message", msg);
let mut nonce = nonce.challenge(b"nonce");
let mut nonce_arr = [0; 64];
nonce_arr.copy_from_slice(nonce.as_ref());
let nonce_ref: &mut [u8] = nonce.as_mut();
nonce_ref.zeroize();
let nonce_ref: &[u8] = nonce.as_ref();
assert_eq!(nonce_ref, [0; 64].as_ref());
let nonce =
Zeroizing::new(<Ristretto as Ciphersuite>::F::from_bytes_mod_order_wide(&nonce_arr));
nonce_arr.zeroize();
assert!(!bool::from(nonce.ct_eq(&<Ristretto as Ciphersuite>::F::ZERO)));
let challenge = challenge(
self.genesis,
(Ristretto::generator() * self.key.deref()).to_bytes(),
(Ristretto::generator() * nonce.deref()).to_bytes().as_ref(),
msg,
);
let sig = SchnorrSignature::<Ristretto>::sign(&self.key, nonce, challenge).serialize();
let mut res = [0; 64];
res.copy_from_slice(&sig);
res
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Validators {
genesis: [u8; 32],
total_weight: u64,
weights: HashMap<[u8; 32], u64>,
robin: Vec<[u8; 32]>,
}
impl Validators {
pub(crate) fn new(
genesis: [u8; 32],
validators: Vec<(<Ristretto as Ciphersuite>::G, u64)>,
) -> Option<Validators> {
let mut total_weight = 0;
let mut weights = HashMap::new();
let mut transcript = RecommendedTranscript::new(b"Round Robin Randomization");
let mut robin = vec![];
for (validator, weight) in validators {
let validator = validator.to_bytes();
if weight == 0 {
return None;
}
total_weight += weight;
weights.insert(validator, weight);
transcript.append_message(b"validator", validator);
transcript.append_message(b"weight", weight.to_le_bytes());
robin.extend(vec![validator; usize::try_from(weight).unwrap()]);
}
robin.shuffle(&mut ChaCha12Rng::from_seed(transcript.rng_seed(b"robin")));
Some(Validators { genesis, total_weight, weights, robin })
}
}
impl SignatureScheme for Validators {
type ValidatorId = [u8; 32];
type Signature = [u8; 64];
type AggregateSignature = Vec<u8>;
type Signer = Arc<Signer>;
#[must_use]
fn verify(&self, validator: Self::ValidatorId, msg: &[u8], sig: &Self::Signature) -> bool {
if !self.weights.contains_key(&validator) {
return false;
}
let Ok(validator_point) = Ristretto::read_G::<&[u8]>(&mut validator.as_ref()) else {
return false;
};
let Ok(actual_sig) = SchnorrSignature::<Ristretto>::read::<&[u8]>(&mut sig.as_ref()) else {
return false;
};
actual_sig.verify(validator_point, challenge(self.genesis, validator, &sig[.. 32], msg))
}
fn aggregate(
&self,
validators: &[Self::ValidatorId],
msg: &[u8],
sigs: &[Self::Signature],
) -> Self::AggregateSignature {
assert_eq!(validators.len(), sigs.len());
let mut aggregator = SchnorrAggregator::<Ristretto>::new(DST);
for (key, sig) in validators.iter().zip(sigs) {
let actual_sig = SchnorrSignature::<Ristretto>::read::<&[u8]>(&mut sig.as_ref()).unwrap();
let challenge = challenge(self.genesis, *key, actual_sig.R.to_bytes().as_ref(), msg);
aggregator.aggregate(challenge, actual_sig);
}
let aggregate = aggregator.complete().unwrap();
aggregate.serialize()
}
#[must_use]
fn verify_aggregate(
&self,
signers: &[Self::ValidatorId],
msg: &[u8],
sig: &Self::AggregateSignature,
) -> bool {
let Ok(aggregate) = SchnorrAggregate::<Ristretto>::read::<&[u8]>(&mut sig.as_slice()) else {
return false;
};
if signers.len() != aggregate.Rs().len() {
return false;
}
let mut challenges = vec![];
for (key, nonce) in signers.iter().zip(aggregate.Rs()) {
challenges.push(challenge(self.genesis, *key, nonce.to_bytes().as_ref(), msg));
}
aggregate.verify(
DST,
signers
.iter()
.zip(challenges)
.map(|(s, c)| (<Ristretto as Ciphersuite>::read_G(&mut s.as_slice()).unwrap(), c))
.collect::<Vec<_>>()
.as_slice(),
)
}
}
impl Weights for Validators {
type ValidatorId = [u8; 32];
fn total_weight(&self) -> u64 {
self.total_weight
}
fn weight(&self, validator: Self::ValidatorId) -> u64 {
self.weights[&validator]
}
fn proposer(&self, block: BlockNumber, round: RoundNumber) -> Self::ValidatorId {
let block = usize::try_from(block.0).unwrap();
let round = usize::try_from(round.0).unwrap();
// If multiple rounds are used, a naive block + round would cause the same index to be chosen
// in quick succession.
// Accordingly, if we use additional rounds, jump halfway around.
// While this is still game-able, it's not explicitly reusing indexes immediately after each
// other.
self.robin
[(block + (if round == 0 { 0 } else { round + (self.robin.len() / 2) })) % self.robin.len()]
}
}
#[derive(Clone, PartialEq, Eq, Debug, Encode, Decode)]
pub struct TendermintBlock(pub Vec<u8>);
impl BlockTrait for TendermintBlock {
type Id = [u8; 32];
fn id(&self) -> Self::Id {
BlockHeader::read::<&[u8]>(&mut self.0.as_ref()).unwrap().hash()
}
}
#[derive(Clone, Debug)]
pub struct TendermintNetwork<D: Db, T: TransactionTrait, P: P2p> {
pub(crate) genesis: [u8; 32],
pub(crate) signer: Arc<Signer>,
pub(crate) validators: Arc<Validators>,
pub(crate) blockchain: Arc<RwLock<Blockchain<D, T>>>,
pub(crate) p2p: P,
}
pub const BLOCK_PROCESSING_TIME: u32 = 999;
pub const LATENCY_TIME: u32 = 1667;
pub const TARGET_BLOCK_TIME: u32 = BLOCK_PROCESSING_TIME + (3 * LATENCY_TIME);
#[async_trait]
impl<D: Db, T: TransactionTrait, P: P2p> Network for TendermintNetwork<D, T, P> {
type Db = D;
type ValidatorId = [u8; 32];
type SignatureScheme = Arc<Validators>;
type Weights = Arc<Validators>;
type Block = TendermintBlock;
// These are in milliseconds and create a six-second block time.
// The block time is the latency on message delivery (where a message is some piece of data
// embedded in a transaction) times three plus the block processing time, hence why it should be
// kept low.
const BLOCK_PROCESSING_TIME: u32 = BLOCK_PROCESSING_TIME;
const LATENCY_TIME: u32 = LATENCY_TIME;
fn signer(&self) -> Arc<Signer> {
self.signer.clone()
}
fn signature_scheme(&self) -> Arc<Validators> {
self.validators.clone()
}
fn weights(&self) -> Arc<Validators> {
self.validators.clone()
}
async fn broadcast(&mut self, msg: SignedMessageFor<Self>) {
let mut to_broadcast = vec![TENDERMINT_MESSAGE];
to_broadcast.extend(msg.encode());
self.p2p.broadcast(self.genesis, to_broadcast).await
}
async fn slash(&mut self, validator: Self::ValidatorId, slash_event: SlashEvent) {
log::error!(
"validator {} triggered a slash event on tributary {} (with evidence: {})",
hex::encode(validator),
hex::encode(self.genesis),
matches!(slash_event, SlashEvent::WithEvidence(_)),
);
let signer = self.signer();
let Some(tx) = (match slash_event {
SlashEvent::WithEvidence(evidence) => {
// create an unsigned evidence tx
Some(TendermintTx::SlashEvidence(evidence))
}
SlashEvent::Id(_reason, _block, _round) => {
// TODO: Increase locally observed slash points
None
}
}) else {
return;
};
// add tx to blockchain and broadcast to peers
let mut to_broadcast = vec![TRANSACTION_MESSAGE];
tx.write(&mut to_broadcast).unwrap();
if self.blockchain.write().await.add_transaction::<Self>(
true,
Transaction::Tendermint(tx),
&self.signature_scheme(),
) == Ok(true)
{
self.p2p.broadcast(signer.genesis, to_broadcast).await;
}
}
async fn validate(&self, block: &Self::Block) -> Result<(), TendermintBlockError> {
let block =
Block::read::<&[u8]>(&mut block.0.as_ref()).map_err(|_| TendermintBlockError::Fatal)?;
self
.blockchain
.read()
.await
.verify_block::<Self>(&block, &self.signature_scheme(), false)
.map_err(|e| match e {
BlockError::NonLocalProvided(_) => TendermintBlockError::Temporal,
_ => {
log::warn!("Tributary Tendermint validate returning BlockError::Fatal due to {e:?}");
TendermintBlockError::Fatal
}
})
}
async fn add_block(
&mut self,
serialized_block: Self::Block,
commit: Commit<Self::SignatureScheme>,
) -> Option<Self::Block> {
let invalid_block = || {
// There's a fatal flaw in the code, it's behind a hard fork, or the validators turned
// malicious
// All justify a halt to then achieve social consensus from
// TODO: Under multiple validator sets, a small validator set turning malicious knocks
// off the entire network. That's an unacceptable DoS.
panic!("validators added invalid block to tributary {}", hex::encode(self.genesis));
};
// Tendermint should only produce valid commits
assert!(self.verify_commit(serialized_block.id(), &commit));
let Ok(block) = Block::read::<&[u8]>(&mut serialized_block.0.as_ref()) else {
return invalid_block();
};
let encoded_commit = commit.encode();
loop {
let block_res = self.blockchain.write().await.add_block::<Self>(
&block,
encoded_commit.clone(),
&self.signature_scheme(),
);
match block_res {
Ok(()) => {
// If we successfully added this block, break
break;
}
Err(BlockError::NonLocalProvided(hash)) => {
log::error!(
"missing provided transaction {} which other validators on tributary {} had",
hex::encode(hash),
hex::encode(self.genesis)
);
tokio::time::sleep(core::time::Duration::from_secs(5)).await;
}
_ => return invalid_block(),
}
}
Some(TendermintBlock(
self.blockchain.write().await.build_block::<Self>(&self.signature_scheme()).serialize(),
))
}
}