Files
serai/crypto/ciphersuite/src/kp256.rs
Luke Parker 15a9cbef40 git checkout -f next ./crypto
Proceeds to remove the eVRF DKG after, only keeping what's relevant to this
branch alone.
2025-08-18 14:52:29 -04:00

193 lines
6.6 KiB
Rust

use zeroize::Zeroize;
use sha2::Sha256;
use group::ff::PrimeField;
use elliptic_curve::{
generic_array::GenericArray,
bigint::{NonZero, CheckedAdd, Encoding, U384, U512},
hash2curve::{Expander, ExpandMsg, ExpandMsgXmd},
};
use crate::Ciphersuite;
macro_rules! kp_curve {
(
$feature: literal,
$lib: ident,
$Ciphersuite: ident,
$ID: literal
) => {
impl Ciphersuite for $Ciphersuite {
type F = $lib::Scalar;
type G = $lib::ProjectivePoint;
type H = Sha256;
const ID: &'static [u8] = $ID;
fn generator() -> Self::G {
$lib::ProjectivePoint::GENERATOR
}
fn reduce_512(scalar: [u8; 64]) -> Self::F {
let mut modulus = [0; 64];
modulus[32 ..].copy_from_slice(&(Self::F::ZERO - Self::F::ONE).to_bytes());
let modulus = U512::from_be_slice(&modulus).checked_add(&U512::ONE).unwrap();
let mut wide =
U512::from_be_bytes(scalar).rem(&NonZero::new(modulus).unwrap()).to_be_bytes();
let mut array = *GenericArray::from_slice(&wide[32 ..]);
let res = $lib::Scalar::from_repr(array).unwrap();
wide.zeroize();
array.zeroize();
res
}
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
// While one of these two libraries does support directly hashing to the Scalar field, the
// other doesn't. While that's probably an oversight, this is a universally working method
// This method is from
// https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html
// Specifically, Section 5
// While that draft, overall, is intended for hashing to curves, that necessitates
// detailing how to hash to a finite field. The draft comments that its mechanism for
// doing so, which it uses to derive field elements, is also applicable to the scalar field
// The hash_to_field function is intended to provide unbiased values
// In order to do so, a wide reduction from an extra k bits is applied, minimizing bias to
// 2^-k
// k is intended to be the bits of security of the suite, which is 128 for secp256k1 and
// P-256
const K: usize = 128;
// L is the amount of bytes of material which should be used in the wide reduction
// The 256 is for the bit-length of the primes, rounded up to the nearest byte threshold
// This is a simplification of the formula from the end of section 5
const L: usize = (256 + K) / 8; // 48
// In order to perform this reduction, we need to use 48-byte numbers
// First, convert the modulus to a 48-byte number
// This is done by getting -1 as bytes, parsing it into a U384, and then adding back one
let mut modulus = [0; L];
// The byte repr of scalars will be 32 big-endian bytes
// Set the lower 32 bytes of our 48-byte array accordingly
modulus[16 ..].copy_from_slice(&(Self::F::ZERO - Self::F::ONE).to_bytes());
// Use a checked_add + unwrap since this addition cannot fail (being a 32-byte value with
// 48-bytes of space)
// While a non-panicking saturating_add/wrapping_add could be used, they'd likely be less
// performant
let modulus = U384::from_be_slice(&modulus).checked_add(&U384::ONE).unwrap();
// The defined P-256 and secp256k1 ciphersuites both use expand_message_xmd
let mut wide = U384::from_be_bytes({
let mut bytes = [0; 48];
ExpandMsgXmd::<Sha256>::expand_message(&[msg], &[dst], 48)
.unwrap()
.fill_bytes(&mut bytes);
bytes
})
.rem(&NonZero::new(modulus).unwrap())
.to_be_bytes();
// Now that this has been reduced back to a 32-byte value, grab the lower 32-bytes
let mut array = *GenericArray::from_slice(&wide[16 ..]);
let res = $lib::Scalar::from_repr(array).unwrap();
// Zeroize the temp values we can due to the possibility hash_to_F is being used for nonces
wide.zeroize();
array.zeroize();
res
}
}
};
}
#[cfg(test)]
fn test_oversize_dst<C: Ciphersuite>() {
use sha2::Digest;
// The draft specifies DSTs >255 bytes should be hashed into a 32-byte DST
let oversize_dst = [0x00; 256];
let actual_dst = Sha256::digest([b"H2C-OVERSIZE-DST-".as_ref(), &oversize_dst].concat());
// Test the hash_to_F function handles this
// If it didn't, these would return different values
assert_eq!(C::hash_to_F(&oversize_dst, &[]), C::hash_to_F(&actual_dst, &[]));
}
/// Ciphersuite for Secp256k1.
///
/// hash_to_F is implemented via the IETF draft for hash to curve's hash_to_field (v16).
#[cfg(feature = "secp256k1")]
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct Secp256k1;
#[cfg(feature = "secp256k1")]
kp_curve!("secp256k1", k256, Secp256k1, b"secp256k1");
#[cfg(feature = "secp256k1")]
#[test]
fn test_secp256k1() {
ff_group_tests::group::test_prime_group_bits::<_, k256::ProjectivePoint>(&mut rand_core::OsRng);
// Ideally, a test vector from hash_to_field (not FROST) would be here
// Unfortunately, the IETF draft only provides vectors for field elements, not scalars
// Vectors have been requested in
// https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/issues/343
assert_eq!(
Secp256k1::hash_to_F(
b"FROST-secp256k1-SHA256-v11nonce",
&hex::decode(
"\
80cbea5e405d169999d8c4b30b755fedb26ab07ec8198cda4873ed8ce5e16773\
08f89ffe80ac94dcb920c26f3f46140bfc7f95b493f8310f5fc1ea2b01f4254c"
)
.unwrap()
)
.to_repr()
.iter()
.copied()
.collect::<Vec<_>>(),
hex::decode("acc83278035223c1ba464e2d11bfacfc872b2b23e1041cf5f6130da21e4d8068").unwrap()
);
test_oversize_dst::<Secp256k1>();
}
/// Ciphersuite for P-256.
///
/// hash_to_F is implemented via the IETF draft for hash to curve's hash_to_field (v16).
#[cfg(feature = "p256")]
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct P256;
#[cfg(feature = "p256")]
kp_curve!("p256", p256, P256, b"P-256");
#[cfg(feature = "p256")]
#[test]
fn test_p256() {
ff_group_tests::group::test_prime_group_bits::<_, p256::ProjectivePoint>(&mut rand_core::OsRng);
assert_eq!(
P256::hash_to_F(
b"FROST-P256-SHA256-v11nonce",
&hex::decode(
"\
f4e8cf80aec3f888d997900ac7e3e349944b5a6b47649fc32186d2f1238103c6\
0c9c1a0fe806c184add50bbdcac913dda73e482daf95dcb9f35dbb0d8a9f7731"
)
.unwrap()
)
.to_repr()
.iter()
.copied()
.collect::<Vec<_>>(),
hex::decode("f871dfcf6bcd199342651adc361b92c941cb6a0d8c8c1a3b91d79e2c1bf3722d").unwrap()
);
test_oversize_dst::<P256>();
}