304 Commits

Author SHA1 Message Date
Luke Parker
6ed5592d22 Stub code for #222 2023-01-14 02:59:43 -05:00
Luke Parker
be05e0dd47 Revert "Implement a FROST algorithm for Schnorrkel"
This reverts commit 8ef8b5ca6f.
2023-01-13 18:57:07 -05:00
Luke Parker
8ef8b5ca6f Implement a FROST algorithm for Schnorrkel 2023-01-13 18:52:38 -05:00
Luke Parker
50a4f5938a Correct syntax in prior commit 2023-01-13 17:44:20 -05:00
Luke Parker
d37aff515d Update advisories in deny.toml 2023-01-13 17:42:53 -05:00
Luke Parker
375887bb29 Update licenses 2023-01-11 23:05:31 -05:00
Luke Parker
8ffa5553ff Use ok_or_else instead of ok_or in a couple places in Monero 2023-01-10 06:57:25 -05:00
Luke Parker
422a562c78 Use arduino/setup-protoc@master instead of the tagged v1
The tag is ancient and uses the now-deprecated NodeJS v12. master uses 16.
2023-01-10 00:32:35 -05:00
Luke Parker
ea7c281a47 Move to dtolnay/toolchain (#211)
* Move to dtolnay/toolchain

* Correct dtolnay/toolchain to rust-roolchain

* Pass toolchain by argument instead of revision

Introduces malleability by referring to HEAD of dtolnay, yet GHA errored on the
prior syntax.
2023-01-09 17:21:31 -05:00
Luke Parker
97a94a0bf8 cargo update
Fixes an irrelevant security issue in tokio.
2023-01-08 09:10:38 -05:00
Luke Parker
6b591c0df9 Export Timelocked so documentation for it is generated 2023-01-08 09:09:03 -05:00
Luke Parker
4be3290e40 Convert the FeaturedAddress tuple to a struct
Not only did we already have multiple booleans in it, yet it theoretically
could expand in the future. Not only is this more explicit, it actually cleans
some existing code.
2023-01-07 05:37:43 -05:00
Luke Parker
7b0b8a20ec Standardize serialization within the Monero lib
read for R: Read
write for W: Write
serialize for -> Vec<u8>

Also uses std::io::{self, Read, Write} consistently.
2023-01-07 05:18:35 -05:00
Luke Parker
7508106650 Use an explicit SubaddressIndex type 2023-01-07 04:44:23 -05:00
Luke Parker
ccf4ca2215 Add an ID function to Coin::Block
Also updates to the latest Monero lib API.
2023-01-07 04:03:11 -05:00
Luke Parker
1d6df0099c Exposed a hash-based API for accessing blocks
Also corrects a few panics, which shouldn't have been present, and unnecessary
Cursor uses.
2023-01-07 04:00:12 -05:00
Luke Parker
814a9a8d35 Revert the previous commit's API change 2023-01-07 03:21:06 -05:00
Luke Parker
9662e9e1af Have Coin::get_outputs return by transaction, not by block 2023-01-07 03:13:54 -05:00
Luke Parker
b303649f9d Add OutputType, either external, branch, or change
Used to delineate, by address received to, the intention of the output.
2023-01-07 02:59:53 -05:00
Luke Parker
a646ec5aaa Squashed commit of the following:
commit e0a9e8825d6c22c797fb84e26ed6ef10136ca9c2
Author: Luke Parker <lukeparker5132@gmail.com>
Date:   Fri Jan 6 04:24:08 2023 -0500

    Remove Scanner::address

    It either needed to return an Option, panic on misconfiguration, or return a
    distinct Scanner type based on burning bug immunity to offer this API properly.
    Panicking wouldn't be proper, and the Option<Address> would've been... awkward.
    The new register_subaddress function, maintaining the needed functionality,
    also provides further clarity on the intended side effect of the previously
    present Scanner::address function.

commit 7359360ab2fc8c9255c6f58250c214252ce217a4
Author: Luke Parker <lukeparker5132@gmail.com>
Date:   Fri Jan 6 01:35:02 2023 -0500

    fmt/clippy from last commit

commit 80d912fc19cd268f3b019a9d9961a48b2c45e828
Author: Luke Parker <lukeparker5132@gmail.com>
Date:   Thu Jan 5 19:36:49 2023 -0500

    Add Substrate "assets" pallet

    While over-engineered for our purposes, it's still usable.

    Also cleans the runtime a bit.

commit 2ed2944b6598d75bdc3c995aaf39b717846207de
Author: Luke Parker <lukeparker5132@gmail.com>
Date:   Wed Jan 4 23:09:58 2023 -0500

    Remove the timestamp pallet

    It was needed for contracts, which has since been removed. We now no longer
    need it.

commit 7fc1fc2dccecebe1d94cb7b4c00f2b5cb271c87b
Author: Luke Parker <lukeparker5132@gmail.com>
Date:   Wed Jan 4 22:52:41 2023 -0500

    Initial validator sets pallet (#187)

    * Initial work on a Validator Sets pallet

    * Update Validator Set docs per current discussions

    * Update validator-sets primitives and storage handling

    * Add validator set pallets to deny.toml

    * Remove Curve from primitives

    Since we aren't reusing keys across coins, there's no reason for it to be
    on-chain (as previously planned).

    * Update documentation on Validator Sets

    * Use Twox64Concat instead of Identity

    Ensures an even distribution of keys. While xxhash is breakable, these keys
    aren't manipulatable by users.

    * Add math ops on Amount and define a coin as 1e8

    * Add validator-sets to the runtime and remove contracts

    Also removes the randomness pallet which was only required by the contracts
    runtime.

    Does not remove the contracts folder yet so they can still be referred to while
    validator-sets is under development. Does remove them from Cargo.toml.

    * Add vote function to validator-sets

    * Remove contracts folder

    * Create an event for the Validator Sets pallet

    * Remove old contracts crates from deny.toml

    * Remove line from staking branch

    * Remove staking from runtime

    * Correct VS Config in runtime

    * cargo update

    * Resolve a few PR comments on terminology

    * Create a serai-primitives crate

    Move types such as Amount/Coin out of validator-sets. Will be expanded in the
    future.

    * Fixes for last commit

    * Don't reserve set 0

    * Further fixes

    * Add files meant for last commit

    * Remove Staking transfer

commit 3309295911d22177bd68972d138aea2f8658eb5f
Author: Luke Parker <lukeparker5132@gmail.com>
Date:   Wed Jan 4 06:17:00 2023 -0500

    Reorder coins in README by market cap

commit db5d19cad33ccf067d876b7f5b7cca47c228e2fc
Author: Luke Parker <lukeparker5132@gmail.com>
Date:   Wed Jan 4 06:07:58 2023 -0500

    Update README

commit 606484d744b1c6cc408382994c77f1def25d3e7d
Author: Luke Parker <lukeparker5132@gmail.com>
Date:   Wed Jan 4 03:17:36 2023 -0500

    cargo update

commit 3a319b229f
Author: akildemir <aeg_asd@hotmail.com>
Date:   Wed Jan 4 16:26:25 2023 +0300

    update address public API design

commit d9fa88fa76
Author: akildemir <aeg_asd@hotmail.com>
Date:   Mon Jan 2 13:35:06 2023 +0300

    fix clippy error

commit cc722e897b
Merge: cafa9b3 eeca440
Author: akildemir <aeg_asd@hotmail.com>
Date:   Mon Jan 2 11:39:04 2023 +0300

    Merge https://github.com/serai-dex/serai into develop

commit cafa9b361e
Author: akildemir <aeg_asd@hotmail.com>
Date:   Mon Jan 2 11:38:26 2023 +0300

    fix build errors

commit ce5b5f2b37
Merge: f502d67 49c4acf
Author: akildemir <aeg_asd@hotmail.com>
Date:   Sun Jan 1 15:16:25 2023 +0300

    Merge https://github.com/serai-dex/serai into develop

commit f502d67282
Author: akildemir <aeg_asd@hotmail.com>
Date:   Thu Dec 22 13:13:09 2022 +0300

    fix pr issues

commit 26ffb226d4
Author: akildemir <aeg_asd@hotmail.com>
Date:   Thu Dec 22 13:11:43 2022 +0300

    remove extraneous rpc call

commit 0e829f8531
Author: akildemir <aeg_asd@hotmail.com>
Date:   Thu Dec 15 13:56:53 2022 +0300

    add scan tests

commit 5123c7f121
Author: akildemir <aeg_asd@hotmail.com>
Date:   Thu Dec 15 13:56:13 2022 +0300

    add new address functions & comments
2023-01-06 04:33:17 -05:00
Luke Parker
e0deaa5539 fmt/clippy from last commit 2023-01-06 01:35:02 -05:00
Luke Parker
f760c09006 Add Substrate "assets" pallet
While over-engineered for our purposes, it's still usable.

Also cleans the runtime a bit.
2023-01-05 19:45:19 -05:00
Luke Parker
daa88a051f Remove the timestamp pallet
It was needed for contracts, which has since been removed. We now no longer
need it.
2023-01-04 23:09:58 -05:00
Luke Parker
e979883f2d Initial validator sets pallet (#187)
* Initial work on a Validator Sets pallet

* Update Validator Set docs per current discussions

* Update validator-sets primitives and storage handling

* Add validator set pallets to deny.toml

* Remove Curve from primitives

Since we aren't reusing keys across coins, there's no reason for it to be
on-chain (as previously planned).

* Update documentation on Validator Sets

* Use Twox64Concat instead of Identity

Ensures an even distribution of keys. While xxhash is breakable, these keys
aren't manipulatable by users.

* Add math ops on Amount and define a coin as 1e8

* Add validator-sets to the runtime and remove contracts

Also removes the randomness pallet which was only required by the contracts
runtime.

Does not remove the contracts folder yet so they can still be referred to while
validator-sets is under development. Does remove them from Cargo.toml.

* Add vote function to validator-sets

* Remove contracts folder

* Create an event for the Validator Sets pallet

* Remove old contracts crates from deny.toml

* Remove line from staking branch

* Remove staking from runtime

* Correct VS Config in runtime

* cargo update

* Resolve a few PR comments on terminology

* Create a serai-primitives crate

Move types such as Amount/Coin out of validator-sets. Will be expanded in the
future.

* Fixes for last commit

* Don't reserve set 0

* Further fixes

* Add files meant for last commit

* Remove Staking transfer
2023-01-04 22:52:41 -05:00
Luke Parker
52913a6e8d Reorder coins in README by market cap 2023-01-04 06:17:00 -05:00
Luke Parker
056dd1afcb Update README 2023-01-04 06:07:58 -05:00
Luke Parker
bf09b5cc7e cargo update 2023-01-04 03:17:36 -05:00
Luke Parker
eeca440fa7 Offer a multi-DLEq proof which simply merges challenges for n underlying proofs
This converts proofs from 2n elements to 1+n.

Moves FROST over to it. Additionally, for FROST's binomial nonces, provides
a single DLEq proof (2, not 1+2 elements) by proving the discrete log equality
of their aggregate (with an appropriate binding factor). This may be split back
up depending on later commentary...
2023-01-01 09:16:09 -05:00
Luke Parker
49c4acffbb Use a more efficient challenge function in the dleq
The prior one did 64 scalar additions for Ed25519. The new one does 8.
This was optimized by instead of parsing byte-by-byte, u64-by-u64.

Improves perf by ~10-15%.
2023-01-01 05:50:16 -05:00
Luke Parker
5599a052ad Run latest nightly clippy
Also runs clippy on the tests and updates the CI accordingly
2023-01-01 04:18:23 -05:00
Luke Parker
bff5f33616 Correct GITHUB_TOKEN handling 2023-01-01 04:09:10 -05:00
Luke Parker
f10bcfddcb Add repo token to arduino/setup-protoc to avoid rate limiting 2023-01-01 03:25:42 -05:00
Luke Parker
5b3c9bf5d0 DKG Blame (#196)
* Standardize the DLEq serialization function naming

They mismatched from the rest of the project.

This commit is technically incomplete as it doesn't update the dkg crate.

* Rewrite DKG encryption to enable per-message decryption without side effects

This isn't technically true as I already know a break in this which I'll
correct for shortly.

Does update documentation to explain the new scheme. Required for blame.

* Add a verifiable system for blame during the FROST DKG

Previously, if sent an invalid key share, the participant would realize that
and could accuse the sender. Without further evidence, either the accuser
or the accused could be guilty. Now, the accuser has a proof the accused is
in the wrong.

Reworks KeyMachine to return BlameMachine. This explicitly acknowledges how
locally complete keys still need group acknowledgement before the protocol
can be complete and provides a way for others to verify blame, even after a
locally successful run.

If any blame is cast, the protocol is no longer considered complete-able
(instead aborting). Further accusations of blame can still be handled however.

Updates documentation on network behavior.

Also starts to remove "OnDrop". We now use Zeroizing for anything which should
be zeroized on drop. This is a lot more piece-meal and reduces clones.

* Tweak Zeroizing and Debug impls

Expands Zeroizing to be more comprehensive.

Also updates Zeroizing<CachedPreprocess([u8; 32])> to
CachedPreprocess(Zeroizing<[u8; 32]>) so zeroizing is the first thing done
and last step before exposing the copy-able [u8; 32].

Removes private keys from Debug.

* Fix a bug where adversaries could claim to be using another user's encryption keys to learn their messages

Mentioned a few commits ago, now fixed.

This wouldn't have affected Serai, which aborts on failure, nor any DKG
currently supported. It's just about ensuring the DKG encryption is robust and
proper.

* Finish moving dleq from ser/deser to write/read

* Add tests for dkg blame

* Add a FROST test for invalid signature shares

* Batch verify encrypted messages' ephemeral keys' PoP
2023-01-01 01:54:18 -05:00
Luke Parker
3b4c600c60 Have transcripted versions specify their minor version pre-1.0 2022-12-27 00:49:31 -05:00
Luke Parker
bacf31378d Add test vectors for Ciphersuite::hash_to_F 2022-12-25 02:50:10 -05:00
Luke Parker
da8e7e73e0 Re-organize testing strategy and document Ciphersuite::hash_to_F. 2022-12-24 17:08:22 -05:00
Luke Parker
35a4f5bf9f Use count instead of iter.map(|_| 1).sum
Also replaces the expectation the miner TX was first with a check for
Input::Gen.
2022-12-24 15:17:49 -05:00
Luke Parker
445bb3786e Add a dedicated crate for testing ff/group implementors
Provides extensive testing for dalek-ff-group and ed448.

Also includes a fix for an observed bug in ed448.
2022-12-24 15:09:09 -05:00
Luke Parker
6e518f5c22 cargo update due to yanked openssl crate 2022-12-20 23:12:26 -05:00
Luke Parker
e6bf3a4758 Remove stray mention to USDC 2022-12-15 20:35:06 -05:00
Luke Parker
256d920835 Add root_of_unity to dalek-ff-group
Also adds a few more tests.

All functions are now implemented.
2022-12-15 20:33:58 -05:00
Luke Parker
b8db677d4c Impl pow_vartime and sqrt on ed libs 2022-12-15 19:23:42 -05:00
Luke Parker
461504ccbf Update processor to the new Zeroizing ViewPair 2022-12-14 18:40:12 -05:00
Luke Parker
3ec5189fbf Use Zeroize for the ViewPair 2022-12-14 09:27:49 -05:00
Luke Parker
25f1549c6c Move verify_share to return batch-verifiable statements
While the previous construction achieved n/2 average detection,
this will run in log2(n). Unfortunately, the need to keep entropy
around (or take in an RNG here) remains.
2022-12-13 20:31:00 -05:00
Luke Parker
9c65518dc3 Have included return a reference instead of a cloned Vec 2022-12-13 19:40:54 -05:00
Luke Parker
2b042015b5 Replace modular_frost::Curve::hash_to_vec with just hash
There's no reason to copy it to a heap allocated value. The Output implements
AsRef<[u8]> and all uses are satisfied by that.
2022-12-13 19:32:46 -05:00
Luke Parker
783a445a3e Use a challenge from the FROST transcript as context in the DLEq proofs 2022-12-13 19:27:09 -05:00
Luke Parker
ace7506172 Randomly sort included before doing share verification 2022-12-13 15:41:37 -05:00
Luke Parker
4871fc7441 Update scan.rs 2022-12-12 11:27:42 -05:00
Luke Parker
259e5815c8 Correct global index offsetting
Technically, non-0-amount outputs can still appear and this considered them
as part of the global 0-amount pool. Now, only outputs which are 0-amount are
counted.
2022-12-11 10:26:11 -05:00
akildemir
d5a5704ba4 support add/read multiple arbitrary tx data (#189)
* support add/read multiple arbitrary tx  data

* fix clippy errors

* resolve pr issues
2022-12-09 10:58:11 -05:00
Luke Parker
9e82416e7d Correct derives on errors 2022-12-09 09:50:00 -05:00
Luke Parker
d32c865c9a Misc formatting fixes 2022-12-08 22:10:12 -05:00
TheArchitect108
cc917a217d cache solc (#181)
* cache solc

* adds solc binaries to cache
2022-12-08 20:00:57 -05:00
Luke Parker
af86b7a499 Support caching preprocesses in FROST (#190)
* Remove the explicit included participants from FROST

Now, whoever submits preprocesses becomes the signing set. Better separates
preprocess from sign, at the cost of slightly more annoying integrations
(Monero needs to now independently lagrange/offset its key images).

* Support caching preprocesses

Closes https://github.com/serai-dex/serai/issues/40.

I *could* have added a serialization trait to Algorithm and written a ton of
data to disk, while requiring Algorithm implementors also accept such work.
Instead, I moved preprocess to a seeded RNG (Chacha20) which should be as
secure as the regular RNG. Rebuilding from cache simply loads the previously
used Chacha seed, making the Algorithm oblivious to the fact it's being
rebuilt from a cache. This removes any requirements for it to be modified
while guaranteeing equivalency.

This builds on the last commit which delayed determining the signing set till
post-preprocess acquisition. Unfortunately, that commit did force preprocess
from ThresholdView to ThresholdKeys which had visible effects on Monero.

Serai will actually need delayed set determination for #163, and overall,
it remains better, hence it's inclusion.

* Document FROST preprocess caching

* Update ethereum to new FROST

* Fix bug in Monero offset calculation and update processor
2022-12-08 19:04:35 -05:00
Luke Parker
873d27685a Correct FROST DLEq documentation 2022-12-07 20:32:08 -05:00
Luke Parker
12136a9409 Document extensions to FROST
Also makes misc other doc corrections.
2022-12-07 20:23:25 -05:00
Luke Parker
4edba7eb7a Cite #151 in the dkg TODOs 2022-12-07 18:10:20 -05:00
Luke Parker
bec92c10ad Update to ethers 1.0
Removes rust_decimal as a depend, which added borsh and multiple other misc
packages in the previous commit.
2022-12-07 18:05:06 -05:00
Luke Parker
bade7a504e cargo update 2022-12-07 17:56:53 -05:00
Luke Parker
6787e44664 Minor bug fix which missed the last commit 2022-12-07 17:41:07 -05:00
Luke Parker
13977f6287 Clean and document the DKG library's encryption
Encryption used to be inlined into FROST. When writing the documentation, I
realized it was decently hard to review. It also was antagonistic to other
hosted DKG algorithms by not allowing code re-use.

Encryption is now a standalone module, providing clear boundaries and
reusability.

Additionally, the DKG protocol itself used to use the ciphersuite's specified
hash function (with an HKDF to prevent length extension attacks). Now,
RecommendedTranscript is used to achieve much more robust transcripting and
remove the HKDF dependency. This does add Blake2 into all consumers yet is
preferred for its security properties and ease of review.
2022-12-07 17:30:42 -05:00
akildemir
ba157ea84b fix for #166 & cleanup (#184)
* add vscode

* fix for #166 & cleanup

* remove unused self

* fix issues on pr
2022-12-07 10:08:04 -05:00
Luke Parker
7d3a06ac05 Add missing mine_blocks call to the Monero test runner 2022-12-06 06:02:13 -05:00
Luke Parker
a3adf16b8c Update processor for latest Monero lib changes 2022-12-05 17:53:06 -05:00
Luke Parker
f136328c08 Fix tendermint-machine's version in Cargo.lock 2022-12-05 17:26:28 -05:00
Luke Parker
8f352353ba Write a test runner for Monero transactions
Also includes a few fixes for the library itself. Supersedes #172.
2022-12-05 17:25:09 -05:00
Luke Parker
7a16ce78b0 Remove usage of the word "Height" in a comment 2022-12-05 13:02:19 -05:00
Luke Parker
6085a8bb9d Update runtime commentary in Tendermint 2022-12-05 09:04:50 -05:00
Luke Parker
e00c14afe5 Publish tendermint-machine 0.2.0 2022-12-03 18:41:47 -05:00
Luke Parker
8f4d6f79f3 Initial Tendermint implementation (#145)
* Machine without timeouts

* Time code

* Move substrate/consensus/tendermint to substrate/tendermint

* Delete the old paper doc

* Refactor out external parts to generics

Also creates a dedicated file for the message log.

* Refactor <V, B> to type V, type B

* Successfully compiling

* Calculate timeouts

* Fix test

* Finish timeouts

* Misc cleanup

* Define a signature scheme trait

* Implement serialization via parity's scale codec

Ideally, this would be generic. Unfortunately, the generic API serde 
doesn't natively support borsh, nor SCALE, and while there is a serde 
SCALE crate, it's old. While it may be complete, it's not worth working 
with.

While we could still grab bincode, and a variety of other formats, it 
wasn't worth it to go custom and for Serai, we'll be using SCALE almost 
everywhere anyways.

* Implement usage of the signature scheme

* Make the infinite test non-infinite

* Provide a dedicated signature in Precommit of just the block hash

Greatly simplifies verifying when syncing.

* Dedicated Commit object

Restores sig aggregation API.

* Tidy README

* Document tendermint

* Sign the ID directly instead of its SCALE encoding

For a hash, which is fixed-size, these should be the same yet this helps 
move past the dependency on SCALE. It also, for any type where the two 
values are different, smooths integration.

* Litany of bug fixes

Also attempts to make the code more readable while updating/correcting 
documentation.

* Remove async recursion

Greatly increases safety as well by ensuring only one message is 
processed at once.

* Correct timing issues

1) Commit didn't include the round, leaving the clock in question.

2) Machines started with a local time, instead of a proper start time.

3) Machines immediately started the next block instead of waiting for 
the block time.

* Replace MultiSignature with sr25519::Signature

* Minor SignatureScheme API changes

* Map TM SignatureScheme to Substrate's sr25519

* Initial work on an import queue

* Properly use check_block

* Rename import to import_queue

* Implement tendermint_machine::Block for Substrate Blocks

Unfortunately, this immediately makes Tendermint machine capable of 
deployment as  crate since it uses a git reference. In the future, a 
Cargo.toml patch section for serai/substrate should be investigated. 
This is being done regardless as it's the quickest way forward and this 
is for Serai.

* Dummy Weights

* Move documentation to the top of the file

* Move logic into TendermintImport itself

Multiple traits exist to verify/handle blocks. I'm unsure exactly when 
each will be called in the pipeline, so the easiest solution is to have 
every step run every check.

That would be extremely computationally expensive if we ran EVERY check, 
yet we rely on Substrate for execution (and according checks), which are 
limited to just the actual import function.

Since we're calling this code from many places, it makes sense for it to 
be consolidated under TendermintImport.

* BlockImport, JustificationImport, Verifier, and import_queue function

* Update consensus/lib.rs from PoW to Tendermint

Not possible to be used as the previous consensus could. It will not
produce blocks nor does it currenly even instantiate a machine. This is
just he next step.

* Update Cargo.tomls for substrate packages

* Tendermint SelectChain

This is incompatible with Substrate's expectations, yet should be valid 
for ours

* Move the node over to the new SelectChain

* Minor tweaks

* Update SelectChain documentation

* Remove substrate/node lib.rs

This shouldn't be used as a library AFAIK. While runtime should be, and 
arguably should even be published, I have yet to see node in the same 
way. Helps tighten API boundaries.

* Remove unused macro_use

* Replace panicking todos with stubs and // TODO

Enables progress.

* Reduce chain_spec and use more accurate naming

* Implement block proposal logic

* Modularize to get_proposal

* Trigger block importing

Doesn't wait for the response yet, which it needs to.

* Get the result of block importing

* Split import_queue into a series of files

* Provide a way to create the machine

The BasicQueue returned obscures the TendermintImport struct. 
Accordingly, a Future scoped with access is returned upwards, which when 
awaited will create the machine. This makes creating the machine 
optional while maintaining scope boundaries.

Is sufficient to create a 1-node net which produces and finalizes 
blocks.

* Don't import justifications multiple times

Also don't broadcast blocks which were solely proposed.

* Correct justication import pipeline

Removes JustificationImport as it should never be used.

* Announce blocks

By claiming File, they're not sent ovber the P2P network before they 
have a justification, as desired. Unfortunately, they never were. This 
works around that.

* Add an assert to verify proposed children aren't best

* Consolidate C and I generics into a TendermintClient trait alias

* Expand sanity checks

Substrate doesn't expect nor officially support children with less work 
than their parents. It's a trick used here. Accordingly, ensure the 
trick's validity.

* When resetting, use the end time of the round which was committed to

The machine reset to the end time of the current round. For a delayed 
network connection, a machine may move ahead in rounds and only later 
realize a prior round succeeded. Despite acknowledging that round's 
success, it would maintain its delay when moving to the next block, 
bricking it.

Done by tracking the end time for each round as they occur.

* Move Commit from including the round to including the round's end_time

The round was usable to build the current clock in an accumulated 
fashion, relative to the previous round. The end time is the absolute 
metric of it, which can be used to calculate the round number (with all 
previous end times).

Substrate now builds off the best block, not genesis, using the end time 
included in the justification to start its machine in a synchronized 
state.

Knowing the end time of a round, or the round in which block was 
committed to, is necessary for nodes to sync up with Tendermint. 
Encoding it in the commit ensures it's long lasting and makes it readily 
available, without the load of an entire transaction.

* Add a TODO on Tendermint

* Misc bug fixes

* More misc bug fixes

* Clean up lock acquisition

* Merge weights and signing scheme into validators, documenting needed changes

* Add pallet sessions to runtime, create pallet-tendermint

* Update node to use pallet sessions

* Update support URL

* Partial work on correcting pallet calls

* Redo Tendermint folder structure

* TendermintApi, compilation fixes

* Fix the stub round robin

At some point, the modulus was removed causing it to exceed the 
validators list and stop proposing.

* Use the validators list from the session pallet

* Basic Gossip Validator

* Correct Substrate Tendermint start block

The Tendermint machine uses the passed in number as the block's being 
worked on number. Substrate passed in the already finalized block's 
number.

Also updates misc comments.

* Clean generics in Tendermint with a monolith with associated types

* Remove the Future triggering the machine for an async fn

Enables passing data in, such as the network.

* Move TendermintMachine from start_num, time to last_num, time

Provides an explicitly clear API clearer to program around.

Also adds additional time code to handle an edge case.

* Connect the Tendermint machine to a GossipEngine

* Connect broadcast

* Remove machine from TendermintImport

It's not used there at all.

* Merge Verifier into block_import.rs

These two files were largely the same, just hooking into sync structs 
with almost identical imports. As this project shapes up, removing dead 
weight is appreciated.

* Create a dedicated file for being a Tendermint authority

* Deleted comment code related to PoW

* Move serai_runtime specific code from tendermint/client to node

Renames serai-consensus to sc_tendermint

* Consolidate file structure in sc_tendermint

* Replace best_* with finalized_*

We test their equivalency yet still better to use finalized_* in 
general.

* Consolidate references to sr25519 in sc_tendermint

* Add documentation to public structs/functions in sc_tendermint

* Add another missing comment

* Make sign asynchronous

Some relation to https://github.com/serai-dex/serai/issues/95.

* Move sc_tendermint to async sign

* Implement proper checking of inherents

* Take in a Keystore and validator ID

* Remove unnecessary PhantomDatas

* Update node to latest sc_tendermint

* Configure node for a multi-node testnet

* Fix handling of the GossipEngine

* Use a rounded genesis to obtain sufficient synchrony within the Docker env

* Correct Serai d-f names in Docker

* Remove an attempt at caching I don't believe would ever hit

* Add an already in chain check to block import

While the inner should do this for us, we call verify_order on our end 
*before* inner to ensure sequential import. Accordingly, we need to 
provide our own check.

Removes errors of "non-sequential import" when trying to re-import an 
existing block.

* Update the consensus documentation

It was incredibly out of date.

* Add a _ to the validator arg in slash

* Make the dev profile a local testnet profile

Restores a dev profile which only has one validator, locally running.

* Reduce Arcs in TendermintMachine, split Signer from SignatureScheme

* Update sc_tendermint per previous commit

* Restore cache

* Remove error case which shouldn't be an error

* Stop returning errors on already existing blocks entirely

* Correct Dave, Eve, and Ferdie to not run as validators

* Rename dev to devnet

--dev still works thanks to the |. Acheieves a personal preference of 
mine with some historical meaning.

* Add message expiry to the Tendermint gossip

* Localize the LibP2P protocol to the blockchain

Follows convention by doing so. Theoretically enables running multiple 
blockchains over a single LibP2P connection.

* Add a version to sp-runtime in tendermint-machine

* Add missing trait

* Bump Substrate dependency

Fixes #147.

* Implement Schnorr half-aggregation from https://eprint.iacr.org/2021/350.pdf

Relevant to https://github.com/serai-dex/serai/issues/99.

* cargo update (tendermint)

* Move from polling loops to a pure IO model for sc_tendermint's gossip

* Correct protocol name handling

* Use futures mpsc instead of tokio

* Timeout futures

* Move from a yielding loop to select in tendermint-machine

* Update Substrate to the new TendermintHandle

* Use futures pin instead of tokio

* Only recheck blocks with non-fatal inherent transaction errors

* Update to the latest substrate

* Separate the block processing time from the latency

* Add notes to the runtime

* Don't spam slash

Also adds a slash condition of failing to propose.

* Support running TendermintMachine when not a validator

This supports validators who leave the current set, without crashing 
their nodes, along with nodes trying to become validators (who will now 
seamlessly transition in).

* Properly define and pass around the block size

* Correct the Duration timing

The proposer will build it, send it, then process it (on the first 
round). Accordingly, it's / 3, not / 2, as / 2 only accounted for the 
latter events.

* Correct time-adjustment code on round skip

* Have the machine respond to advances made by an external sync loop

* Clean up time code in tendermint-machine

* BlockData and RoundData structs

* Rename Round to RoundNumber

* Move BlockData to a new file

* Move Round to an Option due to the pseudo-uninitialized state we create

Before the addition of RoundData, we always created the round, and on 
.round(0), simply created it again. With RoundData, and the changes to 
the time code, we used round 0, time 0, the latter being incorrect yet 
not an issue due to lack of misuse.

Now, if we do misuse it, it'll panic.

* Clear the Queue instead of draining and filtering

There shouldn't ever be a message which passes the filter under the 
current design.

* BlockData::new

* Move more code into block.rs

Introduces type-aliases to obtain Data/Message/SignedMessage solely from 
a Network object.

Fixes a bug regarding stepping when you're not an active validator.

* Have verify_precommit_signature return if it verified the signature

Also fixes a bug where invalid precommit signatures were left standing 
and therefore contributing to commits.

* Remove the precommit signature hash

It cached signatures per-block. Precommit signatures are bound to each 
round. This would lead to forming invalid commits when a commit should 
be formed. Under debug, the machine would catch that and panic. On 
release, it'd have everyone who wasn't a validator fail to continue 
syncing.

* Slight doc changes

Also flattens the message handling function by replacing an if 
containing all following code in the function with an early return for 
the else case.

* Always produce notifications for finalized blocks via origin overrides

* Correct weird formatting

* Update to the latest tendermint-machine

* Manually step the Tendermint machine when we synced a block over the network

* Ignore finality notifications for old blocks

* Remove a TODO resolved in 8c51bc011d

* Add a TODO comment to slash

Enables searching for the case-sensitive phrase and finding it.

* cargo fmt

* Use a tmp DB for Serai in Docker

* Remove panic on slash

As we move towards protonet, this can happen (if a node goes offline), 
yet it happening brings down the entire net right now.

* Add log::error on slash

* created shared volume between containers

* Complete the sh scripts

* Pass in the genesis time to Substrate

* Correct block announcements

They were announced, yet not marked best.

* Correct pupulate_end_time

It was used as inclusive yet didn't work inclusively.

* Correct gossip channel jumping when a block is synced via Substrate

* Use a looser check in import_future

This triggered so it needs to be accordingly relaxed.

* Correct race conditions between add_block and step

Also corrects a <= to <.

* Update cargo deny

* rename genesis-service to genesis

* Update Cargo.lock

* Correct runtime Cargo.toml whitespace

* Correct typo

* Document recheck

* Misc lints

* Fix prev commit

* Resolve low-hanging review comments

* Mark genesis/entry-dev.sh as executable

* Prevent a commit from including the same signature multiple times

Yanks tendermint-machine 0.1.0 accordingly.

* Update to latest nightly clippy

* Improve documentation

* Use clearer variable names

* Add log statements

* Pair more log statements

* Clean TendermintAuthority::authority as possible

Merges it into new. It has way too many arguments, yet there's no clear path at
consolidation there, unfortunately.

Additionally provides better scoping within itself.

* Fix #158

Doesn't use lock_import_and_run for reasons commented (lack of async).

* Rename guard to lock

* Have the devnet use the current time as the genesis

Possible since it's only a single node, not requiring synchronization.

* Fix gossiping

I really don't know what side effect this avoids and I can't say I care at this
point.

* Misc lints

Co-authored-by: vrx00 <vrx00@proton.me>
Co-authored-by: TheArchitect108 <TheArchitect108@protonmail.com>
2022-12-03 18:38:02 -05:00
Luke Parker
31e8be7b6e Run cargo deny daily 2022-12-02 13:38:30 -05:00
GitHub Actions
ba0f119a53 Update nightly 2022-12-01 18:20:57 -05:00
Luke Parker
0ca52a36ee Restore type complexity checks in CI
Passes due to the remaining type complexity cases being explicitly allowed.
2022-12-01 17:50:52 -05:00
Luke Parker
0350cd803d Add debug assertions to CLSAG/Bulletproofs proving 2022-12-01 11:50:03 -05:00
Luke Parker
f0957c8d52 Add a builder API to the Monero library
Enables more composable construction flows.
2022-12-01 11:35:05 -05:00
Luke Parker
3f503d92fb Remove dbg! from previous commit 2022-11-24 04:57:25 -05:00
Luke Parker
409d1151b2 Add dbg to help resolve https://github.com/serai-dex/serai/issues/166 2022-11-23 22:15:50 -05:00
Luke Parker
00c1f21224 cargo update
Resolves yanking of crossbeam (see https://github.com/crossbeam-rs/crossbeam/issues/931).
2022-11-23 07:44:30 -05:00
Luke Parker
138bb46e19 cargo update
Mandated by https://github.com/dylni/os_str_bytes/issues/14.
2022-11-21 02:23:38 -05:00
Luke Parker
56574f2f5b Add a cargo deny workflow (#89)
* Add a cargo deny workflow

Also trims out a pointless submodule checkout (we have none).

* Remove no longer relevant advisories/allowances

* Patch for array-bytes

* Remove unused properties

* Restore chrono advisory

* Allow MPL-2.0, correct GPL-3.0 allowance specification

* Properly ban copyleft, run on all crates

* Exceptions for Serai crates (AGPL-3.0)

* Remove top comments

* Clarify reasoning for not checking advisories in CI

* Run all checks in CI

While this may bring down an unrelated commit, we can manually review, before creating a followup commit allowing it. If it's critical, then this did its job.
2022-11-16 20:53:35 -06:00
Luke Parker
4a3178ed8f Support handling addresses from other networks
A type alias of MoneroAddress is provided to abstract away the generic. 
To keep the rest of the library sane, MoneroAddress is used everywhere.

If someone wants to use this library with another coin, they *should* be 
able to parse a custom address and then recreate it as a Monero address. 
While that's annoying to them, better them than any person using this 
lib for Monero.

Closes #152.
2022-11-15 00:06:15 -05:00
Luke Parker
83060a914a Have the RPC return the unsupported version when Unsupported 2022-11-14 23:56:28 -05:00
Luke Parker
6acbfdcc45 Support custom Monero protocol definitions 2022-11-14 23:28:39 -05:00
Luke Parker
6f9cf510da Support an authenticated Monero RPC
Closes https://github.com/serai-dex/serai/issues/143.
2022-11-14 23:24:35 -05:00
Luke Parker
b05a223b69 Monero json_rpc_call 2022-11-14 21:49:49 -05:00
Luke Parker
138f7cdfa4 Correct dev-dependencies for modular-frost 2022-11-14 19:20:56 -05:00
Luke Parker
fe1f28c77a cargo update 2022-11-14 04:55:00 -05:00
Luke Parker
b85801b524 Correct the MerlinTranscript Debug impl 2022-11-11 07:07:42 -05:00
Luke Parker
c7121d96ac Add common to Dockerfile 2022-11-11 02:20:10 -05:00
Luke Parker
35ca220bcc Comment the allocator feature
Prevents it from turning on with --all-features, forcing nightly.
2022-11-11 01:23:35 -05:00
Luke Parker
3d9b9b178c Zeroizing allocator (#154)
* Add a zeroizing allocator

* Also implement the allocator API

* Add misisng license file to zalloc

* Slight change to zalloc description
2022-11-10 23:34:40 -06:00
Luke Parker
7334ed1f43 cargo update
Updates Substrate to polkadot-v0.9.33
2022-11-10 23:59:20 -05:00
Luke Parker
84de427d72 Fix https://github.com/serai-dex/serai/issues/150 2022-11-10 22:35:09 -05:00
Luke Parker
d714f2202d Document multiexp
Bumps the crate version to enable publishing.
2022-11-07 18:31:20 -05:00
Luke Parker
be61bff074 cargo fmt 2022-11-05 18:47:57 -04:00
Luke Parker
8de465af87 Have Transcript::append_message take in AsRef<[u8]>, not &[u8]
Simplifies calling it.
2022-11-05 18:43:36 -04:00
Luke Parker
65df18d285 cargo update 2022-11-04 08:07:37 -04:00
Luke Parker
953bece2ea Bump Substrate dependency
Fixes #147.
2022-11-04 08:07:12 -04:00
Luke Parker
5977aeb489 Implement Schnorr half-aggregation from https://eprint.iacr.org/2021/350.pdf
Relevant to https://github.com/serai-dex/serai/issues/99.
2022-11-04 08:04:49 -04:00
github-actions[bot]
8e53522780 November 2022 - Rust Nightly Update (#144)
* Update nightly

* Have the latest nightly clippy pass

Co-authored-by: GitHub Actions <>
Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2022-11-01 00:03:36 -05:00
TheArchitect108
5df74ac9e2 Temporarily strip auth from monerod rpc for tests. 2022-10-31 17:03:23 -05:00
TheArchitect108
16c51ce374 Add svm-rs dependency to getting started. 2022-10-31 15:50:28 -05:00
TheArchitect108
659ff280ac expose monero rpc port from docker 2022-10-31 12:52:29 -05:00
TheArchitect108
0fc336941c Add getting started link to main readme. 2022-10-31 11:35:21 -05:00
TheArchitect108
1a4f2d5621 Add getting started link to main readme. 2022-10-31 11:34:53 -05:00
TheArchitect108
8a20d90868 Add links to other options for running Serai. 2022-10-31 11:32:27 -05:00
TheArchitect108
4101239e0d add deps to make setup easier 2022-10-31 11:10:13 -05:00
Luke Parker
aa4b5e2ca3 Update Cargo.lock 2022-10-29 06:01:32 -04:00
Luke Parker
6ef624ab7e Correct monero's dev dependencies 2022-10-29 05:52:56 -04:00
Luke Parker
e67e406d95 Correct ed448 versioning 2022-10-29 05:25:58 -04:00
Luke Parker
43e38e463f Update FROST version 2022-10-29 05:14:29 -04:00
Luke Parker
1464eefbe3 Correct dleq's zeroize dependency 2022-10-29 05:13:20 -04:00
Luke Parker
6eaed17952 Inline FROST processing functions into the machines' impls
This was done for the DKG and this similarly cleans up here.
2022-10-29 05:10:07 -04:00
Luke Parker
2379855b31 Create a dedicated crate for the DKG (#141)
* Add dkg crate

* Remove F_len and G_len

They're generally no longer used.

* Replace hash_to_vec with a provided method around associated type H: Digest

Part of trying to minimize this trait so it can be moved elsewhere. Vec, 
which isn't std, may have been a blocker.

* Encrypt secret shares within the FROST library

Reduces requirements on callers in order to be correct.

* Update usage of Zeroize within FROST

* Inline functions in key_gen

There was no reason to have them separated as they were. sign probably 
has the same statement available, yet that isn't the focus right now.

* Add a ciphersuite package which provides hash_to_F

* Set the Ciphersuite version to something valid

* Have ed448 export Scalar/FieldElement/Point at the top level

* Move FROST over to Ciphersuite

* Correct usage of ff in ciphersuite

* Correct documentation handling

* Move Schnorr signatures to their own crate

* Remove unused feature from schnorr

* Fix Schnorr tests

* Split DKG into a separate crate

* Add serialize to Commitments and SecretShare

Helper for buf = vec![]; .write(buf).unwrap(); buf

* Move FROST over to the new dkg crate

* Update Monero lib to latest FROST

* Correct ethereum's usage of features

* Add serialize to GeneratorProof

* Add serialize helper function to FROST

* Rename AddendumSerialize to WriteAddendum

* Update processor

* Slight fix to processor
2022-10-29 03:54:42 -05:00
Luke Parker
cbceaff678 Create dedicated message structures for FROST messages (#140)
* Create message types for FROST key gen

Taking in reader borrows absolutely wasn't feasible. Now, proper types
which can be read (and then passed directly, without a mutable borrow)
exist for key_gen. sign coming next.

* Move FROST signing to messages, not Readers/Writers/Vec<u8>

Also takes the nonce handling code and makes a dedicated file for it, 
aiming to resolve complex types and make the code more legible by 
replacing its previously inlined state.

* clippy

* Update FROST tests

* read_signature_share

* Update the Monero library to the new FROST packages

* Update processor to latest FROST

* Tweaks to terminology and documentation
2022-10-25 23:17:25 -05:00
TheArchitect108
ccdb834e6e fixes caching issues (#139)
* fixes caching issues

* update comment
2022-10-24 23:48:11 -05:00
Luke Parker
42a711ee51 Replace the Serai scripts volume for directly copying the files
This should probably be done for the other images as well.
2022-10-23 21:01:11 -04:00
Luke Parker
7ecf8b22cf Mark all sh files as executable 2022-10-23 20:39:37 -04:00
GitHub Actions
595b2da433 Update nightly 2022-10-21 21:26:27 -05:00
Luke Parker
a03a04bcc6 Simplify monthly nightly update workflow 2022-10-21 22:25:32 -04:00
Luke Parker
22713493d8 Move from set-output to $GITHUB_OUTPUT
https://github.blog/changelog/2022-10-11-github-actions-deprecating-save-state-and-set-output-commands/
2022-10-21 22:19:01 -04:00
Luke Parker
b72af5e185 cargo update
The new ink release should enable using the latest Rust nightly, without 
issue.
2022-10-21 21:40:50 -04:00
Luke Parker
c7f8258e0c Cherry-pick 28308dfe85387fe54c14076089a40c5af1f1b8f7 2022-10-21 05:32:38 -04:00
Luke Parker
21fd56d4d3 Remove extraneous clone 2022-10-21 01:08:15 -05:00
Luke Parker
f6bbc6c89e Correct weight code 2022-10-20 01:27:35 -04:00
Luke Parker
6c996fb3cd Update substrate
Also removes the patch for zip since a new release was issued.

Closes https://github.com/serai-dex/serai/issues/81.

Contracts RPC purged as according to 
https://github.com/paritytech/substrate/pull/12358.
2022-10-20 01:05:36 -04:00
Luke Parker
ec7d8ac67b Remove coin crate
Effective reversion of past few commits by request.
2022-10-16 13:11:32 -04:00
Luke Parker
5ce06cf1b7 Update lib.rs 2022-10-16 07:47:08 -05:00
Luke Parker
4866a3e0e9 Fix previous commit 2022-10-16 00:17:51 -04:00
Luke Parker
ad9bf9b240 Remove unused imports 2022-10-15 23:59:44 -04:00
Luke Parker
19488cf446 Fill out Cargo.tomls
Updated missing fields/sections, even if some won't be used, to 
standardize.

Also made FROST tests feature-gated.
2022-10-15 23:46:22 -04:00
Luke Parker
65664dafa4 Make coin a dedicated library
Closes https://github.com/serai-dex/serai/issues/128.
2022-10-15 23:21:56 -04:00
vrx00
f50148d17a fix for monero docker 2022-10-15 21:42:09 -05:00
Luke Parker
9d376d29e1 Bump FROST version to publish a v11-compliant lib 2022-10-15 22:34:12 -04:00
Luke Parker
e5955f82c7 Remove Monero RPC panics for an invalid/malicious node 2022-10-15 22:32:56 -04:00
Luke Parker
514563cef0 Remove height as a term
Unbeknowst to me, height doesn't have a universal definition of the 
chain length.

Bitcoin defines height as the block number, with getblockcount existing 
for the chain length.

Ethereum uses the unambiguous term "block number".

Monero defines height as both the block number and the chain length.

Instead of arguing about who's right, it's agreed it referring to both 
isn't productive. While we could provide our own definition, taking a 
side, moving to the unambiguous block number prevents future hiccups.

height is now only a term in the Monero code, where it takes its 
Monero-specific definition, as documented in the processor.
2022-10-15 21:39:06 -04:00
Luke Parker
a245ee28c1 Correction for previous commit 2022-10-15 21:07:52 -04:00
Luke Parker
245dcc6083 Have the wallet provide the Monero height for is_confirmed 2022-10-15 21:07:37 -04:00
Luke Parker
826e27c80e Pin CI to solc-select 0.2.1 2022-10-15 20:04:37 -04:00
vrx00
d96cfdf485 serai Dockerfile & Makefile fixed 2022-10-15 19:03:33 -05:00
Luke Parker
4629e88a28 Add is_confirmed with a TODO: Remove
Closes https://github.com/serai-dex/serai/issues/129.
2022-10-15 19:51:59 -04:00
Luke Parker
e9d5fb25c8 Merge branch 'develop' of github.com:serai-dex/serai into develop 2022-10-13 00:38:44 -04:00
Luke Parker
a0a54eb0de Update to FROST v11
Ensures random functions never return zero. This, combined with a check 
commitments aren't 0, causes no serialized elements to be 0.

Also directly reads their vectors.
2022-10-13 00:38:36 -04:00
vrx00
f9310a9968 Cluster Orchestration with Kubernetes (#121)
* add file

* builds + caching fixed

* bitcoin orchestration

* remove default entrypoint

* eth image and cleanup

* working monero

* remove signature file

* cleanup on aisle eth

* cleanup on aisle btc

* eth working

* remove docker ignore

* remove bitcoin image readme

* fix serai builds

* serai clusters

* added readme for docker

* formatting

* share the image

* newlines at EOF

* add multi profile example

* coin order

* coin order

* profile order

* fix grammar

* fix whitespace

* reduce trusted signature set, require at least 3 signatures.

* remove echo

* update comment to ref trusted keys

* comment fix

* use 16 keys, check for laanwj, name compose

* don't use bash

* monero fingerprints & eth fixes

* eth fixes

* remove extra eth keys

* kubernetes deployment implemented with helm charts

* deleted helmignores & added new lines at the end of the file

* deleted duplications & delete unnecessary comments & deactivated service accounts

* deleted generators files

* added a new line to monero/values.yaml

* deleted support for old kubernetes version - ingress.yaml

* added new like to serai/values.yaml

* serai's port name changed

* serai's port name changed

* release name limit was changed to 253

* README.md updated

* fixed Makefile

* deleted platform dependant instructions

* deleted appVersion from .yamls

* added -i parameter for deleting process

* added \ for Makefile

Co-authored-by: TheArchitect108 <75815740+TheArchitect108@users.noreply.github.com>
Co-authored-by: TheArchitect <TheArchitect108@protonmail.com>
2022-10-11 05:27:03 -05:00
Luke Parker
26cbcfb78c Clarify identation policy 2022-10-11 00:40:50 -05:00
Luke Parker
7fa78a9ac2 Delete old Monero submodule 2022-10-02 22:42:47 -05:00
Luke Parker
b334c96906 Allow manually running the tests workflow 2022-09-30 23:26:40 -04:00
Luke Parker
482a8ec209 Update to the latest Serai Substrate (#125)
* Update to the latest Serai Substrate

* Add Protobuf to build dependencies

Docker shouldn't need updating as this should've been added to the image 
in 
2dbace5b01.

* Get substrate to build

* Correct protoc build step

* Remove the benchmarking code

There's some macro resolution error that isn't apparent. I worked on it 
for about half an hour but...

* Remove unnecessary clone

* Correct runtime-benchmarks flag usage
2022-09-29 13:33:09 -05:00
Luke Parker
2c3f36fd3f Single quotes 2022-09-29 10:22:39 -05:00
Luke Parker
9ff4cfab0d Add a repository field to monero-generators 2022-09-29 10:37:25 -04:00
Luke Parker
503ae02cae Version bump monero-generators to consolidate a dependency 2022-09-29 10:36:40 -04:00
Luke Parker
695f7ec5f9 Version bump Monero for documentation purposes 2022-09-29 10:35:11 -04:00
Luke Parker
95aa1ab827 Lock the cache to a specific rustc + dependencies
Apparently, GitHub doesn't write back to the cache, leading to massive 
build times a few moments after its initialization (when a change 
happens invalidating it). While this forces a new cache whenever 
dependencies change, it'll restore from an older set of dependencies in 
that case, still minimizing build times.
2022-09-29 10:34:20 -04:00
Luke Parker
8da0743361 Use sha3 in monero-generators 2022-09-29 08:08:49 -04:00
Luke Parker
2b7c9378c0 Update to FROST v10
Further expands documentation to near-completion.
2022-09-29 07:08:20 -04:00
Luke Parker
7870084b9e Add further FROST documentation 2022-09-29 06:02:43 -04:00
Luke Parker
8d9315b797 Use HashMarker for Transcript and when generating scalars from digests 2022-09-29 05:33:46 -04:00
Luke Parker
ca091a5f04 Expand and correct documentation 2022-09-29 05:25:29 -04:00
Luke Parker
19cd609cba Use doc_auto_cfg 2022-09-29 04:47:55 -04:00
Luke Parker
8b0f0a3713 Publish an alpha version of the Monero crate (#123)
* Label the version as an alpha

* Add versions to Cargo.tomls

* Update to Zeroize 1.5

* Drop patch versions from monero-serai Cargo.toml

* Add a repository field

* Move generators to OUT_DIR

IIRC, I didn't do this originally as it constantly re-generated them. 
Unfortunately, since cargo is complaining about .generators, we have to.

* Remove Timelock::fee_weight

Transaction::fee_weight's has a comment, "Assumes Timelock::None since 
this library won't let you create a TX with a timelock". Accordingly, 
this is dead code.
2022-09-29 01:24:33 -05:00
Luke Parker
49749d96a0 Replace tiny_keccak with sha3 in Monero 2022-09-28 09:29:58 -04:00
Luke Parker
fd48bbd15e Initial documentation for the Monero libraries (#122)
* Document all features

* Largely document the Monero libraries

Relevant to https://github.com/serai-dex/serai/issues/103 and likely 
sufficient to get this removed from 
https://github.com/serai-dex/serai/issues/102.
2022-09-28 07:44:49 -05:00
Luke Parker
f48a48ec3f Support v1 transactions
Closes https://github.com/serai-dex/serai/issues/117.
2022-09-28 05:28:42 -04:00
Luke Parker
5a4eb0a076 cargo update
Removes the potential applicability of CVE-2021-3520.
2022-09-18 15:30:38 -04:00
Luke Parker
2edf61614f Revert nightly workflow testing data 2022-09-18 15:27:47 -04:00
Luke Parker
0431089592 Correct PR creation in workflow 2022-09-18 15:25:43 -04:00
Luke Parker
a52b2e2148 Add a workflow file to update the nightly version every month (#118)
Part of https://github.com/serai-dex/serai/issues/116
2022-09-18 13:49:18 -05:00
Luke Parker
2393cdfe8c Specify shell in build-dependencies 2022-09-17 16:29:44 -04:00
Luke Parker
34ffdfa8be Use a fixed nightly version for the wasm toolchain 2022-09-17 16:26:56 -04:00
Luke Parker
b2f6c23e2f clippy --all-features 2022-09-17 06:07:49 -04:00
Luke Parker
7e17b4f2db Correct the fmt workflow 2022-09-17 04:40:50 -04:00
Luke Parker
c96b595f42 Pin nightly used for fmt/clippy
As per https://github.com/serai-dex/serai/issues/116.
2022-09-17 04:37:43 -04:00
Luke Parker
65c20638ce fmt/clippy 2022-09-17 04:35:08 -04:00
Luke Parker
fd6c58805f Merge branch 'develop' of github.com:serai-dex/serai into develop 2022-09-16 12:18:31 -04:00
Luke Parker
7d4fcdea9e Update FROST Ed448 per request 2022-09-16 12:16:37 -04:00
TheArchitect108
978304e224 Cluster Orchestration with Docker Compose (#114)
* add file

* builds + caching fixed

* bitcoin orchestration

* remove default entrypoint

* eth image and cleanup

* working monero

* remove signature file

* cleanup on aisle eth

* cleanup on aisle btc

* eth working

* remove docker ignore

* remove bitcoin image readme

* fix serai builds

* serai clusters

* added readme for docker

* formatting

* share the image

* newlines at EOF

* add multi profile example

* coin order

* coin order

* profile order

* fix grammar

* fix whitespace

* reduce trusted signature set, require at least 3 signatures.

* remove echo

* update comment to ref trusted keys

* comment fix

* use 16 keys, check for laanwj, name compose

* don't use bash

* monero fingerprints & eth fixes

* eth fixes

* remove extra eth keys
2022-09-12 15:01:14 -05:00
Luke Parker
31b64b3082 Update according to the latest clippy 2022-09-04 21:23:38 -04:00
Luke Parker
73566e756d Minimize use of lazy_static in ed448
Increases usage of const values along with overall Field impl sanity 
with regards to the crypto_bigint backend.
2022-08-31 03:33:19 -04:00
Luke Parker
a59bbe7635 Impl is_odd for dfg::Scalar 2022-08-31 01:05:30 -04:00
Luke Parker
faa43b6874 Move the featured address vectors to a vectors folder 2022-08-31 01:01:51 -04:00
Luke Parker
cc0c6fb5ac Apply the optimized pow to dalek-ff-group
Saves ~40% from Monero hash_to_curve, assisting with #68.
2022-08-31 00:57:23 -04:00
Luke Parker
c5256d9b06 Use ChaCha20 instead of ChaCha12
Despite being slower and only used for blinding values, its still 
extremely performant. 20 is far more standard and will avoid an eye 
raise from reviewers.
2022-08-30 20:01:46 -04:00
Luke Parker
6093f4ec93 Fix clippy 2022-08-30 16:48:59 -04:00
Luke Parker
139dcde69c Support including arbitrary data in TXs and return it with outputs
Fixes a bug where all payments identified as being to (0, 0) instead of 
their actual subaddress.
2022-08-30 15:42:23 -04:00
Luke Parker
09fdc1b77a Close https://github.com/serai-dex/serai/issues/93 2022-08-30 14:35:33 -04:00
Luke Parker
8d56c43f5e Update to work against the latest foundry
Links the Ethereum contract tests as well
2022-08-30 02:13:53 -04:00
Luke Parker
91f62672d3 fmt again
I botched it. I am sorry.
2022-08-30 01:52:00 -04:00
Luke Parker
6045f4ae59 fmt/clippy for previous commit 2022-08-30 01:05:18 -04:00
Luke Parker
d620231530 Remove Monero torsion-free requirement and make output keys 32 bytes
Maintains the torsion-free requirement in the one place it's used (key 
images).

In the modern day, the output keys are checked to be points, yet in 
older protocol versions they were allowed to be arbitrary bytes.

Closes https://github.com/serai-dex/serai/issues/23 and 
https://github.com/serai-dex/serai/issues/25.
2022-08-30 01:02:55 -04:00
Luke Parker
ee6316b26b Use a Group::random which doesn't have a known DL
While Group::random shouldn't be used instead of a hash to curve, anyone 
who did would've previously been insecure and now isn't.

Could've done a recover_x and a raw Point construction, followed by a 
cofactor mul, to avoid the serialization, yet the serialization ensures 
full validity under the standard from_bytes function. THis also doesn't 
need to be micro-optimized.
2022-08-29 13:02:20 -04:00
Luke Parker
b97713aac7 Add unnecessary imports to the Ed448 backend to enable publishing
Doesn't change dependencies.
2022-08-29 03:49:40 -04:00
Luke Parker
d6a31863c4 Version bump dalek-ff-group 2022-08-29 03:46:48 -04:00
Luke Parker
081b9a1975 FROST Ed448 (#107)
* Theoretical ed448 impl

* Fixes

* Basic tests

* More efficient scalarmul

Precomputes a table to minimize additions required.

* Add a torsion test

* Split into a constant and variable time backend

The variable time one is still far too slow, at 53s for the tests (~5s a 
scalarmul). It should be usable as a PoC though.

* Rename unsafe Ed448

It's not only unworthy of the Serai branding and deserves more clarity
in the name.

* Add wide reduction to ed448

* Add Zeroize to Ed448

* Rename Ed448 group.rs to point.rs

* Minor lint to FROST

* Ed448 ciphersuite with 8032 test vector

* Macro out the backend fields

* Slight efficiency improvement to point decompression

* Disable the multiexp test in FROST for Ed448

* fmt + clippy ed448

* Fix an infinite loop in the constant time ed448 backend

* Add b"chal" to the 8032 context string for Ed448

Successfully tests against proposed vectors for the FROST IETF draft.

* Fix fmt and clippy

* Use a tabled pow algorithm in ed448's const backend

* Slight tweaks to variable time backend

Stop from_repr(MODULUS) from passing.

* Use extended points

Almost two orders of magnitude faster.

* Efficient ed448 doubling

* Remove the variable time backend

With the recent performance improvements, the constant time backend is 
now 4x faster than the variable time backend was. While the variable 
time backend remains much faster, and the constant time backend is still 
slow compared to other libraries, it's sufficiently performant now.

The FROST test, which runs a series of multiexps over the curve, does 
take 218.26s while Ristretto takes 1 and secp256k1 takes 4.57s.

While 50x slower than secp256k1 is horrible, it's ~1.5 orders of 
magntiude, which is close enough to the desire stated in 
https://github.com/serai-dex/serai/issues/108 to meet it.

Largely makes this library safe to use.

* Correct constants in ed448

* Rename unsafe-ed448 to minimal-ed448

Enables all FROST tests against it.

* No longer require the hazmat feature to use ed448

* Remove extraneous as_refs
2022-08-29 02:32:59 -05:00
Luke Parker
f71f19e26c Add a repository field to the DLEq Cargo.toml 2022-08-26 09:10:34 -04:00
Luke Parker
33ee6b7a02 Bump FROST version 2022-08-26 09:09:18 -04:00
Luke Parker
dbd39b557e Add a basic CONTRIBUTING file (#77)
* Add a basic CONTRIBUTING file

* Mild updates to CONTRIBUTING, mainly about formatting

* Add import ordering to CONTRIBUTING
2022-08-26 07:41:00 -05:00
Luke Parker
a8a00598e4 Update to FROST v8 2022-08-26 05:59:43 -04:00
Luke Parker
4881ddae87 Update Monero crate description 2022-08-25 04:02:30 -04:00
Luke Parker
546b772be3 Clarify licensing per https://github.com/serai-dex/serai/issues/13
Implements bullets 2-4 of 
https://github.com/serai-dex/serai/issues/13#issuecomment-1212689876.
2022-08-25 04:02:13 -04:00
Luke Parker
5b2940e161 Lint previous commit 2022-08-22 13:35:49 -04:00
Luke Parker
5c106cecf6 Fix https://github.com/serai-dex/serai/issues/105 2022-08-22 12:15:14 -04:00
Luke Parker
5a1f011db8 Fix https://github.com/serai-dex/serai/issues/106 2022-08-22 08:57:36 -04:00
Luke Parker
5751204a98 Introduce a subaddress capable scanner type 2022-08-22 08:32:09 -04:00
Luke Parker
19f5fd8fe9 Include subaddress and payment ID in SpendableOutput 2022-08-22 07:22:54 -04:00
Luke Parker
f0b914c721 Support sending to integrated addresses 2022-08-22 06:54:01 -04:00
Luke Parker
99b683b843 Update processor 2022-08-22 05:27:35 -04:00
Luke Parker
331aa6c644 Implement Featured Addresses
Closes https://github.com/serai-dex/serai/issues/37.
2022-08-22 04:27:58 -04:00
Luke Parker
3fffea178f Visibility fixes 2022-08-21 11:29:01 -04:00
Luke Parker
d596eeee6e Update visibility of various items in Monero 2022-08-21 11:06:17 -04:00
Luke Parker
60d93c4b2d Update BP fee_weight
Closes https://github.com/serai-dex/serai/issues/8.
2022-08-21 10:35:10 -04:00
Luke Parker
755d021f8e Canonicalize read_varint
There is a slight note we only implement u64 varint's, while Monero does 
it for arbitrary uints, yet that's not relevant at this time. It is 
documented in #25.
2022-08-21 08:58:28 -04:00
Luke Parker
c5beee5648 Fix #48
Removes monero, yet we still use monero-rs's base58 and epee libraries.
2022-08-21 08:41:19 -04:00
Luke Parker
d12507e612 Fix a DoS in Monero
A malicious TX could cause an arbitrary amount of memory to be allocated 
despite not even containing that amount of data.
2022-08-21 07:52:49 -04:00
Luke Parker
8af3a9ea51 Correct Monero build script 2022-08-21 06:48:59 -04:00
Luke Parker
603a3f8c9f Generate Bulletproofs(+) generators at compile time
Creates a new monero-generators crate so the monero crate can run the 
code in question at build time.

Saves several seconds from running the tests.

Closes https://github.com/serai-dex/serai/issues/101.
2022-08-21 06:36:53 -04:00
Luke Parker
577fe99a08 Fix https://github.com/serai-dex/serai/issues/18 2022-08-21 05:13:07 -04:00
Luke Parker
00d61286b1 Lint Monero serialization 2022-08-21 04:41:55 -04:00
Luke Parker
76db682a25 Replace static Scalar with a uint conversion in BP+ 2022-08-21 00:46:23 -04:00
Luke Parker
f319966dca Lint Getting Started document 2022-08-21 00:45:41 -04:00
TheArchitect108
74e2d230e8 Simple getting started doc (#91)
* simple getting started doc

* Swap Old Ubuntu and Solc

* Fixes indents and removes OS preferences

* drops indents from code blocks
2022-08-20 23:26:16 -05:00
Luke Parker
c53e7ad6c7 Bump dalek-ff-group version 2022-08-18 17:11:55 -04:00
J. Burfeind
a2aa182cc4 Conditional negate (#90)
* Reorder tests in dalek-ff-group

* Add required method for ConditionallyNegatable

Adds lifetime bound implementation `Neg`
for borrowed FieldElements in dalek-ff-group.
2022-08-18 15:02:31 -05:00
aiyion.prime
45912d6837 Add implementation for sqrt_ratio_i()
in dalek-ff-group
2022-08-18 13:38:57 -05:00
Luke Parker
0543f3c469 Patch Benchmark 2022-08-16 17:43:46 -04:00
Luke Parker
f809827acd cargo update
Fixes https://github.com/serai-dex/serai/issues/82.
2022-08-16 03:44:32 -04:00
Luke Parker
a73bcc908f Add missing test annotation 2022-08-13 19:43:43 -04:00
Luke Parker
75c3cdc5af Comment the previous commit
Despite the intentions of https://github.com/serai-dex/serai/issues/85, 
it failed to be practically faster :/

Updates a DLEq test to be better as well.
2022-08-13 19:43:18 -04:00
Luke Parker
062cd77a98 Close https://github.com/serai-dex/serai/issues/85 2022-08-13 19:21:12 -04:00
Luke Parker
5d7798c5fb FROST clippy 2022-08-13 09:46:54 -04:00
Luke Parker
280fc441a7 Lint FROST
Corrects ertrors introduced a couple commits ago as well.
2022-08-13 08:50:59 -04:00
Luke Parker
454b73aec3 Add FROST key promotion
Closes https://github.com/serai-dex/serai/issues/72.

Adds a trait, with a commented impl for a semi-unsafe niche feature, 
which will be used in https://github.com/serai-dex/serai/issues/73.
2022-08-13 08:50:59 -04:00
Luke Parker
885d816309 Use a non-constant generator in FROST 2022-08-13 08:50:59 -04:00
Luke Parker
6f776ff004 Recalculate the group key instead of serializing it
Solves an issue with promotion.
2022-08-13 08:50:59 -04:00
Luke Parker
73205c5f96 Transcript the offset as a point
Potentially improves privacy with the reversion to a coordinator 
setting, where the coordinator is the only party with the offset. While 
any signer (or anyone) can claim key A relates to B, they can't prove it 
without the discrete log of the offset. This enables creating a signing 
process without a known offset, while maintaining a consistent 
transcript format.

Doesn't affect security given a static generator. Does have a slight 
effect on performance.
2022-08-13 08:50:59 -04:00
J. Burfeind
a58b3a133c Add implementation for is_odd() (#79)
in dalek-ff-group

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2022-08-12 15:05:48 -05:00
J. Burfeind
169d5e26ca Add constant EDWARDS_D in dalek-ff-group (#78) 2022-08-12 15:00:55 -05:00
Luke Parker
96a49d8a88 Remove unnecessary parentheses 2022-08-12 15:53:48 -04:00
Luke Parker
a423c23c1e Use zeroize instead of 0-sets 2022-08-12 01:14:13 -04:00
Luke Parker
42a3d38b48 Zeroize buffer used in Scalar::from_hash
from_hash is frequently used for private key/nonce generation, making 
this buffer a copy of private keys/nonces.
2022-08-04 14:40:54 -04:00
Luke Parker
797be71eb3 Utilize zeroize (#76)
* Apply Zeroize to nonces used in Bulletproofs

Also makes bit decomposition constant time for a given amount of 
outputs.

* Fix nonce reuse for single-signer CLSAG

* Attach Zeroize to most structures in Monero, and ZOnDrop to anything with private data

* Zeroize private keys and nonces

* Merge prepare_outputs and prepare_transactions

* Ensure CLSAG is constant time

* Pass by borrow where needed, bug fixes

The past few commitments have been one in-progress chunk which I've 
broken up as best read.

* Add Zeroize to FROST structs

Still needs to zeroize internally, yet next step. Not quite as 
aggressive as Monero, partially due to the limitations of HashMaps, 
partially due to less concern about metadata, yet does still delete a 
few smaller items of metadata (group key, context string...).

* Remove Zeroize from most Monero multisig structs

These structs largely didn't have private data, just fields with private 
data, yet those fields implemented ZeroizeOnDrop making them already 
covered. While there is still traces of the transaction left in RAM, 
fully purging that was never the intent.

* Use Zeroize within dleq

bitvec doesn't offer Zeroize, so a manual zeroing has been implemented.

* Use Zeroize for random_nonce

It isn't perfect, due to the inability to zeroize the digest, and due to 
kp256 requiring a few transformations. It does the best it can though.

Does move the per-curve random_nonce to a provided one, which is allowed 
as of https://github.com/cfrg/draft-irtf-cfrg-frost/pull/231.

* Use Zeroize on FROST keygen/signing

* Zeroize constant time multiexp.

* Correct when FROST keygen zeroizes

* Move the FROST keys Arc into FrostKeys

Reduces amount of instances in memory.

* Manually implement Debug for FrostCore to not leak the secret share

* Misc bug fixes

* clippy + multiexp test bug fixes

* Correct FROST key gen share summation

It leaked our own share for ourself.

* Fix cross-group DLEq tests
2022-08-03 03:25:18 -05:00
Luke Parker
a30568ff57 Add init function for BP statics
Considering they take 7 seconds to generate, thanks to #68, the ability 
to generate them at the start instead of on first BP is greatly 
appreciated.

Also performs minor cleanups regarding BPs.
2022-08-02 15:52:27 -04:00
Luke Parker
9221dbf048 Bulletproofs+ Verification 2022-08-01 23:30:24 -04:00
Luke Parker
d07fe34a24 Reorganize bulletproofs 2022-07-31 23:12:45 -04:00
Luke Parker
1c4707136c Ban unreduced points in Monero 2022-07-31 22:46:46 -04:00
Luke Parker
6340607827 BP Verification (#75)
* Use a struct in an enum for Bulletproofs

* verification bp working for just one proof

* add some more assert tests

* Clean BP verification

* Implement batch verification

* Add a debug assertion w_cache isn't 0

It's initially set to 0 and if not updated, this would be broken.

* Correct Monero workflow yaml

* Again try to corrent Monero workflow yaml

* Again

* Finally

* Re-apply weights as required by Bulletproofs

Removing these was insecure and my fault.

Co-authored-by: DangerousFreedom <dangfreed@tutanota.com>
2022-07-31 21:45:53 -05:00
Luke Parker
0453b6cbc1 Correct Monero workflow yaml 2022-07-30 19:32:27 -04:00
Luke Parker
8f76e67f57 Rename dleq-serai to dleq 2022-07-30 18:35:39 -04:00
Luke Parker
aeb85b47ba Reduce amount of tests run in monero-tests 2022-07-30 04:49:55 -04:00
Luke Parker
534f951165 Consolidate GitHub CI actions, split out Monero (#71)
* Consolidate GitHub CI actions, split out Monero

build now includes the specified Rust toolchain/components.

Added a test dependencies action which grabs Foundry and Monero.

Split the Monero v14 job into a matrixed job in its own workflow flow. 
It's now only run when Monero has changes.

* Correct Monero unit/integration tests run timing

Additionally tests a feature-less Monero build.

Also removes a pointless Monero file, which already should have been 
removed, causing this workflow to be triggered.

* Correct exclusion and paths

Updates to FROST should re-run the Monero tests to ensure it didn't 
introduce API incompatibilities.
2022-07-29 09:36:09 -05:00
Luke Parker
33c55b8506 Extend the test workflow to also test against Monero v14 (v0.17) 2022-07-28 23:31:27 -04:00
Luke Parker
bba93a64c2 Implement view tags 2022-07-27 06:29:14 -04:00
Luke Parker
755dc84859 Replace rand with rand_core where possible
Turns out rand_core offers OsRng.
2022-07-27 05:45:08 -04:00
Luke Parker
023afaf7ce Bulletproofs+ (#70)
* Initial stab at Bulletproofs+

Does move around the existing Bulletproofs code, does still work as 
expected.

* Make the Clsag RCTPrunable type work with BP and BP+

* Initial set of BP+ bug fixes

* Further bug fixes

* Remove RING_LEN as a constant

* Monero v16 TX support

Doesn't implement view tags, nor going back to v14, nor the updated BP 
clawback logic.

* Support v14 and v16 at the same time
2022-07-27 04:05:43 -05:00
Luke Parker
37b8e3c025 Modularize Bulletproofs in prep for BP+ 2022-07-26 08:06:56 -04:00
Luke Parker
60e15d5160 Remove re-calculation of N
Moves most BP assertions to debug.
2022-07-26 05:31:15 -04:00
Luke Parker
7d9834be87 Correct clippy, remove Monero build depends 2022-07-26 03:48:46 -04:00
Luke Parker
696da8228e Remove Monero as a dependency
Introduces missing CLSAG checks. The only difference now should be the 
additional rejection of torsioned points, which is relevant to 
https://github.com/serai-dex/serai/issues/25. Considering this is only 
currently used for FROST verification, this should be fine.

Closes https://github.com/serai-dex/serai/issues/19 by making it 
irrelevant.

Increases priority of https://github.com/serai-dex/serai/issues/68, as 
now it's used for the BP generators which are done at first-proof.

Also merges BP's stricter hash_to_point with the library's, since CLSAG 
has the same bound.
2022-07-26 03:25:57 -04:00
Luke Parker
ee29f6d6d8 Implement Bulletproofs in Rust (#69)
* Initial attempt at Bulletproofs

I don't know why this doesn't work. The generators and hash_cache lines
up without issue. AFAICT, the inner product proof is valid as well, as
are all included formulas.

* Add yinvpow asserts

* Clean code

* Correct bad imports

* Fix the definition of TWO_N

Bulletproofs work now :D

* Tidy up a bit

* fmt + clippy

* Compile a variety of XMR dependencies with optimizations, even under dev

The Rust bulletproof implementation is 8% slower than C right now, under 
release. This is acceptable, even if suboptimal. Under debug, they take 
a quarter of a second to two seconds though, depending on the amount of 
outputs, which justifies this move.

* Remove unnecessary deref in BPs
2022-07-26 02:05:15 -05:00
Luke Parker
3711e13009 Remove old duplicates of the AGPL-3.0 2022-07-24 09:33:08 -04:00
Luke Parker
f25bd88030 Test bulletproof creation and verification 2022-07-24 09:00:55 -04:00
Luke Parker
10ab467160 Don't use a constant for H yet re-calculate it 2022-07-24 08:57:33 -04:00
Luke Parker
1362764b2b Only cache cargo registry and git 2022-07-23 07:10:25 -04:00
Luke Parker
18a1d15f78 Use composite actions in CI (#65)
* Attempt composite actions in CI

* Remove needs monero-daemon for the action

* Correct actions folder layout

* Remove empty inputs/outputs, add shell

* Try moving env declaration spot

* Remove usage of env

* Cached Rust composite action

* Replace [] with ""

Remove empty outputs
2022-07-23 06:05:31 -05:00
Luke Parker
bb3ffa9021 Add social links to the README 2022-07-23 05:20:36 -04:00
Luke Parker
5b80ead18c Remove the build CI task now
It's identical to test, except it doesn't grab Foundry nor spawn a 
Monero regtest daemon. It doubles the amount of time test takes though, 
as it's doing everything twice.

While it may have value as a component, we're not using it like that 
right now, and if desired, we could add it back. While it may have value 
to produce binaries, we're note doing that either, and it wasn't 
building in release.
2022-07-23 05:07:13 -04:00
Luke Parker
42d62c38b9 Remove the Monero build (#64)
* Remove the Monero CMake and make

* Download the Monero daemon instead of building it

* Cache the Monero daemon

Prevents hammering the Monero servers, should reduce CI time.

* Correct YAML

* Add back sodium-dev

* Create an independent job for downloading the Monero daemon

Improves parallelism while decreasing the amount of work re-done if 
build fails. Also increases modularity.

* Correct Monero job definition

* Correct skipping the Monero download on cache hit
2022-07-23 03:35:32 -05:00
Luke Parker
b80c1bec4c Update dependencies
ethers previously used a git spec due to depending on not-yet-published 
updates. Now that they've been released, a properly published version is 
used.
2022-07-22 12:36:30 -04:00
noot
bd93d6ec8a set up CI (#45)
* begin to setup ci

* attempt to fix build

* fix paths in build script

* fix

* satisfy clippy

* update fmt check to use nightly

* use nightly for build

* fmt

* fix fmt install

* update test script

* try to fix fmt

* merge w develop

* maybe fix build script

* install wasm toolchain

* install solc-select, use stable rust to build

* Correct clippy warnings

Currently intended to be done with:
cargo clippy --features "recommended merlin batch serialize experimental 
ed25519 ristretto p256 secp256k1 multisig" -- -A clippy::type_complexity 
-A dead_code

* Remove try-runtime

I tried to get this to work for an hour. I have no idea why it doesn't, 
yet it doesn't.

* Rewrite workflow

Splits tasks into a more modular structure. Also uses 
actions-rs/toolchain.

* Add a cache

* Immediately try building ETH/Monero while this is fixed

Adds solc-select use.

* Revert selective advance building of ETH/XMR

ETH builds now, so it hopefully should work now.

Also moves from on push to on push to develop.

* Install Monero runtime dependencies

Specify missing Rust toolchain setting.

* Correct multi-line commands

* Fix multi-line commands again

Cache Ethereum artifacts.

* Add Foundry

* Move Clippy under build

* Minimal rustup

Adds wasm Clippy. Puts Clippy before build.

* Use nightly clippy

* Remove old clippy call from under build

* Have the Monero build script support ARCH specification

Requirement for CI.

* Add WASM toolchain to tests

* Remove Ethereum cache which did not work as needed

* Remove extraneous quotes which broke builds on Arch

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2022-07-22 11:31:29 -05:00
Luke Parker
76a7160ea5 Correct clippy warnings
Currently intended to be done with:
cargo clippy --features "recommended merlin batch serialize experimental 
ed25519 ristretto p256 secp256k1 multisig" -- -A clippy::type_complexity 
-A dead_code
2022-07-22 02:35:17 -04:00
Luke Parker
3556584478 Correct missing escape sequences 2022-07-22 00:32:18 -04:00
Luke Parker
9f6eb205b0 Address review comments from #53 2022-07-21 23:30:51 -05:00
Luke Parker
e617783f09 Correct bullet point spacing 2022-07-21 23:30:51 -05:00
Luke Parker
146db6836e Update Validators doc per https://github.com/serai-dex/serai/issues/55 2022-07-21 23:30:51 -05:00
Luke Parker
cd8b116fd8 cargo fmt 2022-07-21 23:30:51 -05:00
Luke Parker
a733bb5865 Update the ink! contract to match docs 2022-07-21 23:30:51 -05:00
Luke Parker
375967b165 Correct table formatting and clarify network docs 2022-07-21 23:30:51 -05:00
Luke Parker
4186bc93a8 Update the Multisig documentation to be designed around Validator Sets 2022-07-21 23:30:51 -05:00
Luke Parker
1994dab634 Add documentation on Validator Sets 2022-07-21 23:30:51 -05:00
Luke Parker
d320af06a7 Rewrite the Validators spec
Moves Oraclization/Report to Consensus for now.
2022-07-21 23:30:51 -05:00
Luke Parker
1b461ca5be Split Validators and Consensus docs 2022-07-21 23:30:51 -05:00
Luke Parker
895fbae2dc Add a full success route test for the multisig contract 2022-07-21 23:30:51 -05:00
Luke Parker
21e555192c Add subsequent_vote test
This is the contracts/extension that triggered a Rust ICE, as noted in 
my issue there.
2022-07-21 23:30:51 -05:00
Luke Parker
aa0d364fc2 First passing multisig vote test 2022-07-21 23:30:51 -05:00
Luke Parker
43c4487804 Create a dedicated crate for the extension 2022-07-21 23:30:51 -05:00
Luke Parker
5583bf3447 Initial multisig tracking contract in ink 2022-07-21 23:30:51 -05:00
Luke Parker
be921ab2d3 Document various Scenarios
- Pong
- Wrap
- SRI -> BTC
- BTC -> Monero
- Add Liquidity (fresh)
- Add Liquidity (SRI holder)
2022-07-21 23:22:48 -05:00
Luke Parker
c48992ab94 Update according to comment 2022-07-21 23:22:48 -05:00
Luke Parker
f7f67f72a2 Correct link in Instructions 2022-07-21 23:22:48 -05:00
Luke Parker
c3ab201517 Document Serai's Application Calls and update Instructions accordingly 2022-07-21 23:22:48 -05:00
Luke Parker
9cc35a06ab Add authenticated calls to Ethereum
Also uses numbered lists for function descriptions.
2022-07-21 23:22:48 -05:00
Luke Parker
004086b85b Include origin as an Option in Shorthand
Converts (Network, Address) to Enum { Native(Address), Serai(Address) } 
as it's not valid to send Bitcoin to Ethereum.

Corrects a legacy comment regarding serialization.
2022-07-21 23:22:48 -05:00
Luke Parker
ae3525ca2c Document Instructions and various network's integrations
Tracking issue: https://github.com/serai-dex/serai/issues/57
2022-07-21 23:22:48 -05:00
silverpill
194c5acebb Fix compilation errors in monero-serai 2022-07-17 16:55:49 -05:00
Luke Parker
c0cac7591d Correct a missing fmt 2022-07-17 17:18:56 -04:00
Luke Parker
9cb2d8aa4a Integrate ink! 2022-07-16 21:06:54 -04:00
Luke Parker
314c9cd8f7 Clean Substrate Cargo.tomls 2022-07-16 20:53:28 -04:00
Luke Parker
2bddce2087 Add a patch for zip so ethereum-serai doesn't conflict with Substrate
Also commits the lock file and updates documentation.
2022-07-16 17:49:35 -04:00
noot
c589743e2b ethereum: implement schnorr verification contract deployment and related crypto (#36)
* basic schnorr verify working

* add schnorr-verify as submodule

* remove previous code

* Misc Ethereum work which will probably be disregarded

* add ecrecover hack test, worksgit add src/

* merge w develop

* starting w/ rust-web3

* trying to use ethers

* deploy_schnorr_verifier_contract finally working

* modify EthereumHram to use 27/28 for point parity

* updated address calc, solidity schnorr verify now working

* add verify failure to test

* update readme

* move ethereum/ to coins/

* un fmt coins/monero

* update .gitmodules

* fix cargo paths

* fix coins/monero

* add #[allow(non_snake_case)]

* un-fmt stuff

* move crypto to coins/ethereum

* move unit tests to ethereum/tests

* remove js, build w ethers

* update .gitignore

* address comments

* add q != 0 check

* update contract param order

* update contract license to AGPL

* update ethereum-serai license to GPL and fmt

* GPLv3 for ethereum-serai

* AGPLv3 for ethereum-serai

* actually fix license

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2022-07-16 16:45:41 -05:00
Luke Parker
e67033a207 Apply an initial set of rustfmt rules 2022-07-16 15:16:30 -05:00
Luke Parker
0b879a53fa Add an initial Substrate instantiation
Consensus has been nuked for an AcceptAny currently routed throough PoW 
(when it doesn't have to be, doing so just took care of a few pieces of 
leg work).

Updates AGPL handling.
2022-07-15 00:05:00 -04:00
Luke Parker
5ede5b9e8f Update the DLEq proof for any amount of generators
The two-generator limit wasn't required nor beneficial. This does 
theoretically optimize FROST, yet not for any current constructions. A 
follow up proof which would optimize current constructions has been 
noted in #38.

Adds explicit no_std support to the core DLEq proof.

Closes #34.
2022-07-13 23:29:48 -04:00
Luke Parker
46975812c3 Add a copy of the AGPL license text to processor/ 2022-07-13 16:12:19 -04:00
292 changed files with 32445 additions and 4929 deletions

3
.gitattributes vendored Normal file
View File

@@ -0,0 +1,3 @@
# Auto detect text files and perform LF normalization
* text=auto
* text eol=lf

21
.github/actions/LICENSE vendored Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022-2023 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,50 @@
name: build-dependencies
description: Installs build dependencies for Serai
inputs:
github-token:
description: "GitHub token to install Protobuf with"
require: true
default:
rust-toolchain:
description: "Rust toolchain to install"
required: false
default: stable
rust-components:
description: "Rust components to install"
required: false
default:
runs:
using: "composite"
steps:
- name: Install Protobuf
uses: arduino/setup-protoc@master
with:
repo-token: ${{ inputs.github-token }}
- name: Install solc
shell: bash
run: |
pip3 install solc-select==0.2.1
solc-select install 0.8.16
solc-select use 0.8.16
- name: Install Rust
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ inputs.rust-toolchain }}
components: ${{ inputs.rust-components }}
- name: Get nightly version to use
id: nightly
shell: bash
run: echo "version=$(cat .github/nightly-version)" >> $GITHUB_OUTPUT
- name: Install WASM toolchain
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ steps.nightly.outputs.version }}
targets: wasm32-unknown-unknown

44
.github/actions/monero/action.yml vendored Normal file
View File

@@ -0,0 +1,44 @@
name: monero-regtest
description: Spawns a regtest Monero daemon
inputs:
version:
description: "Version to download and run"
required: false
default: v0.18.0.0
runs:
using: "composite"
steps:
- name: Monero Daemon Cache
id: cache-monerod
uses: actions/cache@v3
with:
path: monerod
key: monerod-${{ runner.os }}-${{ runner.arch }}-${{ inputs.version }}
- name: Download the Monero Daemon
if: steps.cache-monerod.outputs.cache-hit != 'true'
# Calculates OS/ARCH to demonstrate it, yet then locks to linux-x64 due
# to the contained folder not following the same naming scheme and
# requiring further expansion not worth doing right now
shell: bash
run: |
RUNNER_OS=${{ runner.os }}
RUNNER_ARCH=${{ runner.arch }}
RUNNER_OS=${RUNNER_OS,,}
RUNNER_ARCH=${RUNNER_ARCH,,}
RUNNER_OS=linux
RUNNER_ARCH=x64
FILE=monero-$RUNNER_OS-$RUNNER_ARCH-${{ inputs.version }}.tar.bz2
wget https://downloads.getmonero.org/cli/$FILE
tar -xvf $FILE
mv monero-x86_64-linux-gnu-${{ inputs.version }}/monerod monerod
- name: Monero Regtest Daemon
shell: bash
run: ./monerod --regtest --offline --fixed-difficulty=1 --detach

View File

@@ -0,0 +1,31 @@
name: test-dependencies
description: Installs test dependencies for Serai
inputs:
github-token:
description: "GitHub token to install Protobuf with"
require: true
default:
monero-version:
description: "Monero version to download and run as a regtest node"
required: false
default: v0.18.0.0
runs:
using: "composite"
steps:
- name: Install Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ inputs.github-token }}
- name: Install Foundry
uses: foundry-rs/foundry-toolchain@v1
with:
version: nightly
- name: Run a Monero Regtest Node
uses: ./.github/actions/monero
with:
version: ${{ inputs.monero-version }}

1
.github/nightly-version vendored Normal file
View File

@@ -0,0 +1 @@
nightly-2022-12-01

27
.github/workflows/daily-deny.yml vendored Normal file
View File

@@ -0,0 +1,27 @@
name: Daily Deny Check
on:
schedule:
- cron: "0 0 * * *"
jobs:
deny:
name: Run cargo deny
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Advisory Cache
uses: actions/cache@v3
with:
path: ~/.cargo/advisory-db
key: rust-advisory-db
- name: Install cargo
uses: dtolnay/rust-toolchain@stable
- name: Install cargo deny
run: cargo install --locked cargo-deny
- name: Run cargo deny
run: cargo deny -L error --all-features check

56
.github/workflows/monero-tests.yaml vendored Normal file
View File

@@ -0,0 +1,56 @@
name: Monero Tests
on:
push:
branches:
- develop
paths:
- "coins/monero/**"
pull_request:
paths:
- "coins/monero/**"
jobs:
# Only run these once since they will be consistent regardless of any node
unit-tests:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Test Dependencies
uses: ./.github/actions/test-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Run Unit Tests Without Features
run: cargo test --package monero-serai --lib
# Doesn't run unit tests with features as the tests workflow will
integration-tests:
runs-on: ubuntu-latest
# Test against all supported protocol versions
strategy:
matrix:
version: [v0.17.3.2, v0.18.0.0]
steps:
- uses: actions/checkout@v3
- name: Test Dependencies
uses: ./.github/actions/test-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
monero-version: ${{ matrix.version }}
- name: Run Integration Tests Without Features
# https://github.com/rust-lang/cargo/issues/8396
run: cargo test --package monero-serai --test '*'
- name: Run Integration Tests
# Don't run if the the tests workflow also will
if: ${{ matrix.version != 'v0.18.0.0' }}
run: |
cargo test --package monero-serai --all-features --test '*'
cargo test --package serai-processor monero

View File

@@ -0,0 +1,53 @@
name: Monthly Nightly Update
on:
schedule:
- cron: "0 0 1 * *"
jobs:
update:
name: Update nightly
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
with:
submodules: "recursive"
- name: Write nightly version
run: echo $(date +"nightly-%Y-%m"-01) > .github/nightly-version
- name: Create the commit
run: |
git config user.name "GitHub Actions"
git config user.email "<>"
git checkout -b $(date +"nightly-%Y-%m")
git add .github/nightly-version
git commit -m "Update nightly"
git push -u origin $(date +"nightly-%Y-%m")
- name: Pull Request
uses: actions/github-script@v6
with:
script: |
const { repo, owner } = context.repo;
const result = await github.rest.pulls.create({
title: (new Date()).toLocaleString(
false,
{ month: "long", year: "numeric" }
) + " - Rust Nightly Update",
owner,
repo,
head: "nightly-" + (new Date()).toISOString().split("-").splice(0, 2).join("-"),
base: "develop",
body: "PR auto-generated by a GitHub workflow."
});
github.rest.issues.addLabels({
owner,
repo,
issue_number: result.data.number,
labels: ["improvement"]
});

80
.github/workflows/tests.yml vendored Normal file
View File

@@ -0,0 +1,80 @@
name: Tests
on:
push:
branches:
- develop
pull_request:
workflow_dispatch:
jobs:
clippy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Get nightly version to use
id: nightly
run: echo "version=$(cat .github/nightly-version)" >> $GITHUB_OUTPUT
- name: Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
# Clippy requires nightly due to serai-runtime requiring it
rust-toolchain: ${{ steps.nightly.outputs.version }}
rust-components: clippy
- name: Run Clippy
run: cargo clippy --all-features --tests -- -D warnings -A dead_code
deny:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Advisory Cache
uses: actions/cache@v3
with:
path: ~/.cargo/advisory-db
key: rust-advisory-db
- name: Install cargo
uses: dtolnay/rust-toolchain@stable
- name: Install cargo deny
run: cargo install --locked cargo-deny
- name: Run cargo deny
run: cargo deny -L error --all-features check
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Test Dependencies
uses: ./.github/actions/test-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Run Tests
run: cargo test --all-features
fmt:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Get nightly version to use
id: nightly
run: echo "version=$(cat .github/nightly-version)" >> $GITHUB_OUTPUT
- name: Install rustfmt
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ steps.nightly.outputs.version }}
components: rustfmt
- name: Run rustfmt
run: cargo +${{ steps.nightly.outputs.version }} fmt -- --check

2
.gitignore vendored
View File

@@ -1,2 +1,2 @@
target
Cargo.lock
.vscode

3
.gitmodules vendored
View File

@@ -1,3 +0,0 @@
[submodule "coins/monero/c/monero"]
path = coins/monero/c/monero
url = https://github.com/monero-project/monero

16
.rustfmt.toml Normal file
View File

@@ -0,0 +1,16 @@
tab_spaces = 2
max_width = 100
# Let the developer decide based on the 100 char line limit
use_small_heuristics = "Max"
error_on_line_overflow = true
error_on_unformatted = true
imports_granularity = "Crate"
reorder_imports = false
reorder_modules = false
unstable_features = true
spaces_around_ranges = true
binop_separator = "Back"

661
AGPL-3.0 Normal file
View File

@@ -0,0 +1,661 @@
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.

37
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,37 @@
# Contributing
Contributions come in a variety of forms. Developing Serai, helping document it,
using its libraries in another project, using and testing it, and simply sharing
it are all valuable ways of contributing.
This document will specifically focus on contributions to this repository in the
form of code and documentation.
### Rules
- Stable native Rust, nightly wasm and tools.
- `cargo fmt` must be used.
- `cargo clippy` must pass, except for the ignored rules (`type_complexity` and
`dead_code`).
- The CI must pass.
- Only use uppercase variable names when relevant to cryptography.
- Use a two-space ident when possible.
- Put a space after comment markers.
- Don't use multiple newlines between sections of code.
- Have a newline before EOF.
### Guidelines
- Sort inputs as core, std, third party, and then Serai.
- Comment code reasonably.
- Include tests for new features.
- Sign commits.
### Submission
All submissions should be through GitHub. Contributions to a crate will be
licensed according to the crate's existing license, with the crate's copyright
holders (distinct from authors) having the right to re-license the crate via a
unanimous decision.

9941
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,15 +1,58 @@
[workspace]
members = [
"common/zalloc",
"crypto/transcript",
"crypto/ff-group-tests",
"crypto/dalek-ff-group",
"crypto/ed448",
"crypto/dynamic-generator",
"crypto/ciphersuite",
"crypto/multiexp",
"crypto/schnorr",
"crypto/dleq",
"crypto/dkg",
"crypto/frost",
"coins/ethereum",
"coins/monero/generators",
"coins/monero",
"processor",
"substrate/serai/primitives",
"substrate/validator-sets/primitives",
"substrate/validator-sets/pallet",
"substrate/tendermint/machine",
"substrate/tendermint/primitives",
"substrate/tendermint/client",
"substrate/tendermint/pallet",
"substrate/runtime",
"substrate/node",
]
# Always compile Monero (and a variety of dependencies) with optimizations due
# to the unoptimized performance of Bulletproofs
[profile.dev.package]
subtle = { opt-level = 3 }
curve25519-dalek = { opt-level = 3 }
ff = { opt-level = 3 }
group = { opt-level = 3 }
crypto-bigint = { opt-level = 3 }
dalek-ff-group = { opt-level = 3 }
minimal-ed448 = { opt-level = 3 }
multiexp = { opt-level = 3 }
monero-serai = { opt-level = 3 }
[profile.release]
panic = "unwind"

8
LICENSE Normal file
View File

@@ -0,0 +1,8 @@
Serai crates are licensed under one of two licenses, either MIT or AGPL-3.0,
depending on the crate in question. Each crate declares their license in their
`Cargo.toml` and includes a `LICENSE` file detailing its status. Additionally,
a full copy of the AGPL-3.0 License is included in the root of this repository
as a reference text. This copy should be provided with any distribution of a
crate licensed under the AGPL-3.0, as per its terms.
The GitHub actions (`.github/actions`) are licensed under the MIT license.

View File

@@ -1,22 +1,39 @@
# Serai
Serai is a new DEX, built from the ground up, initially planning on listing
Bitcoin, Ethereum, Monero, DAI, and USDC, offering a liquidity pool trading
experience. Funds are stored in an economically secured threshold multisig
Bitcoin, Ethereum, DAI, and Monero, offering a liquidity-pool-based trading
experience. Funds are stored in an economically secured threshold-multisig
wallet.
[Getting Started](docs/Getting%20Started.md)
### Layout
- `docs` - Documentation on the Serai protocol.
- `docs`: Documentation on the Serai protocol.
- `coins` - Various coin libraries intended for usage in Serai yet also by the
wider community. This means they will always support the functionality Serai
needs, yet won't disadvantage other use cases when possible.
- `common`: Crates containing utilities common to a variety of areas under
Serai, none neatly fitting under another category.
- `crypto` - A series of composable cryptographic libraries built around the
- `crypto`: A series of composable cryptographic libraries built around the
`ff`/`group` APIs achieving a variety of tasks. These range from generic
infrastructure, to our IETF-compliant FROST implementation, to a DLEq proof as
needed for Bitcoin-Monero atomic swaps.
- `processor` - A generic chain processor to process data for Serai and process
- `coins`: Various coin libraries intended for usage in Serai yet also by the
wider community. This means they will always support the functionality Serai
needs, yet won't disadvantage other use cases when possible.
- `processor`: A generic chain processor to process data for Serai and process
events from Serai, executing transactions as expected and needed.
- `substrate`: Substrate crates used to instantiate the Serai network.
- `deploy`: Scripts to deploy a Serai node/test environment.
### Links
- [Twitter](https://twitter.com/SeraiDEX): https://twitter.com/SeraiDEX
- [Mastodon](https://cryptodon.lol/@serai): https://cryptodon.lol/@serai
- [Discord](https://discord.gg/mpEUtJR3vz): https://discord.gg/mpEUtJR3vz
- [Matrix](https://matrix.to/#/#serai:matrix.org):
https://matrix.to/#/#serai:matrix.org

3
coins/ethereum/.gitignore vendored Normal file
View File

@@ -0,0 +1,3 @@
# solidity build outputs
cache
artifacts

37
coins/ethereum/Cargo.toml Normal file
View File

@@ -0,0 +1,37 @@
[package]
name = "ethereum-serai"
version = "0.1.0"
description = "An Ethereum library supporting Schnorr signing and on-chain verification"
license = "AGPL-3.0-only"
repository = "https://github.com/serai-dex/serai/tree/develop/coins/ethereum"
authors = ["Luke Parker <lukeparker5132@gmail.com>", "Elizabeth Binks <elizabethjbinks@gmail.com>"]
edition = "2021"
publish = false
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
hex-literal = "0.3"
thiserror = "1"
rand_core = "0.6"
serde_json = "1.0"
serde = "1.0"
sha3 = "0.10"
group = "0.12"
k256 = { version = "0.11", features = ["arithmetic", "keccak256", "ecdsa"] }
frost = { package = "modular-frost", path = "../../crypto/frost", features = ["secp256k1", "tests"] }
eyre = "0.6"
ethers = { version = "1", features = ["abigen", "ethers-solc"] }
[build-dependencies]
ethers-solc = "1"
[dev-dependencies]
tokio = { version = "1", features = ["macros"] }

15
coins/ethereum/LICENSE Normal file
View File

@@ -0,0 +1,15 @@
AGPL-3.0-only license
Copyright (c) 2022-2023 Luke Parker
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License Version 3 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

9
coins/ethereum/README.md Normal file
View File

@@ -0,0 +1,9 @@
# Ethereum
This package contains Ethereum-related functionality, specifically deploying and
interacting with Serai contracts.
### Dependencies
- solc
- [Foundry](https://github.com/foundry-rs/foundry)

16
coins/ethereum/build.rs Normal file
View File

@@ -0,0 +1,16 @@
use ethers_solc::{Project, ProjectPathsConfig};
fn main() {
println!("cargo:rerun-if-changed=contracts");
println!("cargo:rerun-if-changed=artifacts");
// configure the project with all its paths, solc, cache etc.
let project = Project::builder()
.paths(ProjectPathsConfig::hardhat(env!("CARGO_MANIFEST_DIR")).unwrap())
.build()
.unwrap();
project.compile().unwrap();
// Tell Cargo that if a source file changes, to rerun this build script.
project.rerun_if_sources_changed();
}

View File

@@ -0,0 +1,36 @@
//SPDX-License-Identifier: AGPLv3
pragma solidity ^0.8.0;
// see https://github.com/noot/schnorr-verify for implementation details
contract Schnorr {
// secp256k1 group order
uint256 constant public Q =
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141;
// parity := public key y-coord parity (27 or 28)
// px := public key x-coord
// message := 32-byte message
// s := schnorr signature
// e := schnorr signature challenge
function verify(
uint8 parity,
bytes32 px,
bytes32 message,
bytes32 s,
bytes32 e
) public view returns (bool) {
// ecrecover = (m, v, r, s);
bytes32 sp = bytes32(Q - mulmod(uint256(s), uint256(px), Q));
bytes32 ep = bytes32(Q - mulmod(uint256(e), uint256(px), Q));
require(sp != 0);
// the ecrecover precompile implementation checks that the `r` and `s`
// inputs are non-zero (in this case, `px` and `ep`), thus we don't need to
// check if they're zero.will make me
address R = ecrecover(sp, parity, px, ep);
require(R != address(0), "ecrecover failed");
return e == keccak256(
abi.encodePacked(R, uint8(parity), px, block.chainid, message)
);
}
}

View File

@@ -0,0 +1,52 @@
use crate::crypto::ProcessedSignature;
use ethers::{contract::ContractFactory, prelude::*, solc::artifacts::contract::ContractBytecode};
use eyre::{eyre, Result};
use std::fs::File;
use std::sync::Arc;
use thiserror::Error;
#[derive(Error, Debug)]
pub enum EthereumError {
#[error("failed to verify Schnorr signature")]
VerificationError,
}
abigen!(
Schnorr,
"./artifacts/Schnorr.sol/Schnorr.json",
event_derives(serde::Deserialize, serde::Serialize),
);
pub async fn deploy_schnorr_verifier_contract(
client: Arc<SignerMiddleware<Provider<Http>, LocalWallet>>,
) -> Result<Schnorr<SignerMiddleware<Provider<Http>, LocalWallet>>> {
let path = "./artifacts/Schnorr.sol/Schnorr.json";
let artifact: ContractBytecode = serde_json::from_reader(File::open(path).unwrap()).unwrap();
let abi = artifact.abi.unwrap();
let bin = artifact.bytecode.unwrap().object;
let factory = ContractFactory::new(abi, bin.into_bytes().unwrap(), client.clone());
let contract = factory.deploy(())?.send().await?;
let contract = Schnorr::new(contract.address(), client);
Ok(contract)
}
pub async fn call_verify(
contract: &Schnorr<SignerMiddleware<Provider<Http>, LocalWallet>>,
params: &ProcessedSignature,
) -> Result<()> {
if contract
.verify(
params.parity + 27,
params.px.to_bytes().into(),
params.message,
params.s.to_bytes().into(),
params.e.to_bytes().into(),
)
.call()
.await?
{
Ok(())
} else {
Err(eyre!(EthereumError::VerificationError))
}
}

View File

@@ -0,0 +1,105 @@
use sha3::{Digest, Keccak256};
use group::Group;
use k256::{
elliptic_curve::{bigint::ArrayEncoding, ops::Reduce, sec1::ToEncodedPoint, DecompressPoint},
AffinePoint, ProjectivePoint, Scalar, U256,
};
use frost::{algorithm::Hram, curve::Secp256k1};
pub fn keccak256(data: &[u8]) -> [u8; 32] {
Keccak256::digest(data).try_into().unwrap()
}
pub fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar::from_uint_reduced(U256::from_be_slice(&keccak256(data)))
}
pub fn address(point: &ProjectivePoint) -> [u8; 20] {
let encoded_point = point.to_encoded_point(false);
keccak256(&encoded_point.as_ref()[1 .. 65])[12 .. 32].try_into().unwrap()
}
pub fn ecrecover(message: Scalar, v: u8, r: Scalar, s: Scalar) -> Option<[u8; 20]> {
if r.is_zero().into() || s.is_zero().into() {
return None;
}
#[allow(non_snake_case)]
let R = AffinePoint::decompress(&r.to_bytes(), v.into());
#[allow(non_snake_case)]
if let Some(R) = Option::<AffinePoint>::from(R) {
#[allow(non_snake_case)]
let R = ProjectivePoint::from(R);
let r = r.invert().unwrap();
let u1 = ProjectivePoint::GENERATOR * (-message * r);
let u2 = R * (s * r);
let key: ProjectivePoint = u1 + u2;
if !bool::from(key.is_identity()) {
return Some(address(&key));
}
}
None
}
#[derive(Clone, Default)]
pub struct EthereumHram {}
impl Hram<Secp256k1> for EthereumHram {
#[allow(non_snake_case)]
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
let a_encoded_point = A.to_encoded_point(true);
let mut a_encoded = a_encoded_point.as_ref().to_owned();
a_encoded[0] += 25; // Ethereum uses 27/28 for point parity
let mut data = address(R).to_vec();
data.append(&mut a_encoded);
data.append(&mut m.to_vec());
Scalar::from_uint_reduced(U256::from_be_slice(&keccak256(&data)))
}
}
pub struct ProcessedSignature {
pub s: Scalar,
pub px: Scalar,
pub parity: u8,
pub message: [u8; 32],
pub e: Scalar,
}
#[allow(non_snake_case)]
pub fn preprocess_signature_for_ecrecover(
m: [u8; 32],
R: &ProjectivePoint,
s: Scalar,
A: &ProjectivePoint,
chain_id: U256,
) -> (Scalar, Scalar) {
let processed_sig = process_signature_for_contract(m, R, s, A, chain_id);
let sr = processed_sig.s.mul(&processed_sig.px).negate();
let er = processed_sig.e.mul(&processed_sig.px).negate();
(sr, er)
}
#[allow(non_snake_case)]
pub fn process_signature_for_contract(
m: [u8; 32],
R: &ProjectivePoint,
s: Scalar,
A: &ProjectivePoint,
chain_id: U256,
) -> ProcessedSignature {
let encoded_pk = A.to_encoded_point(true);
let px = &encoded_pk.as_ref()[1 .. 33];
let px_scalar = Scalar::from_uint_reduced(U256::from_be_slice(px));
let e = EthereumHram::hram(R, A, &[chain_id.to_be_byte_array().as_slice(), &m].concat());
ProcessedSignature {
s,
px: px_scalar,
parity: &encoded_pk.as_ref()[0] - 2,
#[allow(non_snake_case)]
message: m,
e,
}
}

View File

@@ -0,0 +1,2 @@
pub mod contract;
pub mod crypto;

View File

@@ -0,0 +1,70 @@
use std::{convert::TryFrom, sync::Arc, time::Duration};
use rand_core::OsRng;
use k256::{elliptic_curve::bigint::ArrayEncoding, U256};
use ethers::{
prelude::*,
utils::{keccak256, Anvil, AnvilInstance},
};
use frost::{
curve::Secp256k1,
algorithm::Schnorr as Algo,
tests::{key_gen, algorithm_machines, sign},
};
use ethereum_serai::{
crypto,
contract::{Schnorr, call_verify, deploy_schnorr_verifier_contract},
};
async fn deploy_test_contract(
) -> (u32, AnvilInstance, Schnorr<SignerMiddleware<Provider<Http>, LocalWallet>>) {
let anvil = Anvil::new().spawn();
let wallet: LocalWallet = anvil.keys()[0].clone().into();
let provider =
Provider::<Http>::try_from(anvil.endpoint()).unwrap().interval(Duration::from_millis(10u64));
let chain_id = provider.get_chainid().await.unwrap().as_u32();
let client = Arc::new(SignerMiddleware::new_with_provider_chain(provider, wallet).await.unwrap());
(chain_id, anvil, deploy_schnorr_verifier_contract(client).await.unwrap())
}
#[tokio::test]
async fn test_deploy_contract() {
deploy_test_contract().await;
}
#[tokio::test]
async fn test_ecrecover_hack() {
let (chain_id, _anvil, contract) = deploy_test_contract().await;
let chain_id = U256::from(chain_id);
let keys = key_gen::<_, Secp256k1>(&mut OsRng);
let group_key = keys[&1].group_key();
const MESSAGE: &[u8] = b"Hello, World!";
let hashed_message = keccak256(MESSAGE);
let full_message = &[chain_id.to_be_byte_array().as_slice(), &hashed_message].concat();
let algo = Algo::<Secp256k1, crypto::EthereumHram>::new();
let sig = sign(
&mut OsRng,
algo.clone(),
keys.clone(),
algorithm_machines(&mut OsRng, algo, &keys),
full_message,
);
let mut processed_sig =
crypto::process_signature_for_contract(hashed_message, &sig.R, sig.s, &group_key, chain_id);
call_verify(&contract, &processed_sig).await.unwrap();
// test invalid signature fails
processed_sig.message[0] = 0;
assert!(call_verify(&contract, &processed_sig).await.is_err());
}

View File

@@ -0,0 +1,86 @@
use ethereum_serai::crypto::*;
use frost::curve::Secp256k1;
use k256::{
elliptic_curve::{bigint::ArrayEncoding, ops::Reduce, sec1::ToEncodedPoint},
ProjectivePoint, Scalar, U256,
};
#[test]
fn test_ecrecover() {
use k256::ecdsa::{
recoverable::Signature,
signature::{Signer, Verifier},
SigningKey, VerifyingKey,
};
use rand_core::OsRng;
let private = SigningKey::random(&mut OsRng);
let public = VerifyingKey::from(&private);
const MESSAGE: &[u8] = b"Hello, World!";
let sig: Signature = private.sign(MESSAGE);
public.verify(MESSAGE, &sig).unwrap();
assert_eq!(
ecrecover(hash_to_scalar(MESSAGE), sig.as_ref()[64], *sig.r(), *sig.s()).unwrap(),
address(&ProjectivePoint::from(public))
);
}
#[test]
fn test_signing() {
use frost::{
algorithm::Schnorr,
tests::{algorithm_machines, key_gen, sign},
};
use rand_core::OsRng;
let keys = key_gen::<_, Secp256k1>(&mut OsRng);
let _group_key = keys[&1].group_key();
const MESSAGE: &[u8] = b"Hello, World!";
let algo = Schnorr::<Secp256k1, EthereumHram>::new();
let _sig = sign(
&mut OsRng,
algo,
keys.clone(),
algorithm_machines(&mut OsRng, Schnorr::<Secp256k1, EthereumHram>::new(), &keys),
MESSAGE,
);
}
#[test]
fn test_ecrecover_hack() {
use frost::{
algorithm::Schnorr,
tests::{algorithm_machines, key_gen, sign},
};
use rand_core::OsRng;
let keys = key_gen::<_, Secp256k1>(&mut OsRng);
let group_key = keys[&1].group_key();
let group_key_encoded = group_key.to_encoded_point(true);
let group_key_compressed = group_key_encoded.as_ref();
let group_key_x = Scalar::from_uint_reduced(U256::from_be_slice(&group_key_compressed[1 .. 33]));
const MESSAGE: &[u8] = b"Hello, World!";
let hashed_message = keccak256(MESSAGE);
let chain_id = U256::ONE;
let full_message = &[chain_id.to_be_byte_array().as_slice(), &hashed_message].concat();
let algo = Schnorr::<Secp256k1, EthereumHram>::new();
let sig = sign(
&mut OsRng,
algo.clone(),
keys.clone(),
algorithm_machines(&mut OsRng, algo, &keys),
full_message,
);
let (sr, er) =
preprocess_signature_for_ecrecover(hashed_message, &sig.R, sig.s, &group_key, chain_id);
let q = ecrecover(sr, group_key_compressed[0] - 2, group_key_x, er).unwrap();
assert_eq!(q, address(&sig.R));
}

View File

@@ -0,0 +1,2 @@
mod contract;
mod crypto;

View File

@@ -1 +0,0 @@
c/.build

View File

@@ -1,13 +1,15 @@
[package]
name = "monero-serai"
version = "0.1.0"
description = "A modern Monero wallet library"
version = "0.1.2-alpha"
description = "A modern Monero transaction library"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/coins/monero"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
edition = "2021"
[build-dependencies]
cc = "1.0"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
hex-literal = "0.3"
@@ -19,19 +21,23 @@ rand_chacha = { version = "0.3", optional = true }
rand = "0.8"
rand_distr = "0.4"
zeroize = { version = "1.5", features = ["zeroize_derive"] }
subtle = "2.4"
tiny-keccak = { version = "2", features = ["keccak"] }
sha3 = "0.10"
blake2 = { version = "0.10", optional = true }
curve25519-dalek = { version = "3", features = ["std"] }
group = { version = "0.12" }
dalek-ff-group = { path = "../../crypto/dalek-ff-group" }
dalek-ff-group = { path = "../../crypto/dalek-ff-group", version = "0.1" }
multiexp = { path = "../../crypto/multiexp", version = "0.2", features = ["batch"] }
transcript = { package = "flexible-transcript", path = "../../crypto/transcript", features = ["recommended"], optional = true }
frost = { package = "modular-frost", path = "../../crypto/frost", features = ["ed25519"], optional = true }
dleq = { package = "dleq-serai", path = "../../crypto/dleq", features = ["serialize"], optional = true }
transcript = { package = "flexible-transcript", path = "../../crypto/transcript", version = "0.2", features = ["recommended"], optional = true }
frost = { package = "modular-frost", path = "../../crypto/frost", version = "0.5", features = ["ed25519"], optional = true }
dleq = { path = "../../crypto/dleq", version = "0.2", features = ["serialize"], optional = true }
monero-generators = { path = "generators", version = "0.1" }
hex = "0.4"
serde = { version = "1.0", features = ["derive"] }
@@ -39,14 +45,18 @@ serde_json = "1.0"
base58-monero = "1"
monero-epee-bin-serde = "1.0"
monero = "0.16"
digest_auth = "0.3"
reqwest = { version = "0.11", features = ["json"] }
[features]
experimental = []
multisig = ["rand_chacha", "blake2", "transcript", "frost", "dleq"]
[build-dependencies]
dalek-ff-group = { path = "../../crypto/dalek-ff-group", version = "0.1" }
monero-generators = { path = "generators", version = "0.1" }
[dev-dependencies]
sha2 = "0.10"
tokio = { version = "1", features = ["full"] }
frost = { package = "modular-frost", path = "../../crypto/frost", version = "0.5", features = ["ed25519", "tests"] }
[features]
multisig = ["rand_chacha", "blake2", "transcript", "frost", "dleq"]

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2022 Luke Parker
Copyright (c) 2022-2023 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -4,4 +4,16 @@ A modern Monero transaction library intended for usage in wallets. It prides
itself on accuracy, correctness, and removing common pit falls developers may
face.
Threshold multisignature support is available via the `multisig` feature.
monero-serai contains safety features, such as first-class acknowledgement of
the burning bug, yet also a high level API around creating transactions.
monero-serai also offers a FROST-based multisig, which is orders of magnitude
more performant than Monero's.
monero-serai was written for Serai, a decentralized exchange aiming to support
Monero. Despite this, monero-serai is intended to be a widely usable library,
accurate to Monero. monero-serai guarantees the functionality needed for Serai,
yet will not deprive functionality from other users, and may potentially leave
Serai's umbrella at some point.
Various legacy transaction formats are not currently implemented, yet
monero-serai is still increasing its support for various transaction types.

View File

@@ -1,72 +1,66 @@
use std::{env, path::Path, process::Command};
use std::{
io::Write,
env,
path::Path,
fs::{File, remove_file},
};
use dalek_ff_group::EdwardsPoint;
use monero_generators::bulletproofs_generators;
fn serialize(generators_string: &mut String, points: &[EdwardsPoint]) {
for generator in points {
generators_string.extend(
format!(
"
dalek_ff_group::EdwardsPoint(
curve25519_dalek::edwards::CompressedEdwardsY({:?}).decompress().unwrap()
),
",
generator.compress().to_bytes()
)
.chars(),
);
}
}
fn generators(prefix: &'static str, path: &str) {
let generators = bulletproofs_generators(prefix.as_bytes());
#[allow(non_snake_case)]
let mut G_str = "".to_string();
serialize(&mut G_str, &generators.G);
#[allow(non_snake_case)]
let mut H_str = "".to_string();
serialize(&mut H_str, &generators.H);
let path = Path::new(&env::var("OUT_DIR").unwrap()).join(path);
let _ = remove_file(&path);
File::create(&path)
.unwrap()
.write_all(
format!(
"
lazy_static! {{
pub static ref GENERATORS: Generators = Generators {{
G: [
{G_str}
],
H: [
{H_str}
],
}};
}}
",
)
.as_bytes(),
)
.unwrap();
}
fn main() {
if !Command::new("git").args(&["submodule", "update", "--init", "--recursive"]).status().unwrap().success() {
panic!("git failed to init submodules");
}
println!("cargo:rerun-if-changed=build.rs");
if !Command ::new("mkdir").args(&["-p", ".build"])
.current_dir(&Path::new("c")).status().unwrap().success() {
panic!("failed to create a directory to track build progress");
}
let out_dir = &env::var("OUT_DIR").unwrap();
// Use a file to signal if Monero was already built, as that should never be rebuilt
// If the signaling file was deleted, run this script again to rebuild Monero though
println!("cargo:rerun-if-changed=c/.build/monero");
if !Path::new("c/.build/monero").exists() {
if !Command::new("make").arg(format!("-j{}", &env::var("THREADS").unwrap_or("2".to_string())))
.current_dir(&Path::new("c/monero")).status().unwrap().success() {
panic!("make failed to build Monero. Please check your dependencies");
}
if !Command::new("touch").arg("monero")
.current_dir(&Path::new("c/.build")).status().unwrap().success() {
panic!("failed to create a file to label Monero as built");
}
}
println!("cargo:rerun-if-changed=c/wrapper.cpp");
cc::Build::new()
.static_flag(true)
.warnings(false)
.extra_warnings(false)
.flag("-Wno-deprecated-declarations")
.include("c/monero/external/supercop/include")
.include("c/monero/contrib/epee/include")
.include("c/monero/src")
.include("c/monero/build/release/generated_include")
.define("AUTO_INITIALIZE_EASYLOGGINGPP", None)
.include("c/monero/external/easylogging++")
.file("c/monero/external/easylogging++/easylogging++.cc")
.file("c/monero/src/common/aligned.c")
.file("c/monero/src/common/perf_timer.cpp")
.include("c/monero/src/crypto")
.file("c/monero/src/crypto/crypto-ops-data.c")
.file("c/monero/src/crypto/crypto-ops.c")
.file("c/monero/src/crypto/keccak.c")
.file("c/monero/src/crypto/hash.c")
.include("c/monero/src/device")
.file("c/monero/src/device/device_default.cpp")
.include("c/monero/src/ringct")
.file("c/monero/src/ringct/rctCryptoOps.c")
.file("c/monero/src/ringct/rctTypes.cpp")
.file("c/monero/src/ringct/rctOps.cpp")
.file("c/monero/src/ringct/multiexp.cc")
.file("c/monero/src/ringct/bulletproofs.cc")
.file("c/monero/src/ringct/rctSigs.cpp")
.file("c/wrapper.cpp")
.compile("wrapper");
println!("cargo:rustc-link-search={}", out_dir);
println!("cargo:rustc-link-lib=wrapper");
println!("cargo:rustc-link-lib=stdc++");
generators("bulletproof", "generators.rs");
generators("bulletproof_plus", "generators_plus.rs");
}

View File

@@ -1,158 +0,0 @@
#include <mutex>
#include "device/device_default.hpp"
#include "ringct/bulletproofs.h"
#include "ringct/rctSigs.h"
typedef std::lock_guard<std::mutex> lock;
std::mutex rng_mutex;
uint8_t rng_entropy[64];
extern "C" {
void rng(uint8_t* seed) {
// Set the first half to the seed
memcpy(rng_entropy, seed, 32);
// Set the second half to the hash of a DST to ensure a lack of collisions
crypto::cn_fast_hash("RNG_entropy_seed", 16, (char*) &rng_entropy[32]);
}
}
extern "C" void monero_wide_reduce(uint8_t* value);
namespace crypto {
void generate_random_bytes_not_thread_safe(size_t n, void* value) {
size_t written = 0;
while (written != n) {
uint8_t hash[32];
crypto::cn_fast_hash(rng_entropy, 64, (char*) hash);
// Step the RNG by setting the latter half to the most recent result
// Does not leak the RNG, even if the values are leaked (which they are
// expected to be) due to the first half remaining constant and
// undisclosed
memcpy(&rng_entropy[32], hash, 32);
size_t next = n - written;
if (next > 32) {
next = 32;
}
memcpy(&((uint8_t*) value)[written], hash, next);
written += next;
}
}
void random32_unbiased(unsigned char *bytes) {
uint8_t value[64];
generate_random_bytes_not_thread_safe(64, value);
monero_wide_reduce(value);
memcpy(bytes, value, 32);
}
}
extern "C" {
void c_hash_to_point(uint8_t* point) {
rct::key key_point;
ge_p3 e_p3;
memcpy(key_point.bytes, point, 32);
rct::hash_to_p3(e_p3, key_point);
ge_p3_tobytes(point, &e_p3);
}
uint8_t* c_generate_bp(uint8_t* seed, uint8_t len, uint64_t* a, uint8_t* m) {
lock guard(rng_mutex);
rng(seed);
rct::keyV masks;
std::vector<uint64_t> amounts;
masks.resize(len);
amounts.resize(len);
for (uint8_t i = 0; i < len; i++) {
memcpy(masks[i].bytes, m + (i * 32), 32);
amounts[i] = a[i];
}
rct::Bulletproof bp = rct::bulletproof_PROVE(amounts, masks);
std::stringstream ss;
binary_archive<true> ba(ss);
::serialization::serialize(ba, bp);
uint8_t* res = (uint8_t*) calloc(ss.str().size(), 1);
memcpy(res, ss.str().data(), ss.str().size());
return res;
}
bool c_verify_bp(
uint8_t* seed,
uint s_len,
uint8_t* s,
uint8_t c_len,
uint8_t* c
) {
// BPs are batch verified which use RNG based weights to ensure individual
// integrity
// That's why this must also have control over RNG, to prevent interrupting
// multisig signing while not using known seeds. Considering this doesn't
// actually define a batch, and it's only verifying a single BP,
// it'd probably be fine, but...
lock guard(rng_mutex);
rng(seed);
rct::Bulletproof bp;
std::stringstream ss;
std::string str;
str.assign((char*) s, (size_t) s_len);
ss << str;
binary_archive<false> ba(ss);
::serialization::serialize(ba, bp);
if (!ss.good()) {
return false;
}
bp.V.resize(c_len);
for (uint8_t i = 0; i < c_len; i++) {
memcpy(bp.V[i].bytes, &c[i * 32], 32);
}
try { return rct::bulletproof_VERIFY(bp); } catch(...) { return false; }
}
bool c_verify_clsag(
uint s_len,
uint8_t* s,
uint8_t k_len,
uint8_t* k,
uint8_t* I,
uint8_t* p,
uint8_t* m
) {
rct::clsag clsag;
std::stringstream ss;
std::string str;
str.assign((char*) s, (size_t) s_len);
ss << str;
binary_archive<false> ba(ss);
::serialization::serialize(ba, clsag);
if (!ss.good()) {
return false;
}
rct::ctkeyV keys;
keys.resize(k_len);
for (uint8_t i = 0; i < k_len; i++) {
memcpy(keys[i].dest.bytes, &k[(i * 2) * 32], 32);
memcpy(keys[i].mask.bytes, &k[((i * 2) + 1) * 32], 32);
}
memcpy(clsag.I.bytes, I, 32);
rct::key pseudo_out;
memcpy(pseudo_out.bytes, p, 32);
rct::key msg;
memcpy(msg.bytes, m, 32);
try {
return verRctCLSAGSimple(msg, clsag, keys, pseudo_out);
} catch(...) { return false; }
}
}

View File

@@ -0,0 +1,24 @@
[package]
name = "monero-generators"
version = "0.1.1"
description = "Monero's hash_to_point and generators"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/coins/monero/generators"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
edition = "2021"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
lazy_static = "1"
subtle = "2.4"
sha3 = "0.10"
curve25519-dalek = { version = "3", features = ["std"] }
group = "0.12"
dalek-ff-group = { path = "../../../crypto/dalek-ff-group", version = "0.1.4" }

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022-2023 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,5 @@
# Monero Generators
Generators used by Monero in both its Pedersen commitments and Bulletproofs(+).
An implementation of Monero's `ge_fromfe_frombytes_vartime`, simply called
`hash_to_point` here, is included, as needed to generate generators.

View File

@@ -0,0 +1,51 @@
use subtle::ConditionallySelectable;
use curve25519_dalek::edwards::{EdwardsPoint, CompressedEdwardsY};
use group::ff::{Field, PrimeField};
use dalek_ff_group::field::FieldElement;
use crate::hash;
/// Monero's hash to point function, as named `ge_fromfe_frombytes_vartime`.
pub fn hash_to_point(bytes: [u8; 32]) -> EdwardsPoint {
#[allow(non_snake_case)]
let A = FieldElement::from(486662u64);
let v = FieldElement::from_square(hash(&bytes)).double();
let w = v + FieldElement::one();
let x = w.square() + (-A.square() * v);
// This isn't the complete X, yet its initial value
// We don't calculate the full X, and instead solely calculate Y, letting dalek reconstruct X
// While inefficient, it solves API boundaries and reduces the amount of work done here
#[allow(non_snake_case)]
let X = {
let u = w;
let v = x;
let v3 = v * v * v;
let uv3 = u * v3;
let v7 = v3 * v3 * v;
let uv7 = u * v7;
uv3 * uv7.pow((-FieldElement::from(5u8)) * FieldElement::from(8u8).invert().unwrap())
};
let x = X.square() * x;
let y = w - x;
let non_zero_0 = !y.is_zero();
let y_if_non_zero_0 = w + x;
let sign = non_zero_0 & (!y_if_non_zero_0.is_zero());
let mut z = -A;
z *= FieldElement::conditional_select(&v, &FieldElement::from(1u8), sign);
#[allow(non_snake_case)]
let Z = z + w;
#[allow(non_snake_case)]
let mut Y = z - w;
Y *= Z.invert().unwrap();
let mut bytes = Y.to_repr();
bytes[31] |= sign.unwrap_u8() << 7;
CompressedEdwardsY(bytes).decompress().unwrap().mul_by_cofactor()
}

View File

@@ -0,0 +1,64 @@
//! Generators used by Monero in both its Pedersen commitments and Bulletproofs(+).
//! An implementation of Monero's `ge_fromfe_frombytes_vartime`, simply called
//! `hash_to_point` here, is included, as needed to generate generators.
use lazy_static::lazy_static;
use sha3::{Digest, Keccak256};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_POINT,
edwards::{EdwardsPoint as DalekPoint, CompressedEdwardsY},
};
use group::Group;
use dalek_ff_group::EdwardsPoint;
mod varint;
use varint::write_varint;
mod hash_to_point;
pub use hash_to_point::hash_to_point;
fn hash(data: &[u8]) -> [u8; 32] {
Keccak256::digest(data).into()
}
lazy_static! {
/// Monero alternate generator `H`, used for amounts in Pedersen commitments.
pub static ref H: DalekPoint =
CompressedEdwardsY(hash(&ED25519_BASEPOINT_POINT.compress().to_bytes()))
.decompress()
.unwrap()
.mul_by_cofactor();
}
const MAX_M: usize = 16;
const N: usize = 64;
const MAX_MN: usize = MAX_M * N;
/// Container struct for Bulletproofs(+) generators.
#[allow(non_snake_case)]
pub struct Generators {
pub G: [EdwardsPoint; MAX_MN],
pub H: [EdwardsPoint; MAX_MN],
}
/// Generate generators as needed for Bulletproofs(+), as Monero does.
pub fn bulletproofs_generators(dst: &'static [u8]) -> Generators {
let mut res =
Generators { G: [EdwardsPoint::identity(); MAX_MN], H: [EdwardsPoint::identity(); MAX_MN] };
for i in 0 .. MAX_MN {
let i = 2 * i;
let mut even = H.compress().to_bytes().to_vec();
even.extend(dst);
let mut odd = even.clone();
write_varint(&i.try_into().unwrap(), &mut even).unwrap();
write_varint(&(i + 1).try_into().unwrap(), &mut odd).unwrap();
res.H[i / 2] = EdwardsPoint(hash_to_point(hash(&even)));
res.G[i / 2] = EdwardsPoint(hash_to_point(hash(&odd)));
}
res
}

View File

@@ -0,0 +1,16 @@
use std::io::{self, Write};
const VARINT_CONTINUATION_MASK: u8 = 0b1000_0000;
pub(crate) fn write_varint<W: Write>(varint: &u64, w: &mut W) -> io::Result<()> {
let mut varint = *varint;
while {
let mut b = u8::try_from(varint & u64::from(!VARINT_CONTINUATION_MASK)).unwrap();
varint >>= 7;
if varint != 0 {
b |= VARINT_CONTINUATION_MASK;
}
w.write_all(&[b])?;
varint != 0
} {}
Ok(())
}

View File

@@ -1,19 +1,18 @@
use crate::{
serialize::*,
transaction::Transaction
};
use std::io::{self, Read, Write};
#[derive(Clone, PartialEq, Debug)]
use crate::{serialize::*, transaction::Transaction};
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct BlockHeader {
pub major_version: u64,
pub minor_version: u64,
pub timestamp: u64,
pub previous: [u8; 32],
pub nonce: u32
pub nonce: u32,
}
impl BlockHeader {
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_varint(&self.major_version, w)?;
write_varint(&self.minor_version, w)?;
write_varint(&self.timestamp, w)?;
@@ -21,30 +20,34 @@ impl BlockHeader {
w.write_all(&self.nonce.to_le_bytes())
}
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<BlockHeader> {
Ok(
BlockHeader {
major_version: read_varint(r)?,
minor_version: read_varint(r)?,
timestamp: read_varint(r)?,
previous: { let mut previous = [0; 32]; r.read_exact(&mut previous)?; previous },
nonce: { let mut nonce = [0; 4]; r.read_exact(&mut nonce)?; u32::from_le_bytes(nonce) }
}
)
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).unwrap();
serialized
}
pub fn read<R: Read>(r: &mut R) -> io::Result<BlockHeader> {
Ok(BlockHeader {
major_version: read_varint(r)?,
minor_version: read_varint(r)?,
timestamp: read_varint(r)?,
previous: read_bytes(r)?,
nonce: read_bytes(r).map(u32::from_le_bytes)?,
})
}
}
#[derive(Clone, PartialEq, Debug)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Block {
pub header: BlockHeader,
pub miner_tx: Transaction,
pub txs: Vec<[u8; 32]>
pub txs: Vec<[u8; 32]>,
}
impl Block {
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
self.header.serialize(w)?;
self.miner_tx.serialize(w)?;
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.header.write(w)?;
self.miner_tx.write(w)?;
write_varint(&self.txs.len().try_into().unwrap(), w)?;
for tx in &self.txs {
w.write_all(tx)?;
@@ -52,15 +55,17 @@ impl Block {
Ok(())
}
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<Block> {
Ok(
Block {
header: BlockHeader::deserialize(r)?,
miner_tx: Transaction::deserialize(r)?,
txs: (0 .. read_varint(r)?).map(
|_| { let mut tx = [0; 32]; r.read_exact(&mut tx).map(|_| tx) }
).collect::<Result<_, _>>()?
}
)
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).unwrap();
serialized
}
pub fn read<R: Read>(r: &mut R) -> io::Result<Block> {
Ok(Block {
header: BlockHeader::read(r)?,
miner_tx: Transaction::read(r)?,
txs: (0 .. read_varint(r)?).map(|_| read_bytes(r)).collect::<Result<_, _>>()?,
})
}
}

View File

@@ -1,76 +0,0 @@
use std::io::Read;
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
use group::{Group, GroupEncoding};
use transcript::{Transcript, RecommendedTranscript};
use dalek_ff_group as dfg;
use dleq::{Generators, DLEqProof};
#[derive(Clone, Error, Debug)]
pub enum MultisigError {
#[error("internal error ({0})")]
InternalError(String),
#[error("invalid discrete log equality proof")]
InvalidDLEqProof(u16),
#[error("invalid key image {0}")]
InvalidKeyImage(u16)
}
fn transcript() -> RecommendedTranscript {
RecommendedTranscript::new(b"monero_key_image_dleq")
}
#[allow(non_snake_case)]
pub(crate) fn write_dleq<R: RngCore + CryptoRng>(
rng: &mut R,
H: EdwardsPoint,
x: Scalar
) -> Vec<u8> {
let mut res = Vec::with_capacity(64);
DLEqProof::prove(
rng,
// Doesn't take in a larger transcript object due to the usage of this
// Every prover would immediately write their own DLEq proof, when they can only do so in
// the proper order if they want to reach consensus
// It'd be a poor API to have CLSAG define a new transcript solely to pass here, just to try to
// merge later in some form, when it should instead just merge xH (as it does)
&mut transcript(),
Generators::new(dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(H)),
dfg::Scalar(x)
).serialize(&mut res).unwrap();
res
}
#[allow(non_snake_case)]
pub(crate) fn read_dleq<Re: Read>(
serialized: &mut Re,
H: EdwardsPoint,
l: u16,
xG: dfg::EdwardsPoint
) -> Result<dfg::EdwardsPoint, MultisigError> {
let mut bytes = [0; 32];
serialized.read_exact(&mut bytes).map_err(|_| MultisigError::InvalidDLEqProof(l))?;
// dfg ensures the point is torsion free
let xH = Option::<dfg::EdwardsPoint>::from(
dfg::EdwardsPoint::from_bytes(&bytes)).ok_or(MultisigError::InvalidDLEqProof(l)
)?;
// Ensure this is a canonical point
if xH.to_bytes() != bytes {
Err(MultisigError::InvalidDLEqProof(l))?;
}
DLEqProof::<dfg::EdwardsPoint>::deserialize(
serialized
).map_err(|_| MultisigError::InvalidDLEqProof(l))?.verify(
&mut transcript(),
Generators::new(dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(H)),
(xG, xH)
).map_err(|_| MultisigError::InvalidDLEqProof(l))?;
Ok(xH)
}

View File

@@ -1,100 +1,136 @@
use std::slice;
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
//! A modern Monero transaction library intended for usage in wallets. It prides
//! itself on accuracy, correctness, and removing common pit falls developers may
//! face.
//! monero-serai contains safety features, such as first-class acknowledgement of
//! the burning bug, yet also a high level API around creating transactions.
//! monero-serai also offers a FROST-based multisig, which is orders of magnitude
//! more performant than Monero's.
//! monero-serai was written for Serai, a decentralized exchange aiming to support
//! Monero. Despite this, monero-serai is intended to be a widely usable library,
//! accurate to Monero. monero-serai guarantees the functionality needed for Serai,
//! yet will not deprive functionality from other users, and may potentially leave
//! Serai's umbrella at some point.
//! Various legacy transaction formats are not currently implemented, yet
//! monero-serai is still increasing its support for various transaction types.
use lazy_static::lazy_static;
use rand_core::{RngCore, CryptoRng};
use subtle::ConstantTimeEq;
use zeroize::{Zeroize, ZeroizeOnDrop};
use tiny_keccak::{Hasher, Keccak};
use sha3::{Digest, Keccak256};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
scalar::Scalar,
edwards::{EdwardsPoint, EdwardsBasepointTable, CompressedEdwardsY}
edwards::{EdwardsPoint, EdwardsBasepointTable},
};
#[cfg(feature = "multisig")]
pub mod frost;
pub use monero_generators::H;
mod serialize;
/// RingCT structs and functionality.
pub mod ringct;
/// Transaction structs.
pub mod transaction;
/// Block structs.
pub mod block;
/// Monero daemon RPC interface.
pub mod rpc;
/// Wallet functionality, enabling scanning and sending transactions.
pub mod wallet;
#[cfg(test)]
mod tests;
lazy_static! {
static ref H: EdwardsPoint = CompressedEdwardsY(
hex::decode("8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94").unwrap().try_into().unwrap()
).decompress().unwrap();
static ref H_TABLE: EdwardsBasepointTable = EdwardsBasepointTable::create(&*H);
/// Monero protocol version. v15 is omitted as v15 was simply v14 and v16 being active at the same
/// time, with regards to the transactions supported. Accordingly, v16 should be used during v15.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
#[allow(non_camel_case_types)]
pub enum Protocol {
Unsupported(usize),
v14,
v16,
Custom { ring_len: usize, bp_plus: bool },
}
// Function from libsodium our subsection of Monero relies on. Implementing it here means we don't
// need to link against libsodium
#[no_mangle]
unsafe extern "C" fn crypto_verify_32(a: *const u8, b: *const u8) -> isize {
isize::from(
slice::from_raw_parts(a, 32).ct_eq(slice::from_raw_parts(b, 32)).unwrap_u8()
) - 1
}
impl Protocol {
/// Amount of ring members under this protocol version.
pub fn ring_len(&self) -> usize {
match self {
Protocol::Unsupported(_) => panic!("Unsupported protocol version"),
Protocol::v14 => 11,
Protocol::v16 => 16,
Protocol::Custom { ring_len, .. } => *ring_len,
}
}
// Offer a wide reduction to C. Our seeded RNG prevented Monero from defining an unbiased scalar
// generation function, and in order to not use Monero code (which would require propagating its
// license), the function was rewritten. It was rewritten with wide reduction, instead of rejection
// sampling however, hence the need for this function
#[no_mangle]
unsafe extern "C" fn monero_wide_reduce(value: *mut u8) {
let res = Scalar::from_bytes_mod_order_wide(
std::slice::from_raw_parts(value, 64).try_into().unwrap()
);
for (i, b) in res.to_bytes().iter().enumerate() {
value.add(i).write(*b);
/// Whether or not the specified version uses Bulletproofs or Bulletproofs+.
/// This method will likely be reworked when versions not using Bulletproofs at all are added.
pub fn bp_plus(&self) -> bool {
match self {
Protocol::Unsupported(_) => panic!("Unsupported protocol version"),
Protocol::v14 => false,
Protocol::v16 => true,
Protocol::Custom { bp_plus, .. } => *bp_plus,
}
}
}
lazy_static! {
static ref H_TABLE: EdwardsBasepointTable = EdwardsBasepointTable::create(&H);
}
/// Transparent structure representing a Pedersen commitment's contents.
#[allow(non_snake_case)]
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct Commitment {
pub mask: Scalar,
pub amount: u64
pub amount: u64,
}
impl Commitment {
/// The zero commitment, defined as a mask of 1 (as to not be the identity) and a 0 amount.
pub fn zero() -> Commitment {
Commitment { mask: Scalar::one(), amount: 0}
Commitment { mask: Scalar::one(), amount: 0 }
}
pub fn new(mask: Scalar, amount: u64) -> Commitment {
Commitment { mask, amount }
}
/// Calculate a Pedersen commitment, as a point, from the transparent structure.
pub fn calculate(&self) -> EdwardsPoint {
(&self.mask * &ED25519_BASEPOINT_TABLE) + (&Scalar::from(self.amount) * &*H_TABLE)
}
}
// Allows using a modern rand as dalek's is notoriously dated
/// Support generating a random scalar using a modern rand, as dalek's is notoriously dated.
pub fn random_scalar<R: RngCore + CryptoRng>(rng: &mut R) -> Scalar {
let mut r = [0; 64];
rng.fill_bytes(&mut r);
Scalar::from_bytes_mod_order_wide(&r)
}
pub fn hash(data: &[u8]) -> [u8; 32] {
let mut keccak = Keccak::v256();
keccak.update(data);
let mut res = [0; 32];
keccak.finalize(&mut res);
res
pub(crate) fn hash(data: &[u8]) -> [u8; 32] {
Keccak256::digest(data).into()
}
/// Hash the provided data to a scalar via keccak256(data) % l.
pub fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar::from_bytes_mod_order(hash(&data))
let scalar = Scalar::from_bytes_mod_order(hash(data));
// Monero will explicitly error in this case
// This library acknowledges its practical impossibility of it occurring, and doesn't bother to
// code in logic to handle it. That said, if it ever occurs, something must happen in order to
// not generate/verify a proof we believe to be valid when it isn't
assert!(scalar != Scalar::zero(), "ZERO HASH: {data:?}");
scalar
}

View File

@@ -1,161 +0,0 @@
#![allow(non_snake_case)]
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
use crate::{Commitment, wallet::TransactionError, serialize::*};
pub(crate) const MAX_OUTPUTS: usize = 16;
#[derive(Clone, PartialEq, Debug)]
pub struct Bulletproofs {
pub A: EdwardsPoint,
pub S: EdwardsPoint,
pub T1: EdwardsPoint,
pub T2: EdwardsPoint,
pub taux: Scalar,
pub mu: Scalar,
pub L: Vec<EdwardsPoint>,
pub R: Vec<EdwardsPoint>,
pub a: Scalar,
pub b: Scalar,
pub t: Scalar
}
impl Bulletproofs {
pub(crate) fn fee_weight(outputs: usize) -> usize {
let proofs = 6 + usize::try_from(usize::BITS - (outputs - 1).leading_zeros()).unwrap();
let len = (9 + (2 * proofs)) * 32;
let mut clawback = 0;
let padded = 1 << (proofs - 6);
if padded > 2 {
const BP_BASE: usize = 368;
clawback = ((BP_BASE * padded) - len) * 4 / 5;
}
len + clawback
}
pub fn new<R: RngCore + CryptoRng>(rng: &mut R, outputs: &[Commitment]) -> Result<Bulletproofs, TransactionError> {
if outputs.len() > MAX_OUTPUTS {
return Err(TransactionError::TooManyOutputs)?;
}
let mut seed = [0; 32];
rng.fill_bytes(&mut seed);
let masks = outputs.iter().map(|commitment| commitment.mask.to_bytes()).collect::<Vec<_>>();
let amounts = outputs.iter().map(|commitment| commitment.amount).collect::<Vec<_>>();
let res;
unsafe {
#[link(name = "wrapper")]
extern "C" {
fn free(ptr: *const u8);
fn c_generate_bp(seed: *const u8, len: u8, amounts: *const u64, masks: *const [u8; 32]) -> *const u8;
}
let ptr = c_generate_bp(
seed.as_ptr(),
u8::try_from(outputs.len()).unwrap(),
amounts.as_ptr(),
masks.as_ptr()
);
let mut len = 6 * 32;
len += (2 * (1 + (usize::from(ptr.add(len).read()) * 32))) + (3 * 32);
res = Bulletproofs::deserialize(
// Wrap in a cursor to provide a mutable Reader
&mut std::io::Cursor::new(std::slice::from_raw_parts(ptr, len))
).expect("Couldn't deserialize Bulletproofs from Monero");
free(ptr);
};
Ok(res)
}
#[must_use]
pub fn verify<R: RngCore + CryptoRng>(&self, rng: &mut R, commitments: &[EdwardsPoint]) -> bool {
if commitments.len() > 16 {
return false;
}
let mut seed = [0; 32];
rng.fill_bytes(&mut seed);
let mut serialized = Vec::with_capacity((9 + (2 * self.L.len())) * 32);
self.serialize(&mut serialized).unwrap();
let commitments: Vec<[u8; 32]> = commitments.iter().map(
|commitment| (commitment * Scalar::from(8u8).invert()).compress().to_bytes()
).collect();
unsafe {
#[link(name = "wrapper")]
extern "C" {
fn c_verify_bp(
seed: *const u8,
serialized_len: usize,
serialized: *const u8,
commitments_len: u8,
commitments: *const [u8; 32]
) -> bool;
}
c_verify_bp(
seed.as_ptr(),
serialized.len(),
serialized.as_ptr(),
u8::try_from(commitments.len()).unwrap(),
commitments.as_ptr()
)
}
}
fn serialize_core<
W: std::io::Write,
F: Fn(&[EdwardsPoint], &mut W) -> std::io::Result<()>
>(&self, w: &mut W, specific_write_vec: F) -> std::io::Result<()> {
write_point(&self.A, w)?;
write_point(&self.S, w)?;
write_point(&self.T1, w)?;
write_point(&self.T2, w)?;
write_scalar(&self.taux, w)?;
write_scalar(&self.mu, w)?;
specific_write_vec(&self.L, w)?;
specific_write_vec(&self.R, w)?;
write_scalar(&self.a, w)?;
write_scalar(&self.b, w)?;
write_scalar(&self.t, w)
}
pub fn signature_serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
self.serialize_core(w, |points, w| write_raw_vec(write_point, points, w))
}
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
self.serialize_core(w, |points, w| write_vec(write_point, points, w))
}
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<Bulletproofs> {
let bp = Bulletproofs {
A: read_point(r)?,
S: read_point(r)?,
T1: read_point(r)?,
T2: read_point(r)?,
taux: read_scalar(r)?,
mu: read_scalar(r)?,
L: read_vec(read_point, r)?,
R: read_vec(read_point, r)?,
a: read_scalar(r)?,
b: read_scalar(r)?,
t: read_scalar(r)?
};
if bp.L.len() != bp.R.len() {
Err(std::io::Error::new(std::io::ErrorKind::Other, "mismatched L/R len"))?;
}
Ok(bp)
}
}

View File

@@ -0,0 +1,150 @@
// Required to be for this entire file, which isn't an issue, as it wouldn't bind to the static
#![allow(non_upper_case_globals)]
use lazy_static::lazy_static;
use rand_core::{RngCore, CryptoRng};
use subtle::{Choice, ConditionallySelectable};
use curve25519_dalek::edwards::EdwardsPoint as DalekPoint;
use group::{ff::Field, Group};
use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::multiexp as multiexp_const;
pub(crate) use monero_generators::Generators;
use crate::{H as DALEK_H, Commitment, hash_to_scalar as dalek_hash};
pub(crate) use crate::ringct::bulletproofs::scalar_vector::*;
// Bring things into ff/group
lazy_static! {
pub(crate) static ref INV_EIGHT: Scalar = Scalar::from(8u8).invert().unwrap();
pub(crate) static ref H: EdwardsPoint = EdwardsPoint(*DALEK_H);
}
pub(crate) fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar(dalek_hash(data))
}
// Components common between variants
pub(crate) const MAX_M: usize = 16;
pub(crate) const LOG_N: usize = 6; // 2 << 6 == N
pub(crate) const N: usize = 64;
pub(crate) fn prove_multiexp(pairs: &[(Scalar, EdwardsPoint)]) -> EdwardsPoint {
multiexp_const(pairs) * *INV_EIGHT
}
pub(crate) fn vector_exponent(
generators: &Generators,
a: &ScalarVector,
b: &ScalarVector,
) -> EdwardsPoint {
debug_assert_eq!(a.len(), b.len());
(a * &generators.G[.. a.len()]) + (b * &generators.H[.. b.len()])
}
pub(crate) fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
let slice =
&[cache.to_bytes().as_ref(), mash.iter().cloned().flatten().collect::<Vec<_>>().as_ref()]
.concat();
*cache = hash_to_scalar(slice);
*cache
}
pub(crate) fn MN(outputs: usize) -> (usize, usize, usize) {
let mut logM = 0;
let mut M;
while {
M = 1 << logM;
(M <= MAX_M) && (M < outputs)
} {
logM += 1;
}
(logM + LOG_N, M, M * N)
}
pub(crate) fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
let (_, M, MN) = MN(commitments.len());
let sv = commitments.iter().map(|c| Scalar::from(c.amount)).collect::<Vec<_>>();
let mut aL = ScalarVector::new(MN);
let mut aR = ScalarVector::new(MN);
for j in 0 .. M {
for i in (0 .. N).rev() {
let mut bit = Choice::from(0);
if j < sv.len() {
bit = Choice::from((sv[j][i / 8] >> (i % 8)) & 1);
}
aL.0[(j * N) + i] = Scalar::conditional_select(&Scalar::zero(), &Scalar::one(), bit);
aR.0[(j * N) + i] = Scalar::conditional_select(&-Scalar::one(), &Scalar::zero(), bit);
}
}
(aL, aR)
}
pub(crate) fn hash_commitments<C: IntoIterator<Item = DalekPoint>>(
commitments: C,
) -> (Scalar, Vec<EdwardsPoint>) {
let V = commitments.into_iter().map(|c| EdwardsPoint(c) * *INV_EIGHT).collect::<Vec<_>>();
(hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>()), V)
}
pub(crate) fn alpha_rho<R: RngCore + CryptoRng>(
rng: &mut R,
generators: &Generators,
aL: &ScalarVector,
aR: &ScalarVector,
) -> (Scalar, EdwardsPoint) {
let ar = Scalar::random(rng);
(ar, (vector_exponent(generators, aL, aR) + (EdwardsPoint::generator() * ar)) * *INV_EIGHT)
}
pub(crate) fn LR_statements(
a: &ScalarVector,
G_i: &[EdwardsPoint],
b: &ScalarVector,
H_i: &[EdwardsPoint],
cL: Scalar,
U: EdwardsPoint,
) -> Vec<(Scalar, EdwardsPoint)> {
let mut res = a
.0
.iter()
.cloned()
.zip(G_i.iter().cloned())
.chain(b.0.iter().cloned().zip(H_i.iter().cloned()))
.collect::<Vec<_>>();
res.push((cL, U));
res
}
lazy_static! {
pub(crate) static ref TWO_N: ScalarVector = ScalarVector::powers(Scalar::from(2u8), N);
}
pub(crate) fn challenge_products(w: &[Scalar], winv: &[Scalar]) -> Vec<Scalar> {
let mut products = vec![Scalar::zero(); 1 << w.len()];
products[0] = winv[0];
products[1] = w[0];
for j in 1 .. w.len() {
let mut slots = (1 << (j + 1)) - 1;
while slots > 0 {
products[slots] = products[slots / 2] * w[j];
products[slots - 1] = products[slots / 2] * winv[j];
slots = slots.saturating_sub(2);
}
}
// Sanity check as if the above failed to populate, it'd be critical
for w in &products {
debug_assert!(!bool::from(w.is_zero()));
}
products
}

View File

@@ -0,0 +1,175 @@
#![allow(non_snake_case)]
use std::io::{self, Read, Write};
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use curve25519_dalek::edwards::EdwardsPoint;
use multiexp::BatchVerifier;
use crate::{Commitment, wallet::TransactionError, serialize::*};
pub(crate) mod scalar_vector;
pub(crate) mod core;
use self::core::LOG_N;
pub(crate) mod original;
pub use original::GENERATORS as BULLETPROOFS_GENERATORS;
pub(crate) mod plus;
pub use plus::GENERATORS as BULLETPROOFS_PLUS_GENERATORS;
pub(crate) use self::original::OriginalStruct;
pub(crate) use self::plus::PlusStruct;
pub(crate) const MAX_OUTPUTS: usize = self::core::MAX_M;
/// Bulletproofs enum, supporting the original and plus formulations.
#[allow(clippy::large_enum_variant)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Bulletproofs {
Original(OriginalStruct),
Plus(PlusStruct),
}
impl Bulletproofs {
pub(crate) fn fee_weight(plus: bool, outputs: usize) -> usize {
let fields = if plus { 6 } else { 9 };
#[allow(non_snake_case)]
let mut LR_len = usize::try_from(usize::BITS - (outputs - 1).leading_zeros()).unwrap();
let padded_outputs = 1 << LR_len;
LR_len += LOG_N;
let len = (fields + (2 * LR_len)) * 32;
len +
if padded_outputs <= 2 {
0
} else {
let base = ((fields + (2 * (LOG_N + 1))) * 32) / 2;
let size = (fields + (2 * LR_len)) * 32;
((base * padded_outputs) - size) * 4 / 5
}
}
/// Prove the list of commitments are within [0 .. 2^64).
pub fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
outputs: &[Commitment],
plus: bool,
) -> Result<Bulletproofs, TransactionError> {
if outputs.len() > MAX_OUTPUTS {
return Err(TransactionError::TooManyOutputs)?;
}
Ok(if !plus {
Bulletproofs::Original(OriginalStruct::prove(rng, outputs))
} else {
Bulletproofs::Plus(PlusStruct::prove(rng, outputs))
})
}
/// Verify the given Bulletproofs.
#[must_use]
pub fn verify<R: RngCore + CryptoRng>(&self, rng: &mut R, commitments: &[EdwardsPoint]) -> bool {
match self {
Bulletproofs::Original(bp) => bp.verify(rng, commitments),
Bulletproofs::Plus(bp) => bp.verify(rng, commitments),
}
}
/// Accumulate the verification for the given Bulletproofs into the specified BatchVerifier.
/// Returns false if the Bulletproofs aren't sane, without mutating the BatchVerifier.
/// Returns true if the Bulletproofs are sane, regardless of their validity.
#[must_use]
pub fn batch_verify<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, dalek_ff_group::EdwardsPoint>,
id: ID,
commitments: &[EdwardsPoint],
) -> bool {
match self {
Bulletproofs::Original(bp) => bp.batch_verify(rng, verifier, id, commitments),
Bulletproofs::Plus(bp) => bp.batch_verify(rng, verifier, id, commitments),
}
}
fn write_core<W: Write, F: Fn(&[EdwardsPoint], &mut W) -> io::Result<()>>(
&self,
w: &mut W,
specific_write_vec: F,
) -> io::Result<()> {
match self {
Bulletproofs::Original(bp) => {
write_point(&bp.A, w)?;
write_point(&bp.S, w)?;
write_point(&bp.T1, w)?;
write_point(&bp.T2, w)?;
write_scalar(&bp.taux, w)?;
write_scalar(&bp.mu, w)?;
specific_write_vec(&bp.L, w)?;
specific_write_vec(&bp.R, w)?;
write_scalar(&bp.a, w)?;
write_scalar(&bp.b, w)?;
write_scalar(&bp.t, w)
}
Bulletproofs::Plus(bp) => {
write_point(&bp.A, w)?;
write_point(&bp.A1, w)?;
write_point(&bp.B, w)?;
write_scalar(&bp.r1, w)?;
write_scalar(&bp.s1, w)?;
write_scalar(&bp.d1, w)?;
specific_write_vec(&bp.L, w)?;
specific_write_vec(&bp.R, w)
}
}
}
pub(crate) fn signature_write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.write_core(w, |points, w| write_raw_vec(write_point, points, w))
}
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.write_core(w, |points, w| write_vec(write_point, points, w))
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).unwrap();
serialized
}
/// Read Bulletproofs.
pub fn read<R: Read>(r: &mut R) -> io::Result<Bulletproofs> {
Ok(Bulletproofs::Original(OriginalStruct {
A: read_point(r)?,
S: read_point(r)?,
T1: read_point(r)?,
T2: read_point(r)?,
taux: read_scalar(r)?,
mu: read_scalar(r)?,
L: read_vec(read_point, r)?,
R: read_vec(read_point, r)?,
a: read_scalar(r)?,
b: read_scalar(r)?,
t: read_scalar(r)?,
}))
}
/// Read Bulletproofs+.
pub fn read_plus<R: Read>(r: &mut R) -> io::Result<Bulletproofs> {
Ok(Bulletproofs::Plus(PlusStruct {
A: read_point(r)?,
A1: read_point(r)?,
B: read_point(r)?,
r1: read_scalar(r)?,
s1: read_scalar(r)?,
d1: read_scalar(r)?,
L: read_vec(read_point, r)?,
R: read_vec(read_point, r)?,
}))
}
}

View File

@@ -0,0 +1,306 @@
use lazy_static::lazy_static;
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
use group::{ff::Field, Group};
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
use multiexp::BatchVerifier;
use crate::{Commitment, ringct::bulletproofs::core::*};
include!(concat!(env!("OUT_DIR"), "/generators.rs"));
lazy_static! {
static ref ONE_N: ScalarVector = ScalarVector(vec![Scalar::one(); N]);
static ref IP12: Scalar = inner_product(&ONE_N, &TWO_N);
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct OriginalStruct {
pub(crate) A: DalekPoint,
pub(crate) S: DalekPoint,
pub(crate) T1: DalekPoint,
pub(crate) T2: DalekPoint,
pub(crate) taux: DalekScalar,
pub(crate) mu: DalekScalar,
pub(crate) L: Vec<DalekPoint>,
pub(crate) R: Vec<DalekPoint>,
pub(crate) a: DalekScalar,
pub(crate) b: DalekScalar,
pub(crate) t: DalekScalar,
}
impl OriginalStruct {
pub(crate) fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
commitments: &[Commitment],
) -> OriginalStruct {
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let commitments_points = commitments.iter().map(Commitment::calculate).collect::<Vec<_>>();
let (mut cache, _) = hash_commitments(commitments_points.clone());
let (sL, sR) =
ScalarVector((0 .. (MN * 2)).map(|_| Scalar::random(&mut *rng)).collect::<Vec<_>>()).split();
let (mut alpha, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR);
let (mut rho, S) = alpha_rho(&mut *rng, &GENERATORS, &sL, &sR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]);
let mut cache = hash_to_scalar(&y.to_bytes());
let z = cache;
let l0 = &aL - z;
let l1 = sL;
let mut zero_twos = Vec::with_capacity(MN);
let zpow = ScalarVector::powers(z, M + 2);
for j in 0 .. M {
for i in 0 .. N {
zero_twos.push(zpow[j + 2] * TWO_N[i]);
}
}
let yMN = ScalarVector::powers(y, MN);
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
let r1 = yMN * sR;
let (T1, T2, x, mut taux) = {
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
let t2 = inner_product(&l1, &r1);
let mut tau1 = Scalar::random(&mut *rng);
let mut tau2 = Scalar::random(&mut *rng);
let T1 = prove_multiexp(&[(t1, *H), (tau1, EdwardsPoint::generator())]);
let T2 = prove_multiexp(&[(t2, *H), (tau2, EdwardsPoint::generator())]);
let x =
hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]);
let taux = (tau2 * (x * x)) + (tau1 * x);
tau1.zeroize();
tau2.zeroize();
(T1, T2, x, taux)
};
let mu = (x * rho) + alpha;
alpha.zeroize();
rho.zeroize();
for (i, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
taux += zpow[i + 2] * gamma;
}
let l = &l0 + &(l1 * x);
let r = &r0 + &(r1 * x);
let t = inner_product(&l, &r);
let x_ip =
hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
let mut a = l;
let mut b = r;
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = GENERATORS.G[.. a.len()].to_vec();
let mut H_proof = GENERATORS.H[.. a.len()].to_vec();
H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow);
let U = *H * x_ip;
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
while a.len() != 1 {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = inner_product(&aL, &bR);
let cR = inner_product(&aR, &bL);
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let L_i = prove_multiexp(&LR_statements(&aL, G_R, &bR, H_L, cL, U));
let R_i = prove_multiexp(&LR_statements(&aR, G_L, &bL, H_R, cR, U));
L.push(L_i);
R.push(R_i);
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let winv = w.invert().unwrap();
a = (aL * w) + (aR * winv);
b = (bL * winv) + (bR * w);
if a.len() != 1 {
G_proof = hadamard_fold(G_L, G_R, winv, w);
H_proof = hadamard_fold(H_L, H_R, w, winv);
}
}
let res = OriginalStruct {
A: *A,
S: *S,
T1: *T1,
T2: *T2,
taux: *taux,
mu: *mu,
L: L.drain(..).map(|L| *L).collect(),
R: R.drain(..).map(|R| *R).collect(),
a: *a[0],
b: *b[0],
t: *t,
};
debug_assert!(res.verify(rng, &commitments_points));
res
}
#[must_use]
fn verify_core<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
// Verify commitments are valid
if commitments.is_empty() || (commitments.len() > MAX_M) {
return false;
}
// Verify L and R are properly sized
if self.L.len() != self.R.len() {
return false;
}
let (logMN, M, MN) = MN(commitments.len());
if self.L.len() != logMN {
return false;
}
// Rebuild all challenges
let (mut cache, commitments) = hash_commitments(commitments.iter().cloned());
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]);
let z = hash_to_scalar(&y.to_bytes());
cache = z;
let x = hash_cache(
&mut cache,
&[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()],
);
let x_ip = hash_cache(
&mut cache,
&[x.to_bytes(), self.taux.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()],
);
let mut w = Vec::with_capacity(logMN);
let mut winv = Vec::with_capacity(logMN);
for (L, R) in self.L.iter().zip(&self.R) {
w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]));
winv.push(cache.invert().unwrap());
}
// Convert the proof from * INV_EIGHT to its actual form
let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor());
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
let T1 = normalize(&self.T1);
let T2 = normalize(&self.T2);
let A = normalize(&self.A);
let S = normalize(&self.S);
let commitments = commitments.iter().map(|c| c.mul_by_cofactor()).collect::<Vec<_>>();
// Verify it
let mut proof = Vec::with_capacity(4 + commitments.len());
let zpow = ScalarVector::powers(z, M + 3);
let ip1y = ScalarVector::powers(y, M * N).sum();
let mut k = -(zpow[2] * ip1y);
for j in 1 ..= M {
k -= zpow[j + 2] * *IP12;
}
let y1 = Scalar(self.t) - ((z * ip1y) + k);
proof.push((-y1, *H));
proof.push((-Scalar(self.taux), G));
for (j, commitment) in commitments.iter().enumerate() {
proof.push((zpow[j + 2], *commitment));
}
proof.push((x, T1));
proof.push((x * x, T2));
verifier.queue(&mut *rng, id, proof);
proof = Vec::with_capacity(4 + (2 * (MN + logMN)));
let z3 = (Scalar(self.t) - (Scalar(self.a) * Scalar(self.b))) * x_ip;
proof.push((z3, *H));
proof.push((-Scalar(self.mu), G));
proof.push((Scalar::one(), A));
proof.push((x, S));
{
let ypow = ScalarVector::powers(y, MN);
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let w_cache = challenge_products(&w, &winv);
for i in 0 .. MN {
let g = (Scalar(self.a) * w_cache[i]) + z;
proof.push((-g, GENERATORS.G[i]));
let mut h = Scalar(self.b) * yinvpow[i] * w_cache[(!i) & (MN - 1)];
h -= ((zpow[(i / N) + 2] * TWO_N[i % N]) + (z * ypow[i])) * yinvpow[i];
proof.push((-h, GENERATORS.H[i]));
}
}
for i in 0 .. logMN {
proof.push((w[i] * w[i], L[i]));
proof.push((winv[i] * winv[i], R[i]));
}
verifier.queue(rng, id, proof);
true
}
#[must_use]
pub(crate) fn verify<R: RngCore + CryptoRng>(
&self,
rng: &mut R,
commitments: &[DalekPoint],
) -> bool {
let mut verifier = BatchVerifier::new(1);
if self.verify_core(rng, &mut verifier, (), commitments) {
verifier.verify_vartime()
} else {
false
}
}
#[must_use]
pub(crate) fn batch_verify<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
self.verify_core(rng, verifier, id, commitments)
}
}

View File

@@ -0,0 +1,306 @@
use lazy_static::lazy_static;
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
use group::ff::Field;
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
use multiexp::BatchVerifier;
use crate::{
Commitment, hash,
ringct::{hash_to_point::raw_hash_to_point, bulletproofs::core::*},
};
include!(concat!(env!("OUT_DIR"), "/generators_plus.rs"));
lazy_static! {
static ref TRANSCRIPT: [u8; 32] =
EdwardsPoint(raw_hash_to_point(hash(b"bulletproof_plus_transcript"))).compress().to_bytes();
}
// TRANSCRIPT isn't a Scalar, so we need this alternative for the first hash
fn hash_plus<C: IntoIterator<Item = DalekPoint>>(commitments: C) -> (Scalar, Vec<EdwardsPoint>) {
let (cache, commitments) = hash_commitments(commitments);
(hash_to_scalar(&[&*TRANSCRIPT as &[u8], &cache.to_bytes()].concat()), commitments)
}
// d[j*N+i] = z**(2*(j+1)) * 2**i
fn d(z: Scalar, M: usize, MN: usize) -> (ScalarVector, ScalarVector) {
let zpow = ScalarVector::even_powers(z, 2 * M);
let mut d = vec![Scalar::zero(); MN];
for j in 0 .. M {
for i in 0 .. N {
d[(j * N) + i] = zpow[j] * TWO_N[i];
}
}
(zpow, ScalarVector(d))
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct PlusStruct {
pub(crate) A: DalekPoint,
pub(crate) A1: DalekPoint,
pub(crate) B: DalekPoint,
pub(crate) r1: DalekScalar,
pub(crate) s1: DalekScalar,
pub(crate) d1: DalekScalar,
pub(crate) L: Vec<DalekPoint>,
pub(crate) R: Vec<DalekPoint>,
}
impl PlusStruct {
pub(crate) fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
commitments: &[Commitment],
) -> PlusStruct {
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let commitments_points = commitments.iter().map(Commitment::calculate).collect::<Vec<_>>();
let (mut cache, _) = hash_plus(commitments_points.clone());
let (mut alpha1, A) = alpha_rho(&mut *rng, &GENERATORS, &aL, &aR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes()]);
let mut cache = hash_to_scalar(&y.to_bytes());
let z = cache;
let (zpow, d) = d(z, M, MN);
let aL1 = aL - z;
let ypow = ScalarVector::powers(y, MN + 2);
let mut y_for_d = ScalarVector(ypow.0[1 ..= MN].to_vec());
y_for_d.0.reverse();
let aR1 = (aR + z) + (y_for_d * d);
for (j, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
alpha1 += zpow[j] * ypow[MN + 1] * gamma;
}
let mut a = aL1;
let mut b = aR1;
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = GENERATORS.G[.. a.len()].to_vec();
let mut H_proof = GENERATORS.H[.. a.len()].to_vec();
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
while a.len() != 1 {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = weighted_inner_product(&aL, &bR, y);
let cR = weighted_inner_product(&(&aR * ypow[aR.len()]), &bL, y);
let (mut dL, mut dR) = (Scalar::random(&mut *rng), Scalar::random(&mut *rng));
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let mut L_i = LR_statements(&(&aL * yinvpow[aL.len()]), G_R, &bR, H_L, cL, *H);
L_i.push((dL, G));
let L_i = prove_multiexp(&L_i);
L.push(L_i);
let mut R_i = LR_statements(&(&aR * ypow[aR.len()]), G_L, &bL, H_R, cR, *H);
R_i.push((dR, G));
let R_i = prove_multiexp(&R_i);
R.push(R_i);
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let winv = w.invert().unwrap();
G_proof = hadamard_fold(G_L, G_R, winv, w * yinvpow[aL.len()]);
H_proof = hadamard_fold(H_L, H_R, w, winv);
a = (&aL * w) + (aR * (winv * ypow[aL.len()]));
b = (bL * winv) + (bR * w);
alpha1 += (dL * (w * w)) + (dR * (winv * winv));
dL.zeroize();
dR.zeroize();
}
let mut r = Scalar::random(&mut *rng);
let mut s = Scalar::random(&mut *rng);
let mut d = Scalar::random(&mut *rng);
let mut eta = Scalar::random(&mut *rng);
let A1 = prove_multiexp(&[
(r, G_proof[0]),
(s, H_proof[0]),
(d, G),
((r * y * b[0]) + (s * y * a[0]), *H),
]);
let B = prove_multiexp(&[(r * y * s, *H), (eta, G)]);
let e = hash_cache(&mut cache, &[A1.compress().to_bytes(), B.compress().to_bytes()]);
let r1 = (a[0] * e) + r;
r.zeroize();
let s1 = (b[0] * e) + s;
s.zeroize();
let d1 = ((d * e) + eta) + (alpha1 * (e * e));
d.zeroize();
eta.zeroize();
alpha1.zeroize();
let res = PlusStruct {
A: *A,
A1: *A1,
B: *B,
r1: *r1,
s1: *s1,
d1: *d1,
L: L.drain(..).map(|L| *L).collect(),
R: R.drain(..).map(|R| *R).collect(),
};
debug_assert!(res.verify(rng, &commitments_points));
res
}
#[must_use]
fn verify_core<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
// Verify commitments are valid
if commitments.is_empty() || (commitments.len() > MAX_M) {
return false;
}
// Verify L and R are properly sized
if self.L.len() != self.R.len() {
return false;
}
let (logMN, M, MN) = MN(commitments.len());
if self.L.len() != logMN {
return false;
}
// Rebuild all challenges
let (mut cache, commitments) = hash_plus(commitments.iter().cloned());
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes()]);
let yinv = y.invert().unwrap();
let z = hash_to_scalar(&y.to_bytes());
cache = z;
let mut w = Vec::with_capacity(logMN);
let mut winv = Vec::with_capacity(logMN);
for (L, R) in self.L.iter().zip(&self.R) {
w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]));
winv.push(cache.invert().unwrap());
}
let e = hash_cache(&mut cache, &[self.A1.compress().to_bytes(), self.B.compress().to_bytes()]);
// Convert the proof from * INV_EIGHT to its actual form
let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor());
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
let A = normalize(&self.A);
let A1 = normalize(&self.A1);
let B = normalize(&self.B);
let mut commitments = commitments.iter().map(|c| c.mul_by_cofactor()).collect::<Vec<_>>();
// Verify it
let mut proof = Vec::with_capacity(logMN + 5 + (2 * (MN + logMN)));
let mut yMN = y;
for _ in 0 .. logMN {
yMN *= yMN;
}
let yMNy = yMN * y;
let (zpow, d) = d(z, M, MN);
let zsq = zpow[0];
let esq = e * e;
let minus_esq = -esq;
let commitment_weight = minus_esq * yMNy;
for (i, commitment) in commitments.drain(..).enumerate() {
proof.push((commitment_weight * zpow[i], commitment));
}
// Invert B, instead of the Scalar, as the latter is only 2x as expensive yet enables reduction
// to a single addition under vartime for the first BP verified in the batch, which is expected
// to be much more significant
proof.push((Scalar::one(), -B));
proof.push((-e, A1));
proof.push((minus_esq, A));
proof.push((Scalar(self.d1), G));
let d_sum = zpow.sum() * Scalar::from(u64::MAX);
let y_sum = weighted_powers(y, MN).sum();
proof.push((
Scalar(self.r1 * y.0 * self.s1) + (esq * ((yMNy * z * d_sum) + ((zsq - z) * y_sum))),
*H,
));
let w_cache = challenge_products(&w, &winv);
let mut e_r1_y = e * Scalar(self.r1);
let e_s1 = e * Scalar(self.s1);
let esq_z = esq * z;
let minus_esq_z = -esq_z;
let mut minus_esq_y = minus_esq * yMN;
for i in 0 .. MN {
proof.push((e_r1_y * w_cache[i] + esq_z, GENERATORS.G[i]));
proof.push((
(e_s1 * w_cache[(!i) & (MN - 1)]) + minus_esq_z + (minus_esq_y * d[i]),
GENERATORS.H[i],
));
e_r1_y *= yinv;
minus_esq_y *= yinv;
}
for i in 0 .. logMN {
proof.push((minus_esq * w[i] * w[i], L[i]));
proof.push((minus_esq * winv[i] * winv[i], R[i]));
}
verifier.queue(rng, id, proof);
true
}
#[must_use]
pub(crate) fn verify<R: RngCore + CryptoRng>(
&self,
rng: &mut R,
commitments: &[DalekPoint],
) -> bool {
let mut verifier = BatchVerifier::new(1);
if self.verify_core(rng, &mut verifier, (), commitments) {
verifier.verify_vartime()
} else {
false
}
}
#[must_use]
pub(crate) fn batch_verify<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
self.verify_core(rng, verifier, id, commitments)
}
}

View File

@@ -0,0 +1,136 @@
use core::ops::{Add, Sub, Mul, Index};
use zeroize::{Zeroize, ZeroizeOnDrop};
use group::ff::Field;
use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::multiexp;
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub(crate) struct ScalarVector(pub(crate) Vec<Scalar>);
macro_rules! math_op {
($Op: ident, $op: ident, $f: expr) => {
impl $Op<Scalar> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
impl $Op<Scalar> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
impl $Op<ScalarVector> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
impl $Op<&ScalarVector> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: &ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
};
}
math_op!(Add, add, |(a, b): (&Scalar, &Scalar)| *a + *b);
math_op!(Sub, sub, |(a, b): (&Scalar, &Scalar)| *a - *b);
math_op!(Mul, mul, |(a, b): (&Scalar, &Scalar)| *a * *b);
impl ScalarVector {
pub(crate) fn new(len: usize) -> ScalarVector {
ScalarVector(vec![Scalar::zero(); len])
}
pub(crate) fn powers(x: Scalar, len: usize) -> ScalarVector {
debug_assert!(len != 0);
let mut res = Vec::with_capacity(len);
res.push(Scalar::one());
for i in 1 .. len {
res.push(res[i - 1] * x);
}
ScalarVector(res)
}
pub(crate) fn even_powers(x: Scalar, pow: usize) -> ScalarVector {
debug_assert!(pow != 0);
// Verify pow is a power of two
debug_assert_eq!(((pow - 1) & pow), 0);
let xsq = x * x;
let mut res = ScalarVector(Vec::with_capacity(pow / 2));
res.0.push(xsq);
let mut prev = 2;
while prev < pow {
res.0.push(res[res.len() - 1] * xsq);
prev += 2;
}
res
}
pub(crate) fn sum(mut self) -> Scalar {
self.0.drain(..).sum()
}
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn split(self) -> (ScalarVector, ScalarVector) {
let (l, r) = self.0.split_at(self.0.len() / 2);
(ScalarVector(l.to_vec()), ScalarVector(r.to_vec()))
}
}
impl Index<usize> for ScalarVector {
type Output = Scalar;
fn index(&self, index: usize) -> &Scalar {
&self.0[index]
}
}
pub(crate) fn inner_product(a: &ScalarVector, b: &ScalarVector) -> Scalar {
(a * b).sum()
}
pub(crate) fn weighted_powers(x: Scalar, len: usize) -> ScalarVector {
ScalarVector(ScalarVector::powers(x, len + 1).0[1 ..].to_vec())
}
pub(crate) fn weighted_inner_product(a: &ScalarVector, b: &ScalarVector, y: Scalar) -> Scalar {
// y ** 0 is not used as a power
(a * b * weighted_powers(y, a.len())).sum()
}
impl Mul<&[EdwardsPoint]> for &ScalarVector {
type Output = EdwardsPoint;
fn mul(self, b: &[EdwardsPoint]) -> EdwardsPoint {
debug_assert_eq!(self.len(), b.len());
multiexp(&self.0.iter().cloned().zip(b.iter().cloned()).collect::<Vec<_>>())
}
}
pub(crate) fn hadamard_fold(
l: &[EdwardsPoint],
r: &[EdwardsPoint],
a: Scalar,
b: Scalar,
) -> Vec<EdwardsPoint> {
let mut res = Vec::with_capacity(l.len() / 2);
for i in 0 .. l.len() {
res.push(multiexp(&[(a, l[i]), (b, r[i])]));
}
res
}

View File

@@ -1,65 +1,73 @@
#![allow(non_snake_case)]
use core::ops::Deref;
use std::io::{self, Read, Write};
use lazy_static::lazy_static;
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use subtle::{ConstantTimeEq, Choice, CtOption};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
scalar::Scalar,
traits::VartimePrecomputedMultiscalarMul,
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation}
traits::{IsIdentity, VartimePrecomputedMultiscalarMul},
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation},
};
use crate::{
Commitment, random_scalar, hash_to_scalar,
transaction::RING_LEN,
wallet::decoys::Decoys,
ringct::hash_to_point,
serialize::*
Commitment, random_scalar, hash_to_scalar, wallet::decoys::Decoys, ringct::hash_to_point,
serialize::*,
};
#[cfg(feature = "multisig")]
mod multisig;
#[cfg(feature = "multisig")]
pub use multisig::{ClsagDetails, ClsagMultisig};
pub use multisig::{ClsagDetails, ClsagAddendum, ClsagMultisig};
#[cfg(feature = "multisig")]
pub(crate) use multisig::add_key_image_share;
lazy_static! {
static ref INV_EIGHT: Scalar = Scalar::from(8u8).invert();
}
#[derive(Clone, Error, Debug)]
/// Errors returned when CLSAG signing fails.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Error)]
pub enum ClsagError {
#[error("internal error ({0})")]
InternalError(String),
InternalError(&'static str),
#[error("invalid ring")]
InvalidRing,
#[error("invalid ring member (member {0}, ring size {1})")]
InvalidRingMember(u8, u8),
#[error("invalid commitment")]
InvalidCommitment,
#[error("invalid key image")]
InvalidImage,
#[error("invalid D")]
InvalidD,
#[error("invalid s")]
InvalidS,
#[error("invalid c1")]
InvalidC1
InvalidC1,
}
#[derive(Clone, PartialEq, Debug)]
/// Input being signed for.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct ClsagInput {
// The actual commitment for the true spend
pub commitment: Commitment,
pub(crate) commitment: Commitment,
// True spend index, offsets, and ring
pub decoys: Decoys
pub(crate) decoys: Decoys,
}
impl ClsagInput {
pub fn new(
commitment: Commitment,
decoys: Decoys
) -> Result<ClsagInput, ClsagError> {
pub fn new(commitment: Commitment, decoys: Decoys) -> Result<ClsagInput, ClsagError> {
let n = decoys.len();
if n > u8::MAX.into() {
Err(ClsagError::InternalError("max ring size in this library is u8 max".to_string()))?;
Err(ClsagError::InternalError("max ring size in this library is u8 max"))?;
}
let n = u8::try_from(n).unwrap();
if decoys.i >= n {
@@ -75,10 +83,10 @@ impl ClsagInput {
}
}
#[allow(clippy::large_enum_variant)]
enum Mode {
Sign(usize, EdwardsPoint, EdwardsPoint),
#[cfg(feature = "experimental")]
Verify(Scalar)
Verify(Scalar),
}
// Core of the CLSAG algorithm, applicable to both sign and verify with minimal differences
@@ -90,7 +98,7 @@ fn core(
msg: &[u8; 32],
D: &EdwardsPoint,
s: &[Scalar],
A_c1: Mode
A_c1: Mode,
) -> ((EdwardsPoint, Scalar, Scalar), Scalar) {
let n = ring.len();
@@ -99,13 +107,17 @@ fn core(
// Generate the transcript
// Instead of generating multiple, a single transcript is created and then edited as needed
let mut to_hash = vec![];
to_hash.reserve_exact(((2 * n) + 5) * 32);
const PREFIX: &[u8] = "CLSAG_".as_bytes();
const AGG_0: &[u8] = "CLSAG_agg_0".as_bytes();
const ROUND: &[u8] = "round".as_bytes();
const PREFIX: &[u8] = b"CLSAG_";
#[rustfmt::skip]
const AGG_0: &[u8] = b"agg_0";
#[rustfmt::skip]
const ROUND: &[u8] = b"round";
const PREFIX_AGG_0_LEN: usize = PREFIX.len() + AGG_0.len();
let mut to_hash = Vec::with_capacity(((2 * n) + 5) * 32);
to_hash.extend(PREFIX);
to_hash.extend(AGG_0);
to_hash.extend([0; 32 - AGG_0.len()]);
to_hash.extend([0; 32 - PREFIX_AGG_0_LEN]);
let mut P = Vec::with_capacity(n);
for member in ring {
@@ -125,7 +137,7 @@ fn core(
// mu_P with agg_0
let mu_P = hash_to_scalar(&to_hash);
// mu_C with agg_1
to_hash[AGG_0.len() - 1] = b'1';
to_hash[PREFIX_AGG_0_LEN - 1] = b'1';
let mu_C = hash_to_scalar(&to_hash);
// Truncate it for the round transcript, altering the DST as needed
@@ -149,9 +161,8 @@ fn core(
to_hash.extend(A.compress().to_bytes());
to_hash.extend(AH.compress().to_bytes());
c = hash_to_scalar(&to_hash);
},
}
#[cfg(feature = "experimental")]
Mode::Verify(c1) => {
start = 0;
end = n;
@@ -160,11 +171,12 @@ fn core(
}
// Perform the core loop
let mut c1 = None;
let mut c1 = CtOption::new(Scalar::zero(), Choice::from(0));
for i in (start .. end).map(|i| i % n) {
if i == 0 {
c1 = Some(c);
}
// This will only execute once and shouldn't need to be constant time. Making it constant time
// removes the risk of branch prediction creating timing differences depending on ring index
// however
c1 = c1.or_else(|| CtOption::new(c, i.ct_eq(&0)));
let c_p = mu_P * c;
let c_c = mu_C * c;
@@ -184,11 +196,12 @@ fn core(
((D, c * mu_P, c * mu_C), c1.unwrap_or(c))
}
#[derive(Clone, PartialEq, Debug)]
/// CLSAG signature, as used in Monero.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Clsag {
pub D: EdwardsPoint,
pub s: Vec<Scalar>,
pub c1: Scalar
pub c1: Scalar,
}
impl Clsag {
@@ -201,7 +214,7 @@ impl Clsag {
mask: Scalar,
msg: &[u8; 32],
A: EdwardsPoint,
AH: EdwardsPoint
AH: EdwardsPoint,
) -> (Clsag, EdwardsPoint, Scalar, Scalar) {
let r: usize = input.decoys.i.into();
@@ -214,27 +227,21 @@ impl Clsag {
for _ in 0 .. input.decoys.ring.len() {
s.push(random_scalar(rng));
}
let ((D, p, c), c1) = core(&input.decoys.ring, I, &pseudo_out, msg, &D, &s, Mode::Sign(r, A, AH));
let ((D, p, c), c1) =
core(&input.decoys.ring, I, &pseudo_out, msg, &D, &s, Mode::Sign(r, A, AH));
(
Clsag { D, s, c1 },
pseudo_out,
p,
c * z
)
(Clsag { D, s, c1 }, pseudo_out, p, c * z)
}
// Single signer CLSAG
/// Generate CLSAG signatures for the given inputs.
/// inputs is of the form (private key, key image, input).
/// sum_outputs is for the sum of the outputs' commitment masks.
pub fn sign<R: RngCore + CryptoRng>(
rng: &mut R,
inputs: &[(Scalar, EdwardsPoint, ClsagInput)],
mut inputs: Vec<(Zeroizing<Scalar>, EdwardsPoint, ClsagInput)>,
sum_outputs: Scalar,
msg: [u8; 32]
msg: [u8; 32],
) -> Vec<(Clsag, EdwardsPoint)> {
let nonce = random_scalar(rng);
let mut rand_source = [0; 64];
rng.fill_bytes(&mut rand_source);
let mut res = Vec::with_capacity(inputs.len());
let mut sum_pseudo_outs = Scalar::zero();
for i in 0 .. inputs.len() {
@@ -245,18 +252,25 @@ impl Clsag {
sum_pseudo_outs += mask;
}
let mut rand_source = [0; 64];
rng.fill_bytes(&mut rand_source);
let mut nonce = Zeroizing::new(random_scalar(rng));
let (mut clsag, pseudo_out, p, c) = Clsag::sign_core(
rng,
&inputs[i].1,
&inputs[i].2,
mask,
&msg,
&nonce * &ED25519_BASEPOINT_TABLE,
nonce * hash_to_point(inputs[i].2.decoys.ring[usize::from(inputs[i].2.decoys.i)][0])
nonce.deref() * &ED25519_BASEPOINT_TABLE,
nonce.deref() *
hash_to_point(inputs[i].2.decoys.ring[usize::from(inputs[i].2.decoys.i)][0]),
);
clsag.s[usize::from(inputs[i].2.decoys.i)] = nonce - ((p * inputs[i].0) + c);
clsag.s[usize::from(inputs[i].2.decoys.i)] =
(-((p * inputs[i].0.deref()) + c)) + nonce.deref();
inputs[i].0.zeroize();
nonce.zeroize();
debug_assert!(clsag
.verify(&inputs[i].2.decoys.ring, &inputs[i].1, &pseudo_out, &msg)
.is_ok());
res.push((clsag, pseudo_out));
}
@@ -264,97 +278,49 @@ impl Clsag {
res
}
// Not extensively tested nor guaranteed to have expected parity with Monero
#[cfg(feature = "experimental")]
pub fn rust_verify(
/// Verify the CLSAG signature against the given Transaction data.
pub fn verify(
&self,
ring: &[[EdwardsPoint; 2]],
I: &EdwardsPoint,
pseudo_out: &EdwardsPoint,
msg: &[u8; 32]
msg: &[u8; 32],
) -> Result<(), ClsagError> {
let (_, c1) = core(
ring,
I,
pseudo_out,
msg,
&self.D.mul_by_cofactor(),
&self.s,
Mode::Verify(self.c1)
);
// Preliminary checks. s, c1, and points must also be encoded canonically, which isn't checked
// here
if ring.is_empty() {
Err(ClsagError::InvalidRing)?;
}
if ring.len() != self.s.len() {
Err(ClsagError::InvalidS)?;
}
if I.is_identity() {
Err(ClsagError::InvalidImage)?;
}
let D = self.D.mul_by_cofactor();
if D.is_identity() {
Err(ClsagError::InvalidD)?;
}
let (_, c1) = core(ring, I, pseudo_out, msg, &D, &self.s, Mode::Verify(self.c1));
if c1 != self.c1 {
Err(ClsagError::InvalidC1)?;
}
Ok(())
}
pub(crate) fn fee_weight() -> usize {
(RING_LEN * 32) + 32 + 32
pub(crate) fn fee_weight(ring_len: usize) -> usize {
(ring_len * 32) + 32 + 32
}
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_raw_vec(write_scalar, &self.s, w)?;
w.write_all(&self.c1.to_bytes())?;
write_point(&self.D, w)
}
pub fn deserialize<R: std::io::Read>(decoys: usize, r: &mut R) -> std::io::Result<Clsag> {
Ok(
Clsag {
s: read_raw_vec(read_scalar, decoys, r)?,
c1: read_scalar(r)?,
D: read_point(r)?
}
)
}
pub fn verify(
&self,
ring: &[[EdwardsPoint; 2]],
I: &EdwardsPoint,
pseudo_out: &EdwardsPoint,
msg: &[u8; 32]
) -> Result<(), ClsagError> {
// Serialize it to pass the struct to Monero without extensive FFI
let mut serialized = Vec::with_capacity(1 + ((self.s.len() + 2) * 32));
write_varint(&self.s.len().try_into().unwrap(), &mut serialized).unwrap();
self.serialize(&mut serialized).unwrap();
let I_bytes = I.compress().to_bytes();
let mut ring_bytes = vec![];
for member in ring {
ring_bytes.extend(&member[0].compress().to_bytes());
ring_bytes.extend(&member[1].compress().to_bytes());
}
let pseudo_out_bytes = pseudo_out.compress().to_bytes();
unsafe {
// Uses Monero's C verification function to ensure compatibility with Monero
#[link(name = "wrapper")]
extern "C" {
pub(crate) fn c_verify_clsag(
serialized_len: usize,
serialized: *const u8,
ring_size: u8,
ring: *const u8,
I: *const u8,
pseudo_out: *const u8,
msg: *const u8
) -> bool;
}
if c_verify_clsag(
serialized.len(), serialized.as_ptr(),
u8::try_from(ring.len()).map_err(|_| ClsagError::InternalError("too large ring".to_string()))?,
ring_bytes.as_ptr(),
I_bytes.as_ptr(), pseudo_out_bytes.as_ptr(), msg.as_ptr()
) {
Ok(())
} else {
Err(ClsagError::InvalidC1)
}
}
pub fn read<R: Read>(decoys: usize, r: &mut R) -> io::Result<Clsag> {
Ok(Clsag { s: read_raw_vec(read_scalar, decoys, r)?, c1: read_scalar(r)?, D: read_point(r)? })
}
}

View File

@@ -1,44 +1,57 @@
use core::fmt::Debug;
use std::{io::Read, sync::{Arc, RwLock}};
use core::{ops::Deref, fmt::Debug};
use std::{
io::{self, Read, Write},
sync::{Arc, RwLock},
};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha12Rng;
use rand_chacha::ChaCha20Rng;
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
traits::{Identity, IsIdentity},
scalar::Scalar,
edwards::EdwardsPoint
edwards::EdwardsPoint,
};
use group::Group;
use group::{ff::Field, Group, GroupEncoding};
use transcript::{Transcript, RecommendedTranscript};
use frost::{curve::Ed25519, FrostError, FrostView, algorithm::Algorithm};
use dalek_ff_group as dfg;
use crate::{
frost::{MultisigError, write_dleq, read_dleq},
ringct::{hash_to_point, clsag::{ClsagInput, Clsag}}
use dleq::DLEqProof;
use frost::{
dkg::lagrange,
curve::Ed25519,
FrostError, ThresholdKeys, ThresholdView,
algorithm::{WriteAddendum, Algorithm},
};
use crate::ringct::{
hash_to_point,
clsag::{ClsagInput, Clsag},
};
fn dleq_transcript() -> RecommendedTranscript {
RecommendedTranscript::new(b"monero_key_image_dleq")
}
impl ClsagInput {
fn transcript<T: Transcript>(&self, transcript: &mut T) {
// Doesn't domain separate as this is considered part of the larger CLSAG proof
// Ring index
transcript.append_message(b"ring_index", &[self.decoys.i]);
transcript.append_message(b"real_spend", [self.decoys.i]);
// Ring
let mut ring = vec![];
for pair in &self.decoys.ring {
for (i, pair) in self.decoys.ring.iter().enumerate() {
// Doesn't include global output indexes as CLSAG doesn't care and won't be affected by it
// They're just a unreliable reference to this data which will be included in the message
// if in use
ring.extend(&pair[0].compress().to_bytes());
ring.extend(&pair[1].compress().to_bytes());
transcript.append_message(b"member", [u8::try_from(i).expect("ring size exceeded 255")]);
transcript.append_message(b"key", pair[0].compress().to_bytes());
transcript.append_message(b"commitment", pair[1].compress().to_bytes())
}
transcript.append_message(b"ring", &ring);
// Doesn't include the commitment's parts as the above ring + index includes the commitment
// The only potential malleability would be if the G/H relationship is known breaking the
@@ -46,10 +59,11 @@ impl ClsagInput {
}
}
#[derive(Clone, Debug)]
/// CLSAG input and the mask to use for it.
#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
pub struct ClsagDetails {
input: ClsagInput,
mask: Scalar
mask: Scalar,
}
impl ClsagDetails {
@@ -58,54 +72,64 @@ impl ClsagDetails {
}
}
/// Addendum produced during the FROST signing process with relevant data.
#[derive(Clone, PartialEq, Eq, Zeroize, Debug)]
pub struct ClsagAddendum {
pub(crate) key_image: dfg::EdwardsPoint,
dleq: DLEqProof<dfg::EdwardsPoint>,
}
impl WriteAddendum for ClsagAddendum {
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.key_image.compress().to_bytes().as_ref())?;
self.dleq.write(writer)
}
}
#[allow(non_snake_case)]
#[derive(Clone, PartialEq, Debug)]
#[derive(Clone, PartialEq, Eq, Debug)]
struct Interim {
p: Scalar,
c: Scalar,
clsag: Clsag,
pseudo_out: EdwardsPoint
pseudo_out: EdwardsPoint,
}
/// FROST algorithm for producing a CLSAG signature.
#[allow(non_snake_case)]
#[derive(Clone, Debug)]
pub struct ClsagMultisig {
transcript: RecommendedTranscript,
H: EdwardsPoint,
// Merged here as CLSAG needs it, passing it would be a mess, yet having it beforehand requires a round
pub(crate) H: EdwardsPoint,
// Merged here as CLSAG needs it, passing it would be a mess, yet having it beforehand requires
// an extra round
image: EdwardsPoint,
details: Arc<RwLock<Option<ClsagDetails>>>,
msg: Option<[u8; 32]>,
interim: Option<Interim>
interim: Option<Interim>,
}
impl ClsagMultisig {
pub fn new(
transcript: RecommendedTranscript,
output_key: EdwardsPoint,
details: Arc<RwLock<Option<ClsagDetails>>>
) -> Result<ClsagMultisig, MultisigError> {
Ok(
ClsagMultisig {
transcript,
details: Arc<RwLock<Option<ClsagDetails>>>,
) -> ClsagMultisig {
ClsagMultisig {
transcript,
H: hash_to_point(output_key),
image: EdwardsPoint::identity(),
H: hash_to_point(output_key),
image: EdwardsPoint::identity(),
details,
details,
msg: None,
interim: None
}
)
}
pub const fn serialized_len() -> usize {
32 + (2 * 32)
msg: None,
interim: None,
}
}
fn input(&self) -> ClsagInput {
@@ -117,8 +141,23 @@ impl ClsagMultisig {
}
}
pub(crate) fn add_key_image_share(
image: &mut EdwardsPoint,
generator: EdwardsPoint,
offset: Scalar,
included: &[u16],
participant: u16,
share: EdwardsPoint,
) {
if image.is_identity() {
*image = generator * offset;
}
*image += share * lagrange::<dfg::Scalar>(participant, included).0;
}
impl Algorithm<Ed25519> for ClsagMultisig {
type Transcript = RecommendedTranscript;
type Addendum = ClsagAddendum;
type Signature = (Clsag, EdwardsPoint);
fn nonces(&self) -> Vec<Vec<dfg::EdwardsPoint>> {
@@ -128,35 +167,70 @@ impl Algorithm<Ed25519> for ClsagMultisig {
fn preprocess_addendum<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
view: &FrostView<Ed25519>
) -> Vec<u8> {
let mut serialized = Vec::with_capacity(Self::serialized_len());
serialized.extend((view.secret_share().0 * self.H).compress().to_bytes());
serialized.extend(write_dleq(rng, self.H, view.secret_share().0));
serialized
keys: &ThresholdKeys<Ed25519>,
) -> ClsagAddendum {
ClsagAddendum {
key_image: dfg::EdwardsPoint(self.H) * keys.secret_share().deref(),
dleq: DLEqProof::prove(
rng,
// Doesn't take in a larger transcript object due to the usage of this
// Every prover would immediately write their own DLEq proof, when they can only do so in
// the proper order if they want to reach consensus
// It'd be a poor API to have CLSAG define a new transcript solely to pass here, just to
// try to merge later in some form, when it should instead just merge xH (as it does)
&mut dleq_transcript(),
&[dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(self.H)],
keys.secret_share(),
),
}
}
fn process_addendum<Re: Read>(
&mut self,
view: &FrostView<Ed25519>,
l: u16,
serialized: &mut Re
) -> Result<(), FrostError> {
if self.image.is_identity().into() {
self.transcript.domain_separate(b"CLSAG");
self.input().transcript(&mut self.transcript);
self.transcript.append_message(b"mask", &self.mask().to_bytes());
fn read_addendum<R: Read>(&self, reader: &mut R) -> io::Result<ClsagAddendum> {
let mut bytes = [0; 32];
reader.read_exact(&mut bytes)?;
// dfg ensures the point is torsion free
let xH = Option::<dfg::EdwardsPoint>::from(dfg::EdwardsPoint::from_bytes(&bytes))
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid key image"))?;
// Ensure this is a canonical point
if xH.to_bytes() != bytes {
Err(io::Error::new(io::ErrorKind::Other, "non-canonical key image"))?;
}
self.transcript.append_message(b"participant", &l.to_be_bytes());
let image = read_dleq(
serialized,
Ok(ClsagAddendum { key_image: xH, dleq: DLEqProof::<dfg::EdwardsPoint>::read(reader)? })
}
fn process_addendum(
&mut self,
view: &ThresholdView<Ed25519>,
l: u16,
addendum: ClsagAddendum,
) -> Result<(), FrostError> {
if self.image.is_identity() {
self.transcript.domain_separate(b"CLSAG");
self.input().transcript(&mut self.transcript);
self.transcript.append_message(b"mask", self.mask().to_bytes());
}
self.transcript.append_message(b"participant", l.to_be_bytes());
addendum
.dleq
.verify(
&mut dleq_transcript(),
&[dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(self.H)],
&[view.original_verification_share(l), addendum.key_image],
)
.map_err(|_| FrostError::InvalidPreprocess(l))?;
self.transcript.append_message(b"key_image_share", addendum.key_image.compress().to_bytes());
add_key_image_share(
&mut self.image,
self.H,
view.offset().0,
view.included(),
l,
view.verification_share(l)
).map_err(|_| FrostError::InvalidCommitment(l))?.0;
self.transcript.append_message(b"key_image_share", image.compress().to_bytes().as_ref());
self.image += image;
addendum.key_image.0,
);
Ok(())
}
@@ -167,17 +241,17 @@ impl Algorithm<Ed25519> for ClsagMultisig {
fn sign_share(
&mut self,
view: &FrostView<Ed25519>,
view: &ThresholdView<Ed25519>,
nonce_sums: &[Vec<dfg::EdwardsPoint>],
nonces: &[dfg::Scalar],
msg: &[u8]
nonces: Vec<Zeroizing<dfg::Scalar>>,
msg: &[u8],
) -> dfg::Scalar {
// Use the transcript to get a seeded random number generator
// The transcript contains private data, preventing passive adversaries from recreating this
// process even if they have access to commitments (specifically, the ring index being signed
// for, along with the mask which should not only require knowing the shared keys yet also the
// input commitment masks)
let mut rng = ChaCha12Rng::from_seed(self.transcript.rng_seed(b"decoy_responses"));
let mut rng = ChaCha20Rng::from_seed(self.transcript.rng_seed(b"decoy_responses"));
self.msg = Some(msg.try_into().expect("CLSAG message should be 32-bytes"));
@@ -187,15 +261,13 @@ impl Algorithm<Ed25519> for ClsagMultisig {
&self.image,
&self.input(),
self.mask(),
&self.msg.as_ref().unwrap(),
self.msg.as_ref().unwrap(),
nonce_sums[0][0].0,
nonce_sums[0][1].0
nonce_sums[0][1].0,
);
self.interim = Some(Interim { p, c, clsag, pseudo_out });
let share = dfg::Scalar(nonces[0].0 - (p * view.secret_share().0));
share
(-(dfg::Scalar(p) * view.secret_share().deref())) + nonces[0].deref()
}
#[must_use]
@@ -203,32 +275,36 @@ impl Algorithm<Ed25519> for ClsagMultisig {
&self,
_: dfg::EdwardsPoint,
_: &[Vec<dfg::EdwardsPoint>],
sum: dfg::Scalar
sum: dfg::Scalar,
) -> Option<Self::Signature> {
let interim = self.interim.as_ref().unwrap();
let mut clsag = interim.clsag.clone();
clsag.s[usize::from(self.input().decoys.i)] = sum.0 - interim.c;
if clsag.verify(
&self.input().decoys.ring,
&self.image,
&interim.pseudo_out,
&self.msg.as_ref().unwrap()
).is_ok() {
if clsag
.verify(
&self.input().decoys.ring,
&self.image,
&interim.pseudo_out,
self.msg.as_ref().unwrap(),
)
.is_ok()
{
return Some((clsag, interim.pseudo_out));
}
return None;
None
}
#[must_use]
fn verify_share(
&self,
verification_share: dfg::EdwardsPoint,
nonces: &[Vec<dfg::EdwardsPoint>],
share: dfg::Scalar,
) -> bool {
) -> Result<Vec<(dfg::Scalar, dfg::EdwardsPoint)>, ()> {
let interim = self.interim.as_ref().unwrap();
return (&share.0 * &ED25519_BASEPOINT_TABLE) == (
nonces[0][0].0 - (interim.p * verification_share.0)
);
Ok(vec![
(share, dfg::EdwardsPoint::generator()),
(dfg::Scalar(interim.p), verification_share),
(-dfg::Scalar::one(), nonces[0][0]),
])
}
}

View File

@@ -1,67 +1,8 @@
use subtle::ConditionallySelectable;
use curve25519_dalek::edwards::EdwardsPoint;
use curve25519_dalek::edwards::{CompressedEdwardsY, EdwardsPoint};
pub use monero_generators::{hash_to_point as raw_hash_to_point};
use group::ff::{Field, PrimeField};
use dalek_ff_group::field::FieldElement;
use crate::hash;
pub fn hash_to_point(point: EdwardsPoint) -> EdwardsPoint {
let mut bytes = point.compress().to_bytes();
unsafe {
#[link(name = "wrapper")]
extern "C" {
fn c_hash_to_point(point: *const u8);
}
c_hash_to_point(bytes.as_mut_ptr());
}
CompressedEdwardsY::from_slice(&bytes).decompress().unwrap()
}
// This works without issue. It's also 140 times slower (@ 3.5ms), and despite checking it passes
// for all branches, there still could be *some* discrepancy somewhere. There's no reason to use it
// unless we're trying to purge that section of the C static library, which we aren't right now
#[allow(dead_code)]
pub(crate) fn rust_hash_to_point(key: EdwardsPoint) -> EdwardsPoint {
#[allow(non_snake_case)]
let A = FieldElement::from(486662u64);
let v = FieldElement::from_square(hash(&key.compress().to_bytes())).double();
let w = v + FieldElement::one();
let x = w.square() + (-A.square() * v);
// This isn't the complete X, yet its initial value
// We don't calculate the full X, and instead solely calculate Y, letting dalek reconstruct X
// While inefficient, it solves API boundaries and reduces the amount of work done here
#[allow(non_snake_case)]
let X = {
let u = w;
let v = x;
let v3 = v * v * v;
let uv3 = u * v3;
let v7 = v3 * v3 * v;
let uv7 = u * v7;
uv3 * uv7.pow((-FieldElement::from(5u8)) * FieldElement::from(8u8).invert().unwrap())
};
let x = X.square() * x;
let y = w - x;
let non_zero_0 = !y.is_zero();
let y_if_non_zero_0 = w + x;
let sign = non_zero_0 & (!y_if_non_zero_0.is_zero());
let mut z = -A;
z *= FieldElement::conditional_select(&v, &FieldElement::from(1u8), sign);
#[allow(non_snake_case)]
let Z = z + w;
#[allow(non_snake_case)]
let mut Y = z - w;
Y = Y * Z.invert().unwrap();
let mut bytes = Y.to_repr();
bytes[31] |= sign.unwrap_u8() << 7;
CompressedEdwardsY(bytes).decompress().unwrap().mul_by_cofactor()
/// Monero's hash to point function, as named `ge_fromfe_frombytes_vartime`.
pub fn hash_to_point(key: EdwardsPoint) -> EdwardsPoint {
raw_hash_to_point(key.compress().to_bytes())
}

View File

@@ -1,25 +1,34 @@
use core::ops::Deref;
use std::io::{self, Read, Write};
use zeroize::Zeroizing;
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar, edwards::EdwardsPoint};
pub(crate) mod hash_to_point;
pub use hash_to_point::hash_to_point;
pub use hash_to_point::{raw_hash_to_point, hash_to_point};
/// CLSAG struct, along with signing and verifying functionality.
pub mod clsag;
/// Bulletproofs(+) structs, along with proving and verifying functionality.
pub mod bulletproofs;
use crate::{
Protocol,
serialize::*,
ringct::{clsag::Clsag, bulletproofs::Bulletproofs}
ringct::{clsag::Clsag, bulletproofs::Bulletproofs},
};
pub fn generate_key_image(secret: Scalar) -> EdwardsPoint {
secret * hash_to_point(&secret * &ED25519_BASEPOINT_TABLE)
/// Generate a key image for a given key. Defined as `x * hash_to_point(xG)`.
pub fn generate_key_image(secret: &Zeroizing<Scalar>) -> EdwardsPoint {
hash_to_point(&ED25519_BASEPOINT_TABLE * secret.deref()) * secret.deref()
}
#[derive(Clone, PartialEq, Debug)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct RctBase {
pub fee: u64,
pub ecdh_info: Vec<[u8; 8]>,
pub commitments: Vec<EdwardsPoint>
pub commitments: Vec<EdwardsPoint>,
}
impl RctBase {
@@ -27,119 +36,130 @@ impl RctBase {
1 + 8 + (outputs * (8 + 32))
}
pub fn serialize<W: std::io::Write>(&self, w: &mut W, rct_type: u8) -> std::io::Result<()> {
pub fn write<W: Write>(&self, w: &mut W, rct_type: u8) -> io::Result<()> {
w.write_all(&[rct_type])?;
match rct_type {
0 => Ok(()),
5 => {
5 | 6 => {
write_varint(&self.fee, w)?;
for ecdh in &self.ecdh_info {
w.write_all(ecdh)?;
}
write_raw_vec(write_point, &self.commitments, w)
},
_ => panic!("Serializing unknown RctType's Base")
}
_ => panic!("Serializing unknown RctType's Base"),
}
}
pub fn deserialize<R: std::io::Read>(outputs: usize, r: &mut R) -> std::io::Result<(RctBase, u8)> {
let mut rct_type = [0];
r.read_exact(&mut rct_type)?;
pub fn read<R: Read>(outputs: usize, r: &mut R) -> io::Result<(RctBase, u8)> {
let rct_type = read_byte(r)?;
Ok((
if rct_type[0] == 0 {
if rct_type == 0 {
RctBase { fee: 0, ecdh_info: vec![], commitments: vec![] }
} else {
RctBase {
fee: read_varint(r)?,
ecdh_info: (0 .. outputs).map(
|_| { let mut ecdh = [0; 8]; r.read_exact(&mut ecdh).map(|_| ecdh) }
).collect::<Result<_, _>>()?,
commitments: read_raw_vec(read_point, outputs, r)?
ecdh_info: (0 .. outputs).map(|_| read_bytes(r)).collect::<Result<_, _>>()?,
commitments: read_raw_vec(read_point, outputs, r)?,
}
},
rct_type[0]
rct_type,
))
}
}
#[derive(Clone, PartialEq, Debug)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum RctPrunable {
Null,
Clsag {
bulletproofs: Vec<Bulletproofs>,
clsags: Vec<Clsag>,
pseudo_outs: Vec<EdwardsPoint>
}
Clsag { bulletproofs: Vec<Bulletproofs>, clsags: Vec<Clsag>, pseudo_outs: Vec<EdwardsPoint> },
}
impl RctPrunable {
/// RCT Type byte for a given RctPrunable struct.
pub fn rct_type(&self) -> u8 {
match self {
RctPrunable::Null => 0,
RctPrunable::Clsag { .. } => 5
RctPrunable::Clsag { bulletproofs, .. } => {
if matches!(bulletproofs[0], Bulletproofs::Original { .. }) {
5
} else {
6
}
}
}
}
pub(crate) fn fee_weight(inputs: usize, outputs: usize) -> usize {
1 + Bulletproofs::fee_weight(outputs) + (inputs * (Clsag::fee_weight() + 32))
pub(crate) fn fee_weight(protocol: Protocol, inputs: usize, outputs: usize) -> usize {
1 + Bulletproofs::fee_weight(protocol.bp_plus(), outputs) +
(inputs * (Clsag::fee_weight(protocol.ring_len()) + 32))
}
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
match self {
RctPrunable::Null => Ok(()),
RctPrunable::Clsag { bulletproofs, clsags, pseudo_outs } => {
write_vec(Bulletproofs::serialize, &bulletproofs, w)?;
write_raw_vec(Clsag::serialize, &clsags, w)?;
write_raw_vec(write_point, &pseudo_outs, w)
RctPrunable::Clsag { bulletproofs, clsags, pseudo_outs, .. } => {
write_vec(Bulletproofs::write, bulletproofs, w)?;
write_raw_vec(Clsag::write, clsags, w)?;
write_raw_vec(write_point, pseudo_outs, w)
}
}
}
pub fn deserialize<R: std::io::Read>(
rct_type: u8,
decoys: &[usize],
r: &mut R
) -> std::io::Result<RctPrunable> {
Ok(
match rct_type {
0 => RctPrunable::Null,
5 => RctPrunable::Clsag {
// TODO: Can the amount of outputs be calculated from the BPs for any validly formed TX?
bulletproofs: read_vec(Bulletproofs::deserialize, r)?,
clsags: (0 .. decoys.len()).map(|o| Clsag::deserialize(decoys[o], r)).collect::<Result<_, _>>()?,
pseudo_outs: read_raw_vec(read_point, decoys.len(), r)?
},
_ => Err(std::io::Error::new(std::io::ErrorKind::Other, "Tried to deserialize unknown RCT type"))?
}
)
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).unwrap();
serialized
}
pub fn signature_serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
pub fn read<R: Read>(rct_type: u8, decoys: &[usize], r: &mut R) -> io::Result<RctPrunable> {
Ok(match rct_type {
0 => RctPrunable::Null,
5 | 6 => RctPrunable::Clsag {
bulletproofs: read_vec(
if rct_type == 5 { Bulletproofs::read } else { Bulletproofs::read_plus },
r,
)?,
clsags: (0 .. decoys.len()).map(|o| Clsag::read(decoys[o], r)).collect::<Result<_, _>>()?,
pseudo_outs: read_raw_vec(read_point, decoys.len(), r)?,
},
_ => Err(io::Error::new(io::ErrorKind::Other, "Tried to deserialize unknown RCT type"))?,
})
}
pub(crate) fn signature_write<W: Write>(&self, w: &mut W) -> io::Result<()> {
match self {
RctPrunable::Null => panic!("Serializing RctPrunable::Null for a signature"),
RctPrunable::Clsag { bulletproofs, .. } => bulletproofs.iter().map(|bp| bp.signature_serialize(w)).collect(),
RctPrunable::Clsag { bulletproofs, .. } => {
bulletproofs.iter().try_for_each(|bp| bp.signature_write(w))
}
}
}
}
#[derive(Clone, PartialEq, Debug)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct RctSignatures {
pub base: RctBase,
pub prunable: RctPrunable
pub prunable: RctPrunable,
}
impl RctSignatures {
pub(crate) fn fee_weight(inputs: usize, outputs: usize) -> usize {
RctBase::fee_weight(outputs) + RctPrunable::fee_weight(inputs, outputs)
pub(crate) fn fee_weight(protocol: Protocol, inputs: usize, outputs: usize) -> usize {
RctBase::fee_weight(outputs) + RctPrunable::fee_weight(protocol, inputs, outputs)
}
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
self.base.serialize(w, self.prunable.rct_type())?;
self.prunable.serialize(w)
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.base.write(w, self.prunable.rct_type())?;
self.prunable.write(w)
}
pub fn deserialize<R: std::io::Read>(decoys: Vec<usize>, outputs: usize, r: &mut R) -> std::io::Result<RctSignatures> {
let base = RctBase::deserialize(outputs, r)?;
Ok(RctSignatures { base: base.0, prunable: RctPrunable::deserialize(base.1, &decoys, r)? })
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).unwrap();
serialized
}
pub fn read<R: Read>(decoys: Vec<usize>, outputs: usize, r: &mut R) -> io::Result<RctSignatures> {
let base = RctBase::read(outputs, r)?;
Ok(RctSignatures { base: base.0, prunable: RctPrunable::read(base.1, &decoys, r)? })
}
}

View File

@@ -5,25 +5,47 @@ use thiserror::Error;
use curve25519_dalek::edwards::{EdwardsPoint, CompressedEdwardsY};
use serde::{Serialize, Deserialize, de::DeserializeOwned};
use serde_json::json;
use serde_json::{Value, json};
use reqwest;
use digest_auth::AuthContext;
use reqwest::{Client, RequestBuilder};
use crate::{transaction::{Input, Timelock, Transaction}, block::Block, wallet::Fee};
use crate::{
Protocol,
transaction::{Input, Timelock, Transaction},
block::Block,
wallet::Fee,
};
#[derive(Deserialize, Debug)]
pub struct EmptyResponse {}
#[derive(Deserialize, Debug)]
pub struct JsonRpcResponse<T> {
result: T
result: T,
}
#[derive(Clone, Error, Debug)]
#[derive(Deserialize, Debug)]
struct TransactionResponse {
tx_hash: String,
block_height: Option<usize>,
as_hex: String,
pruned_as_hex: String,
}
#[derive(Deserialize, Debug)]
struct TransactionsResponse {
#[serde(default)]
missed_tx: Vec<String>,
txs: Vec<TransactionResponse>,
}
#[derive(Clone, PartialEq, Eq, Debug, Error)]
pub enum RpcError {
#[error("internal error ({0})")]
InternalError(String),
InternalError(&'static str),
#[error("connection error")]
ConnectionError,
#[error("invalid node")]
InvalidNode,
#[error("transactions not found")]
TransactionsNotFound(Vec<[u8; 32]>),
#[error("invalid point ({0})")]
@@ -31,33 +53,78 @@ pub enum RpcError {
#[error("pruned transaction")]
PrunedTransaction,
#[error("invalid transaction ({0:?})")]
InvalidTransaction([u8; 32])
InvalidTransaction([u8; 32]),
}
fn rpc_hex(value: &str) -> Result<Vec<u8>, RpcError> {
hex::decode(value).map_err(|_| RpcError::InternalError("Monero returned invalid hex".to_string()))
hex::decode(value).map_err(|_| RpcError::InvalidNode)
}
fn hash_hex(hash: &str) -> Result<[u8; 32], RpcError> {
rpc_hex(hash)?.try_into().map_err(|_| RpcError::InvalidNode)
}
fn rpc_point(point: &str) -> Result<EdwardsPoint, RpcError> {
CompressedEdwardsY(
rpc_hex(point)?.try_into().map_err(|_| RpcError::InvalidPoint(point.to_string()))?
).decompress().ok_or(RpcError::InvalidPoint(point.to_string()))
rpc_hex(point)?.try_into().map_err(|_| RpcError::InvalidPoint(point.to_string()))?,
)
.decompress()
.ok_or_else(|| RpcError::InvalidPoint(point.to_string()))
}
#[derive(Clone, Debug)]
pub struct Rpc(String);
pub struct Rpc {
client: Client,
userpass: Option<(String, String)>,
url: String,
}
impl Rpc {
pub fn new(daemon: String) -> Rpc {
Rpc(daemon)
/// Create a new RPC connection.
/// A daemon requiring authentication can be used via including the username and password in the
/// URL.
pub fn new(mut url: String) -> Result<Rpc, RpcError> {
// Parse out the username and password
let userpass = if url.contains('@') {
let url_clone = url.clone();
let split_url = url_clone.split('@').collect::<Vec<_>>();
if split_url.len() != 2 {
Err(RpcError::InvalidNode)?;
}
let mut userpass = split_url[0];
url = split_url[1].to_string();
// If there was additionally a protocol string, restore that to the daemon URL
if userpass.contains("://") {
let split_userpass = userpass.split("://").collect::<Vec<_>>();
if split_userpass.len() != 2 {
Err(RpcError::InvalidNode)?;
}
url = split_userpass[0].to_string() + "://" + &url;
userpass = split_userpass[1];
}
let split_userpass = userpass.split(':').collect::<Vec<_>>();
if split_userpass.len() != 2 {
Err(RpcError::InvalidNode)?;
}
Some((split_userpass[0].to_string(), split_userpass[1].to_string()))
} else {
None
};
Ok(Rpc { client: Client::new(), userpass, url })
}
pub async fn rpc_call<
Params: Serialize + Debug,
Response: DeserializeOwned + Debug
>(&self, method: &str, params: Option<Params>) -> Result<Response, RpcError> {
let client = reqwest::Client::new();
let mut builder = client.post(&(self.0.clone() + "/" + method));
/// Perform a RPC call to the specified method with the provided parameters.
/// This is NOT a JSON-RPC call, which use a method of "json_rpc" and are available via
/// `json_rpc_call`.
pub async fn rpc_call<Params: Serialize + Debug, Response: DeserializeOwned + Debug>(
&self,
method: &str,
params: Option<Params>,
) -> Result<Response, RpcError> {
let mut builder = self.client.post(self.url.clone() + "/" + method);
if let Some(params) = params.as_ref() {
builder = builder.json(params);
}
@@ -65,153 +132,212 @@ impl Rpc {
self.call_tail(method, builder).await
}
pub async fn bin_call<
Response: DeserializeOwned + Debug
>(&self, method: &str, params: Vec<u8>) -> Result<Response, RpcError> {
let client = reqwest::Client::new();
let builder = client.post(&(self.0.clone() + "/" + method)).body(params);
/// Perform a JSON-RPC call to the specified method with the provided parameters
pub async fn json_rpc_call<Response: DeserializeOwned + Debug>(
&self,
method: &str,
params: Option<Value>,
) -> Result<Response, RpcError> {
let mut req = json!({ "method": method });
if let Some(params) = params {
req.as_object_mut().unwrap().insert("params".into(), params);
}
Ok(self.rpc_call::<_, JsonRpcResponse<Response>>("json_rpc", Some(req)).await?.result)
}
/// Perform a binary call to the specified method with the provided parameters.
pub async fn bin_call<Response: DeserializeOwned + Debug>(
&self,
method: &str,
params: Vec<u8>,
) -> Result<Response, RpcError> {
let builder = self.client.post(self.url.clone() + "/" + method).body(params.clone());
self.call_tail(method, builder.header("Content-Type", "application/octet-stream")).await
}
async fn call_tail<
Response: DeserializeOwned + Debug
>(&self, method: &str, builder: reqwest::RequestBuilder) -> Result<Response, RpcError> {
let res = builder
.send()
.await
.map_err(|_| RpcError::ConnectionError)?;
async fn call_tail<Response: DeserializeOwned + Debug>(
&self,
method: &str,
mut builder: RequestBuilder,
) -> Result<Response, RpcError> {
if let Some((user, pass)) = &self.userpass {
let req = self.client.post(&self.url).send().await.map_err(|_| RpcError::InvalidNode)?;
// Only provide authentication if this daemon actually expects it
if let Some(header) = req.headers().get("www-authenticate") {
builder = builder.header(
"Authorization",
digest_auth::parse(header.to_str().map_err(|_| RpcError::InvalidNode)?)
.map_err(|_| RpcError::InvalidNode)?
.respond(&AuthContext::new_post::<_, _, _, &[u8]>(
user,
pass,
"/".to_string() + method,
None,
))
.map_err(|_| RpcError::InvalidNode)?
.to_header_string(),
);
}
}
let res = builder.send().await.map_err(|_| RpcError::ConnectionError)?;
Ok(if !method.ends_with(".bin") {
serde_json::from_str(&res.text().await.map_err(|_| RpcError::ConnectionError)?)
.map_err(|_| RpcError::InternalError("Failed to parse JSON response"))?
} else {
monero_epee_bin_serde::from_bytes(&res.bytes().await.map_err(|_| RpcError::ConnectionError)?)
.map_err(|_| RpcError::InternalError("Failed to parse binary response"))?
})
}
/// Get the active blockchain protocol version.
pub async fn get_protocol(&self) -> Result<Protocol, RpcError> {
#[derive(Deserialize, Debug)]
struct ProtocolResponse {
major_version: usize,
}
#[derive(Deserialize, Debug)]
struct LastHeaderResponse {
block_header: ProtocolResponse,
}
Ok(
if !method.ends_with(".bin") {
serde_json::from_str(&res.text().await.map_err(|_| RpcError::ConnectionError)?)
.map_err(|_| RpcError::InternalError("Failed to parse JSON response".to_string()))?
} else {
monero_epee_bin_serde::from_bytes(&res.bytes().await.map_err(|_| RpcError::ConnectionError)?)
.map_err(|_| RpcError::InternalError("Failed to parse binary response".to_string()))?
}
match self
.json_rpc_call::<LastHeaderResponse>("get_last_block_header", None)
.await?
.block_header
.major_version
{
13 | 14 => Protocol::v14,
15 | 16 => Protocol::v16,
version => Protocol::Unsupported(version),
},
)
}
pub async fn get_height(&self) -> Result<usize, RpcError> {
#[derive(Deserialize, Debug)]
struct HeightResponse {
height: usize
height: usize,
}
Ok(self.rpc_call::<Option<()>, HeightResponse>("get_height", None).await?.height)
}
async fn get_transactions_core(
&self,
hashes: &[[u8; 32]]
) -> Result<(Vec<Result<Transaction, RpcError>>, Vec<[u8; 32]>), RpcError> {
if hashes.len() == 0 {
return Ok((vec![], vec![]));
pub async fn get_transactions(&self, hashes: &[[u8; 32]]) -> Result<Vec<Transaction>, RpcError> {
if hashes.is_empty() {
return Ok(vec![]);
}
#[derive(Deserialize, Debug)]
struct TransactionResponse {
tx_hash: String,
as_hex: String,
pruned_as_hex: String
}
#[derive(Deserialize, Debug)]
struct TransactionsResponse {
#[serde(default)]
missed_tx: Vec<String>,
txs: Vec<TransactionResponse>
let txs: TransactionsResponse = self
.rpc_call(
"get_transactions",
Some(json!({
"txs_hashes": hashes.iter().map(hex::encode).collect::<Vec<_>>()
})),
)
.await?;
if !txs.missed_tx.is_empty() {
Err(RpcError::TransactionsNotFound(
txs.missed_tx.iter().map(|hash| hash_hex(hash)).collect::<Result<_, _>>()?,
))?;
}
let txs: TransactionsResponse = self.rpc_call("get_transactions", Some(json!({
"txs_hashes": hashes.iter().map(|hash| hex::encode(&hash)).collect::<Vec<_>>()
}))).await?;
Ok((
txs.txs.iter().map(|res| {
let tx = Transaction::deserialize(
&mut std::io::Cursor::new(
rpc_hex(if res.as_hex.len() != 0 { &res.as_hex } else { &res.pruned_as_hex }).unwrap()
)
).map_err(|_| RpcError::InvalidTransaction(hex::decode(&res.tx_hash).unwrap().try_into().unwrap()))?;
txs
.txs
.iter()
.map(|res| {
let tx = Transaction::read::<&[u8]>(
&mut rpc_hex(if !res.as_hex.is_empty() { &res.as_hex } else { &res.pruned_as_hex })?
.as_ref(),
)
.map_err(|_| match hash_hex(&res.tx_hash) {
Ok(hash) => RpcError::InvalidTransaction(hash),
Err(err) => err,
})?;
// https://github.com/monero-project/monero/issues/8311
if res.as_hex.len() == 0 {
if res.as_hex.is_empty() {
match tx.prefix.inputs.get(0) {
Some(Input::Gen { .. }) => (),
_ => Err(RpcError::PrunedTransaction)?
_ => Err(RpcError::PrunedTransaction)?,
}
}
Ok(tx)
}).collect(),
txs.missed_tx.iter().map(|hash| hex::decode(&hash).unwrap().try_into().unwrap()).collect()
))
})
.collect()
}
pub async fn get_transactions(&self, hashes: &[[u8; 32]]) -> Result<Vec<Transaction>, RpcError> {
let (txs, missed) = self.get_transactions_core(hashes).await?;
if missed.len() != 0 {
Err(RpcError::TransactionsNotFound(missed))?;
pub async fn get_transaction(&self, tx: [u8; 32]) -> Result<Transaction, RpcError> {
self.get_transactions(&[tx]).await.map(|mut txs| txs.swap_remove(0))
}
pub async fn get_transaction_block_number(&self, tx: &[u8]) -> Result<Option<usize>, RpcError> {
let txs: TransactionsResponse =
self.rpc_call("get_transactions", Some(json!({ "txs_hashes": [hex::encode(tx)] }))).await?;
if !txs.missed_tx.is_empty() {
Err(RpcError::TransactionsNotFound(
txs.missed_tx.iter().map(|hash| hash_hex(hash)).collect::<Result<_, _>>()?,
))?;
}
// This will clone several KB and is accordingly inefficient
// TODO: Optimize
txs.iter().cloned().collect::<Result<_, _>>()
Ok(txs.txs[0].block_height)
}
pub async fn get_transactions_possible(&self, hashes: &[[u8; 32]]) -> Result<Vec<Transaction>, RpcError> {
let (txs, _) = self.get_transactions_core(hashes).await?;
Ok(txs.iter().cloned().filter_map(|tx| tx.ok()).collect())
pub async fn get_block_hash(&self, number: usize) -> Result<[u8; 32], RpcError> {
#[derive(Deserialize, Debug)]
struct BlockHeaderResponse {
hash: String,
}
#[derive(Deserialize, Debug)]
struct BlockHeaderByHeightResponse {
block_header: BlockHeaderResponse,
}
let header: BlockHeaderByHeightResponse =
self.json_rpc_call("get_block_header_by_height", Some(json!({ "height": number }))).await?;
rpc_hex(&header.block_header.hash)?.try_into().map_err(|_| RpcError::InvalidNode)
}
pub async fn get_block(&self, height: usize) -> Result<Block, RpcError> {
pub async fn get_block(&self, hash: [u8; 32]) -> Result<Block, RpcError> {
#[derive(Deserialize, Debug)]
struct BlockResponse {
blob: String
blob: String,
}
let block: JsonRpcResponse<BlockResponse> = self.rpc_call("json_rpc", Some(json!({
"method": "get_block",
"params": {
"height": height
}
}))).await?;
let res: BlockResponse =
self.json_rpc_call("get_block", Some(json!({ "hash": hex::encode(hash) }))).await?;
Ok(
Block::deserialize(
&mut std::io::Cursor::new(rpc_hex(&block.result.blob)?)
).expect("Monero returned a block we couldn't deserialize")
)
Block::read::<&[u8]>(&mut rpc_hex(&res.blob)?.as_ref()).map_err(|_| RpcError::InvalidNode)
}
async fn get_block_transactions_core(
&self,
height: usize,
possible: bool
) -> Result<Vec<Transaction>, RpcError> {
let block = self.get_block(height).await?;
pub async fn get_block_by_number(&self, number: usize) -> Result<Block, RpcError> {
self.get_block(self.get_block_hash(number).await?).await
}
pub async fn get_block_transactions(&self, hash: [u8; 32]) -> Result<Vec<Transaction>, RpcError> {
let block = self.get_block(hash).await?;
let mut res = vec![block.miner_tx];
res.extend(
if possible {
self.get_transactions_possible(&block.txs).await?
} else {
self.get_transactions(&block.txs).await?
}
);
res.extend(self.get_transactions(&block.txs).await?);
Ok(res)
}
pub async fn get_block_transactions(&self, height: usize) -> Result<Vec<Transaction>, RpcError> {
self.get_block_transactions_core(height, false).await
}
pub async fn get_block_transactions_possible(&self, height: usize) -> Result<Vec<Transaction>, RpcError> {
self.get_block_transactions_core(height, true).await
pub async fn get_block_transactions_by_number(
&self,
number: usize,
) -> Result<Vec<Transaction>, RpcError> {
self.get_block_transactions(self.get_block_hash(number).await?).await
}
/// Get the output indexes of the specified transaction.
pub async fn get_o_indexes(&self, hash: [u8; 32]) -> Result<Vec<u64>, RpcError> {
#[derive(Serialize, Debug)]
struct Request {
txid: [u8; 32]
txid: [u8; 32],
}
#[allow(dead_code)]
@@ -221,104 +347,125 @@ impl Rpc {
status: String,
untrusted: bool,
credits: usize,
top_hash: String
top_hash: String,
}
let indexes: OIndexes = self.bin_call("get_o_indexes.bin", monero_epee_bin_serde::to_bytes(
&Request {
txid: hash
}).unwrap()
).await?;
let indexes: OIndexes = self
.bin_call(
"get_o_indexes.bin",
monero_epee_bin_serde::to_bytes(&Request { txid: hash }).unwrap(),
)
.await?;
Ok(indexes.o_indexes)
}
// from and to are inclusive
pub async fn get_output_distribution(&self, from: usize, to: usize) -> Result<Vec<u64>, RpcError> {
/// Get the output distribution, from the specified height to the specified height (both
/// inclusive).
pub async fn get_output_distribution(
&self,
from: usize,
to: usize,
) -> Result<Vec<u64>, RpcError> {
#[allow(dead_code)]
#[derive(Deserialize, Debug)]
pub struct Distribution {
distribution: Vec<u64>
struct Distribution {
distribution: Vec<u64>,
}
#[allow(dead_code)]
#[derive(Deserialize, Debug)]
struct Distributions {
distributions: Vec<Distribution>
distributions: Vec<Distribution>,
}
let mut distributions: JsonRpcResponse<Distributions> = self.rpc_call("json_rpc", Some(json!({
"method": "get_output_distribution",
"params": {
"binary": false,
"amounts": [0],
"cumulative": true,
"from_height": from,
"to_height": to
}
}))).await?;
let mut distributions: Distributions = self
.json_rpc_call(
"get_output_distribution",
Some(json!({
"binary": false,
"amounts": [0],
"cumulative": true,
"from_height": from,
"to_height": to,
})),
)
.await?;
Ok(distributions.result.distributions.swap_remove(0).distribution)
Ok(distributions.distributions.swap_remove(0).distribution)
}
pub async fn get_outputs(
/// Get the specified outputs from the RingCT (zero-amount) pool, but only return them if they're
/// unlocked.
pub async fn get_unlocked_outputs(
&self,
indexes: &[u64],
height: usize
height: usize,
) -> Result<Vec<Option<[EdwardsPoint; 2]>>, RpcError> {
#[derive(Deserialize, Debug)]
pub struct Out {
struct Out {
key: String,
mask: String,
txid: String
txid: String,
}
#[derive(Deserialize, Debug)]
struct Outs {
outs: Vec<Out>
outs: Vec<Out>,
}
let outs: Outs = self.rpc_call("get_outs", Some(json!({
"get_txid": true,
"outputs": indexes.iter().map(|o| json!({
"amount": 0,
"index": o
})).collect::<Vec<_>>()
}))).await?;
let txs = self.get_transactions(
&outs.outs.iter().map(|out|
rpc_hex(&out.txid).expect("Monero returned an invalidly encoded hash")
.try_into().expect("Monero returned an invalid sized hash")
).collect::<Vec<_>>()
).await?;
// TODO: Support time based lock times. These shouldn't be needed, and it may be painful to
// get the median time for the given height, yet we do need to in order to be complete
outs.outs.iter().enumerate().map(
|(i, out)| Ok(
Some([rpc_point(&out.key)?, rpc_point(&out.mask)?]).filter(|_| {
match txs[i].prefix.timelock {
Timelock::Block(t_height) => (t_height <= height),
_ => false
}
})
let outs: Outs = self
.rpc_call(
"get_outs",
Some(json!({
"get_txid": true,
"outputs": indexes.iter().map(|o| json!({
"amount": 0,
"index": o
})).collect::<Vec<_>>()
})),
)
).collect()
.await?;
let txs = self
.get_transactions(
&outs
.outs
.iter()
.map(|out| rpc_hex(&out.txid)?.try_into().map_err(|_| RpcError::InvalidNode))
.collect::<Result<Vec<_>, _>>()?,
)
.await?;
// TODO: https://github.com/serai-dex/serai/issues/104
outs
.outs
.iter()
.enumerate()
.map(|(i, out)| {
Ok(Some([rpc_point(&out.key)?, rpc_point(&out.mask)?]).filter(|_| {
match txs[i].prefix.timelock {
Timelock::Block(t_height) => t_height <= height,
_ => false,
}
}))
})
.collect()
}
/// Get the currently estimated fee from the node. This may be manipulated to unsafe levels and
/// MUST be sanity checked.
// TODO: Take a sanity check argument
pub async fn get_fee(&self) -> Result<Fee, RpcError> {
#[allow(dead_code)]
#[derive(Deserialize, Debug)]
struct FeeResponse {
fee: u64,
quantization_mask: u64
quantization_mask: u64,
}
let res: JsonRpcResponse<FeeResponse> = self.rpc_call("json_rpc", Some(json!({
"method": "get_fee_estimate"
}))).await?;
Ok(Fee { per_weight: res.result.fee, mask: res.result.quantization_mask })
let res: FeeResponse = self.json_rpc_call("get_fee_estimate", None).await?;
Ok(Fee { per_weight: res.fee, mask: res.quantization_mask })
}
pub async fn publish_transaction(&self, tx: &Transaction) -> Result<(), RpcError> {
@@ -335,14 +482,14 @@ impl Rpc {
overspend: bool,
too_big: bool,
too_few_outputs: bool,
reason: String
reason: String,
}
let mut buf = Vec::with_capacity(2048);
tx.serialize(&mut buf).unwrap();
let res: SendRawResponse = self.rpc_call("send_raw_transaction", Some(json!({
"tx_as_hex": hex::encode(&buf)
}))).await?;
tx.write(&mut buf).unwrap();
let res: SendRawResponse = self
.rpc_call("send_raw_transaction", Some(json!({ "tx_as_hex": hex::encode(&buf) })))
.await?;
if res.status != "OK" {
Err(RpcError::InvalidTransaction(tx.hash()))?;
@@ -350,4 +497,21 @@ impl Rpc {
Ok(())
}
pub async fn generate_blocks(&self, address: &str, block_count: usize) -> Result<(), RpcError> {
self
.rpc_call::<_, EmptyResponse>(
"json_rpc",
Some(json!({
"method": "generateblocks",
"params": {
"wallet_address": address,
"amount_of_blocks": block_count
},
})),
)
.await?;
Ok(())
}
}

View File

@@ -1,14 +1,21 @@
use std::io;
use std::io::{self, Read, Write};
use curve25519_dalek::{scalar::Scalar, edwards::{EdwardsPoint, CompressedEdwardsY}};
use curve25519_dalek::{
scalar::Scalar,
edwards::{EdwardsPoint, CompressedEdwardsY},
};
pub const VARINT_CONTINUATION_MASK: u8 = 0b1000_0000;
const VARINT_CONTINUATION_MASK: u8 = 0b1000_0000;
pub fn varint_len(varint: usize) -> usize {
pub(crate) fn varint_len(varint: usize) -> usize {
((usize::try_from(usize::BITS - varint.leading_zeros()).unwrap().saturating_sub(1)) / 7) + 1
}
pub fn write_varint<W: io::Write>(varint: &u64, w: &mut W) -> io::Result<()> {
pub(crate) fn write_byte<W: Write>(byte: &u8, w: &mut W) -> io::Result<()> {
w.write_all(&[*byte])
}
pub(crate) fn write_varint<W: Write>(varint: &u64, w: &mut W) -> io::Result<()> {
let mut varint = *varint;
while {
let mut b = u8::try_from(varint & u64::from(!VARINT_CONTINUATION_MASK)).unwrap();
@@ -16,89 +23,119 @@ pub fn write_varint<W: io::Write>(varint: &u64, w: &mut W) -> io::Result<()> {
if varint != 0 {
b |= VARINT_CONTINUATION_MASK;
}
w.write_all(&[b])?;
write_byte(&b, w)?;
varint != 0
} {}
Ok(())
}
pub fn write_scalar<W: io::Write>(scalar: &Scalar, w: &mut W) -> io::Result<()> {
pub(crate) fn write_scalar<W: Write>(scalar: &Scalar, w: &mut W) -> io::Result<()> {
w.write_all(&scalar.to_bytes())
}
pub fn write_point<W: io::Write>(point: &EdwardsPoint, w: &mut W) -> io::Result<()> {
pub(crate) fn write_point<W: Write>(point: &EdwardsPoint, w: &mut W) -> io::Result<()> {
w.write_all(&point.compress().to_bytes())
}
pub fn write_raw_vec<
T,
W: io::Write,
F: Fn(&T, &mut W) -> io::Result<()>
>(f: F, values: &[T], w: &mut W) -> io::Result<()> {
pub(crate) fn write_raw_vec<T, W: Write, F: Fn(&T, &mut W) -> io::Result<()>>(
f: F,
values: &[T],
w: &mut W,
) -> io::Result<()> {
for value in values {
f(value, w)?;
}
Ok(())
}
pub fn write_vec<
T,
W: io::Write,
F: Fn(&T, &mut W) -> io::Result<()>
>(f: F, values: &[T], w: &mut W) -> io::Result<()> {
pub(crate) fn write_vec<T, W: Write, F: Fn(&T, &mut W) -> io::Result<()>>(
f: F,
values: &[T],
w: &mut W,
) -> io::Result<()> {
write_varint(&values.len().try_into().unwrap(), w)?;
write_raw_vec(f, &values, w)
write_raw_vec(f, values, w)
}
pub fn read_byte<R: io::Read>(r: &mut R) -> io::Result<u8> {
let mut res = [0; 1];
pub(crate) fn read_bytes<R: Read, const N: usize>(r: &mut R) -> io::Result<[u8; N]> {
let mut res = [0; N];
r.read_exact(&mut res)?;
Ok(res[0])
Ok(res)
}
pub fn read_varint<R: io::Read>(r: &mut R) -> io::Result<u64> {
pub(crate) fn read_byte<R: Read>(r: &mut R) -> io::Result<u8> {
Ok(read_bytes::<_, 1>(r)?[0])
}
pub(crate) fn read_u64<R: Read>(r: &mut R) -> io::Result<u64> {
read_bytes(r).map(u64::from_le_bytes)
}
pub(crate) fn read_u32<R: Read>(r: &mut R) -> io::Result<u32> {
read_bytes(r).map(u32::from_le_bytes)
}
pub(crate) fn read_varint<R: Read>(r: &mut R) -> io::Result<u64> {
let mut bits = 0;
let mut res = 0;
while {
let b = read_byte(r)?;
if (bits != 0) && (b == 0) {
Err(io::Error::new(io::ErrorKind::Other, "non-canonical varint"))?;
}
if ((bits + 7) > 64) && (b >= (1 << (64 - bits))) {
Err(io::Error::new(io::ErrorKind::Other, "varint overflow"))?;
}
res += u64::from(b & (!VARINT_CONTINUATION_MASK)) << bits;
// TODO: Error if bits exceed u64
bits += 7;
b & VARINT_CONTINUATION_MASK == VARINT_CONTINUATION_MASK
} {}
Ok(res)
}
pub fn read_32<R: io::Read>(r: &mut R) -> io::Result<[u8; 32]> {
let mut res = [0; 32];
r.read_exact(&mut res)?;
Ok(res)
// All scalar fields supported by monero-serai are checked to be canonical for valid transactions
// While from_bytes_mod_order would be more flexible, it's not currently needed and would be
// inaccurate to include now. While casting a wide net may be preferable, it'd also be inaccurate
// for now. There's also further edge cases as noted by
// https://github.com/monero-project/monero/issues/8438, where some scalars had an archaic
// reduction applied
pub(crate) fn read_scalar<R: Read>(r: &mut R) -> io::Result<Scalar> {
Scalar::from_canonical_bytes(read_bytes(r)?)
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "unreduced scalar"))
}
// TODO: Potentially update to Monero's parsing rules on scalars/points, which should be any arbitrary 32-bytes
// We may be able to consider such transactions as malformed and accordingly be opinionated in ignoring them
pub fn read_scalar<R: io::Read>(r: &mut R) -> io::Result<Scalar> {
Scalar::from_canonical_bytes(
read_32(r)?
).ok_or(io::Error::new(io::ErrorKind::Other, "unreduced scalar"))
pub(crate) fn read_point<R: Read>(r: &mut R) -> io::Result<EdwardsPoint> {
let bytes = read_bytes(r)?;
CompressedEdwardsY(bytes)
.decompress()
// Ban points which are either unreduced or -0
.filter(|point| point.compress().to_bytes() == bytes)
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid point"))
}
pub fn read_point<R: io::Read>(r: &mut R) -> io::Result<EdwardsPoint> {
CompressedEdwardsY(
read_32(r)?
).decompress().filter(|point| point.is_torsion_free()).ok_or(io::Error::new(io::ErrorKind::Other, "invalid point"))
pub(crate) fn read_torsion_free_point<R: Read>(r: &mut R) -> io::Result<EdwardsPoint> {
read_point(r)
.ok()
.filter(|point| point.is_torsion_free())
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid point"))
}
pub fn read_raw_vec<R: io::Read, T, F: Fn(&mut R) -> io::Result<T>>(f: F, len: usize, r: &mut R) -> io::Result<Vec<T>> {
let mut res = Vec::with_capacity(
len.try_into().map_err(|_| io::Error::new(io::ErrorKind::Other, "length exceeds usize"))?
);
pub(crate) fn read_raw_vec<R: Read, T, F: Fn(&mut R) -> io::Result<T>>(
f: F,
len: usize,
r: &mut R,
) -> io::Result<Vec<T>> {
let mut res = vec![];
for _ in 0 .. len {
res.push(f(r)?);
}
Ok(res)
}
pub fn read_vec<R: io::Read, T, F: Fn(&mut R) -> io::Result<T>>(f: F, r: &mut R) -> io::Result<Vec<T>> {
pub(crate) fn read_vec<R: Read, T, F: Fn(&mut R) -> io::Result<T>>(
f: F,
r: &mut R,
) -> io::Result<Vec<T>> {
read_raw_vec(f, read_varint(r)?.try_into().unwrap(), r)
}

View File

@@ -1,45 +1,176 @@
use hex_literal::hex;
use crate::wallet::address::{Network, AddressType, Address};
use rand_core::{RngCore, OsRng};
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, edwards::CompressedEdwardsY};
use crate::{
random_scalar,
wallet::address::{Network, AddressType, AddressMeta, MoneroAddress},
};
const SPEND: [u8; 32] = hex!("f8631661f6ab4e6fda310c797330d86e23a682f20d5bc8cc27b18051191f16d7");
const VIEW: [u8; 32] = hex!("4a1535063ad1fee2dabbf909d4fd9a873e29541b401f0944754e17c9a41820ce");
const STANDARD: &'static str = "4B33mFPMq6mKi7Eiyd5XuyKRVMGVZz1Rqb9ZTyGApXW5d1aT7UBDZ89ewmnWFkzJ5wPd2SFbn313vCT8a4E2Qf4KQH4pNey";
const STANDARD: &str =
"4B33mFPMq6mKi7Eiyd5XuyKRVMGVZz1Rqb9ZTyGApXW5d1aT7UBDZ89ewmnWFkzJ5wPd2SFbn313vCT8a4E2Qf4KQH4pNey";
const PAYMENT_ID: [u8; 8] = hex!("b8963a57855cf73f");
const INTEGRATED: &'static str = "4Ljin4CrSNHKi7Eiyd5XuyKRVMGVZz1Rqb9ZTyGApXW5d1aT7UBDZ89ewmnWFkzJ5wPd2SFbn313vCT8a4E2Qf4KbaTH6MnpXSn88oBX35";
const INTEGRATED: &str =
"4Ljin4CrSNHKi7Eiyd5XuyKRVMGVZz1Rqb9ZTyGApXW5d1aT7UBDZ89ewmnWFkzJ5wPd2SFbn313vCT8a4E2Qf4KbaTH6Mn\
pXSn88oBX35";
const SUB_SPEND: [u8; 32] = hex!("fe358188b528335ad1cfdc24a22a23988d742c882b6f19a602892eaab3c1b62b");
const SUB_SPEND: [u8; 32] =
hex!("fe358188b528335ad1cfdc24a22a23988d742c882b6f19a602892eaab3c1b62b");
const SUB_VIEW: [u8; 32] = hex!("9bc2b464de90d058468522098d5610c5019c45fd1711a9517db1eea7794f5470");
const SUBADDRESS: &'static str = "8C5zHM5ud8nGC4hC2ULiBLSWx9infi8JUUmWEat4fcTf8J4H38iWYVdFmPCA9UmfLTZxD43RsyKnGEdZkoGij6csDeUnbEB";
const SUBADDRESS: &str =
"8C5zHM5ud8nGC4hC2ULiBLSWx9infi8JUUmWEat4fcTf8J4H38iWYVdFmPCA9UmfLTZxD43RsyKnGEdZkoGij6csDeUnbEB";
const FEATURED_JSON: &str = include_str!("vectors/featured_addresses.json");
#[test]
fn standard_address() {
let addr = Address::from_str(STANDARD, Network::Mainnet).unwrap();
let addr = MoneroAddress::from_str(Network::Mainnet, STANDARD).unwrap();
assert_eq!(addr.meta.network, Network::Mainnet);
assert_eq!(addr.meta.kind, AddressType::Standard);
assert_eq!(addr.meta.guaranteed, false);
assert!(!addr.meta.kind.subaddress());
assert_eq!(addr.meta.kind.payment_id(), None);
assert!(!addr.meta.kind.guaranteed());
assert_eq!(addr.spend.compress().to_bytes(), SPEND);
assert_eq!(addr.view.compress().to_bytes(), VIEW);
assert_eq!(addr.to_string(), STANDARD);
}
#[test]
fn integrated_address() {
let addr = Address::from_str(INTEGRATED, Network::Mainnet).unwrap();
let addr = MoneroAddress::from_str(Network::Mainnet, INTEGRATED).unwrap();
assert_eq!(addr.meta.network, Network::Mainnet);
assert_eq!(addr.meta.kind, AddressType::Integrated(PAYMENT_ID));
assert_eq!(addr.meta.guaranteed, false);
assert!(!addr.meta.kind.subaddress());
assert_eq!(addr.meta.kind.payment_id(), Some(PAYMENT_ID));
assert!(!addr.meta.kind.guaranteed());
assert_eq!(addr.spend.compress().to_bytes(), SPEND);
assert_eq!(addr.view.compress().to_bytes(), VIEW);
assert_eq!(addr.to_string(), INTEGRATED);
}
#[test]
fn subaddress() {
let addr = Address::from_str(SUBADDRESS, Network::Mainnet).unwrap();
let addr = MoneroAddress::from_str(Network::Mainnet, SUBADDRESS).unwrap();
assert_eq!(addr.meta.network, Network::Mainnet);
assert_eq!(addr.meta.kind, AddressType::Subaddress);
assert_eq!(addr.meta.guaranteed, false);
assert!(addr.meta.kind.subaddress());
assert_eq!(addr.meta.kind.payment_id(), None);
assert!(!addr.meta.kind.guaranteed());
assert_eq!(addr.spend.compress().to_bytes(), SUB_SPEND);
assert_eq!(addr.view.compress().to_bytes(), SUB_VIEW);
assert_eq!(addr.to_string(), SUBADDRESS);
}
#[test]
fn featured() {
for (network, first) in
[(Network::Mainnet, 'C'), (Network::Testnet, 'K'), (Network::Stagenet, 'F')]
{
for _ in 0 .. 100 {
let spend = &random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE;
let view = &random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE;
for features in 0 .. (1 << 3) {
const SUBADDRESS_FEATURE_BIT: u8 = 1;
const INTEGRATED_FEATURE_BIT: u8 = 1 << 1;
const GUARANTEED_FEATURE_BIT: u8 = 1 << 2;
let subaddress = (features & SUBADDRESS_FEATURE_BIT) == SUBADDRESS_FEATURE_BIT;
let mut payment_id = [0; 8];
OsRng.fill_bytes(&mut payment_id);
let payment_id = Some(payment_id)
.filter(|_| (features & INTEGRATED_FEATURE_BIT) == INTEGRATED_FEATURE_BIT);
let guaranteed = (features & GUARANTEED_FEATURE_BIT) == GUARANTEED_FEATURE_BIT;
let kind = AddressType::Featured { subaddress, payment_id, guaranteed };
let meta = AddressMeta::new(network, kind);
let addr = MoneroAddress::new(meta, spend, view);
assert_eq!(addr.to_string().chars().next().unwrap(), first);
assert_eq!(MoneroAddress::from_str(network, &addr.to_string()).unwrap(), addr);
assert_eq!(addr.spend, spend);
assert_eq!(addr.view, view);
assert_eq!(addr.subaddress(), subaddress);
assert_eq!(addr.payment_id(), payment_id);
assert_eq!(addr.guaranteed(), guaranteed);
}
}
}
}
#[test]
fn featured_vectors() {
#[derive(serde::Deserialize)]
struct Vector {
address: String,
network: String,
spend: String,
view: String,
subaddress: bool,
integrated: bool,
payment_id: Option<[u8; 8]>,
guaranteed: bool,
}
let vectors = serde_json::from_str::<Vec<Vector>>(FEATURED_JSON).unwrap();
for vector in vectors {
let first = vector.address.chars().next().unwrap();
let network = match vector.network.as_str() {
"Mainnet" => {
assert_eq!(first, 'C');
Network::Mainnet
}
"Testnet" => {
assert_eq!(first, 'K');
Network::Testnet
}
"Stagenet" => {
assert_eq!(first, 'F');
Network::Stagenet
}
_ => panic!("Unknown network"),
};
let spend =
CompressedEdwardsY::from_slice(&hex::decode(vector.spend).unwrap()).decompress().unwrap();
let view =
CompressedEdwardsY::from_slice(&hex::decode(vector.view).unwrap()).decompress().unwrap();
let addr = MoneroAddress::from_str(network, &vector.address).unwrap();
assert_eq!(addr.spend, spend);
assert_eq!(addr.view, view);
assert_eq!(addr.subaddress(), vector.subaddress);
assert_eq!(vector.integrated, vector.payment_id.is_some());
assert_eq!(addr.payment_id(), vector.payment_id);
assert_eq!(addr.guaranteed(), vector.guaranteed);
assert_eq!(
MoneroAddress::new(
AddressMeta::new(
network,
AddressType::Featured {
subaddress: vector.subaddress,
payment_id: vector.payment_id,
guaranteed: vector.guaranteed
}
),
spend,
view
)
.to_string(),
vector.address
);
}
}

View File

@@ -0,0 +1,92 @@
use hex_literal::hex;
use rand::rngs::OsRng;
use curve25519_dalek::{scalar::Scalar, edwards::CompressedEdwardsY};
use multiexp::BatchVerifier;
use crate::{
Commitment, random_scalar,
ringct::bulletproofs::{Bulletproofs, original::OriginalStruct},
};
#[test]
fn bulletproofs_vector() {
let scalar = |scalar| Scalar::from_canonical_bytes(scalar).unwrap();
let point = |point| CompressedEdwardsY(point).decompress().unwrap();
// Generated from Monero
assert!(Bulletproofs::Original(OriginalStruct {
A: point(hex!("ef32c0b9551b804decdcb107eb22aa715b7ce259bf3c5cac20e24dfa6b28ac71")),
S: point(hex!("e1285960861783574ee2b689ae53622834eb0b035d6943103f960cd23e063fa0")),
T1: point(hex!("4ea07735f184ba159d0e0eb662bac8cde3eb7d39f31e567b0fbda3aa23fe5620")),
T2: point(hex!("b8390aa4b60b255630d40e592f55ec6b7ab5e3a96bfcdcd6f1cd1d2fc95f441e")),
taux: scalar(hex!("5957dba8ea9afb23d6e81cc048a92f2d502c10c749dc1b2bd148ae8d41ec7107")),
mu: scalar(hex!("923023b234c2e64774b820b4961f7181f6c1dc152c438643e5a25b0bf271bc02")),
L: vec![
point(hex!("c45f656316b9ebf9d357fb6a9f85b5f09e0b991dd50a6e0ae9b02de3946c9d99")),
point(hex!("9304d2bf0f27183a2acc58cc755a0348da11bd345485fda41b872fee89e72aac")),
point(hex!("1bb8b71925d155dd9569f64129ea049d6149fdc4e7a42a86d9478801d922129b")),
point(hex!("5756a7bf887aa72b9a952f92f47182122e7b19d89e5dd434c747492b00e1c6b7")),
point(hex!("6e497c910d102592830555356af5ff8340e8d141e3fb60ea24cfa587e964f07d")),
point(hex!("f4fa3898e7b08e039183d444f3d55040f3c790ed806cb314de49f3068bdbb218")),
point(hex!("0bbc37597c3ead517a3841e159c8b7b79a5ceaee24b2a9a20350127aab428713")),
],
R: vec![
point(hex!("609420ba1702781692e84accfd225adb3d077aedc3cf8125563400466b52dbd9")),
point(hex!("fb4e1d079e7a2b0ec14f7e2a3943bf50b6d60bc346a54fcf562fb234b342abf8")),
point(hex!("6ae3ac97289c48ce95b9c557289e82a34932055f7f5e32720139824fe81b12e5")),
point(hex!("d071cc2ffbdab2d840326ad15f68c01da6482271cae3cf644670d1632f29a15c")),
point(hex!("e52a1754b95e1060589ba7ce0c43d0060820ebfc0d49dc52884bc3c65ad18af5")),
point(hex!("41573b06140108539957df71aceb4b1816d2409ce896659aa5c86f037ca5e851")),
point(hex!("a65970b2cc3c7b08b2b5b739dbc8e71e646783c41c625e2a5b1535e3d2e0f742")),
],
a: scalar(hex!("0077c5383dea44d3cd1bc74849376bd60679612dc4b945255822457fa0c0a209")),
b: scalar(hex!("fe80cf5756473482581e1d38644007793ddc66fdeb9404ec1689a907e4863302")),
t: scalar(hex!("40dfb08e09249040df997851db311bd6827c26e87d6f0f332c55be8eef10e603"))
})
.verify(
&mut OsRng,
&[
// For some reason, these vectors are * INV_EIGHT
point(hex!("8e8f23f315edae4f6c2f948d9a861e0ae32d356b933cd11d2f0e031ac744c41f"))
.mul_by_cofactor(),
point(hex!("2829cbd025aa54cd6e1b59a032564f22f0b2e5627f7f2c4297f90da438b5510f"))
.mul_by_cofactor(),
]
));
}
macro_rules! bulletproofs_tests {
($name: ident, $max: ident, $plus: literal) => {
#[test]
fn $name() {
// Create Bulletproofs for all possible output quantities
let mut verifier = BatchVerifier::new(16);
for i in 1 .. 17 {
let commitments = (1 ..= i)
.map(|i| Commitment::new(random_scalar(&mut OsRng), u64::try_from(i).unwrap()))
.collect::<Vec<_>>();
let bp = Bulletproofs::prove(&mut OsRng, &commitments, $plus).unwrap();
let commitments = commitments.iter().map(Commitment::calculate).collect::<Vec<_>>();
assert!(bp.verify(&mut OsRng, &commitments));
assert!(bp.batch_verify(&mut OsRng, &mut verifier, i, &commitments));
}
assert!(verifier.verify_vartime());
}
#[test]
fn $max() {
// Check Bulletproofs errors if we try to prove for too many outputs
let mut commitments = vec![];
for _ in 0 .. 17 {
commitments.push(Commitment::new(Scalar::zero(), 0));
}
assert!(Bulletproofs::prove(&mut OsRng, &commitments, $plus).is_err());
}
};
}
bulletproofs_tests!(bulletproofs, bulletproofs_max, false);
bulletproofs_tests!(bulletproofs_plus, bulletproofs_plus_max, true);

View File

@@ -1,7 +1,9 @@
use core::ops::Deref;
#[cfg(feature = "multisig")]
use std::sync::{Arc, RwLock};
use rand::{RngCore, rngs::OsRng};
use zeroize::Zeroizing;
use rand_core::{RngCore, OsRng};
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar};
@@ -11,13 +13,15 @@ use transcript::{Transcript, RecommendedTranscript};
use frost::curve::Ed25519;
use crate::{
Commitment,
random_scalar,
Commitment, random_scalar,
wallet::Decoys,
ringct::{generate_key_image, clsag::{ClsagInput, Clsag}}
ringct::{
generate_key_image,
clsag::{ClsagInput, Clsag},
},
};
#[cfg(feature = "multisig")]
use crate::{frost::MultisigError, ringct::clsag::{ClsagDetails, ClsagMultisig}};
use crate::ringct::clsag::{ClsagDetails, ClsagMultisig};
#[cfg(feature = "multisig")]
use frost::tests::{key_gen, algorithm_machines, sign};
@@ -33,48 +37,49 @@ fn clsag() {
for real in 0 .. RING_LEN {
let msg = [1; 32];
let mut secrets = [Scalar::zero(), Scalar::zero()];
let mut secrets = (Zeroizing::new(Scalar::zero()), Scalar::zero());
let mut ring = vec![];
for i in 0 .. RING_LEN {
let dest = random_scalar(&mut OsRng);
let dest = Zeroizing::new(random_scalar(&mut OsRng));
let mask = random_scalar(&mut OsRng);
let amount;
if i == u64::from(real) {
secrets = [dest, mask];
if i == real {
secrets = (dest.clone(), mask);
amount = AMOUNT;
} else {
amount = OsRng.next_u64();
}
ring.push([&dest * &ED25519_BASEPOINT_TABLE, Commitment::new(mask, amount).calculate()]);
ring
.push([dest.deref() * &ED25519_BASEPOINT_TABLE, Commitment::new(mask, amount).calculate()]);
}
let image = generate_key_image(secrets[0]);
let image = generate_key_image(&secrets.0);
let (clsag, pseudo_out) = Clsag::sign(
&mut OsRng,
&vec![(
secrets[0],
vec![(
secrets.0,
image,
ClsagInput::new(
Commitment::new(secrets[1], AMOUNT),
Commitment::new(secrets.1, AMOUNT),
Decoys {
i: u8::try_from(real).unwrap(),
offsets: (1 ..= RING_LEN).into_iter().collect(),
ring: ring.clone()
}
).unwrap()
ring: ring.clone(),
},
)
.unwrap(),
)],
random_scalar(&mut OsRng),
msg
).swap_remove(0);
msg,
)
.swap_remove(0);
clsag.verify(&ring, &image, &pseudo_out, &msg).unwrap();
#[cfg(feature = "experimental")]
clsag.rust_verify(&ring, &image, &pseudo_out, &msg).unwrap();
}
}
#[cfg(feature = "multisig")]
#[test]
fn clsag_multisig() -> Result<(), MultisigError> {
fn clsag_multisig() {
let keys = key_gen::<_, Ed25519>(&mut OsRng);
let randomness = random_scalar(&mut OsRng);
@@ -96,31 +101,28 @@ fn clsag_multisig() -> Result<(), MultisigError> {
}
let mask_sum = random_scalar(&mut OsRng);
sign(
&mut OsRng,
algorithm_machines(
&mut OsRng,
ClsagMultisig::new(
RecommendedTranscript::new(b"Monero Serai CLSAG Test"),
keys[&1].group_key().0,
Arc::new(RwLock::new(Some(
ClsagDetails::new(
ClsagInput::new(
Commitment::new(randomness, AMOUNT),
Decoys {
i: RING_INDEX,
offsets: (1 ..= RING_LEN).into_iter().collect(),
ring: ring.clone()
}
).unwrap(),
mask_sum
)
)))
).unwrap(),
&keys
),
&[1; 32]
let algorithm = ClsagMultisig::new(
RecommendedTranscript::new(b"Monero Serai CLSAG Test"),
keys[&1].group_key().0,
Arc::new(RwLock::new(Some(ClsagDetails::new(
ClsagInput::new(
Commitment::new(randomness, AMOUNT),
Decoys {
i: RING_INDEX,
offsets: (1 ..= RING_LEN).into_iter().collect(),
ring: ring.clone(),
},
)
.unwrap(),
mask_sum,
)))),
);
Ok(())
sign(
&mut OsRng,
algorithm.clone(),
keys.clone(),
algorithm_machines(&mut OsRng, algorithm, &keys),
&[1; 32],
);
}

View File

@@ -1,13 +0,0 @@
use rand::rngs::OsRng;
use curve25519_dalek::constants::ED25519_BASEPOINT_TABLE;
use crate::{random_scalar, ringct::hash_to_point::{hash_to_point as c_hash_to_point, rust_hash_to_point}};
#[test]
fn hash_to_point() {
for _ in 0 .. 50 {
let point = &random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE;
assert_eq!(rust_hash_to_point(point), c_hash_to_point(point));
}
}

View File

@@ -1,3 +1,3 @@
mod hash_to_point;
mod clsag;
mod bulletproofs;
mod address;

View File

@@ -0,0 +1,230 @@
[
{
"address": "CjWdTpuDaZ69nTGxzm9YarR82YDYFECi1WaaREZTMy5yDsjaRX5bC3cbC3JpcrBPd7YYpjoWKuBMidgGaKBK5Jye2v3pYyUDn",
"network": "Mainnet",
"spend": "258dfe7eef9be934839f3b8e0d40e79035fe85879c0a9eb0d7372ae2deb0004c",
"view": "f91382373045f3cc69233254ab0406bc9e008707569ff9db4718654812d839df",
"subaddress": false,
"integrated": false,
"guaranteed": false
},
{
"address": "CjWdTpuDaZ69nTGxzm9YarR82YDYFECi1WaaREZTMy5yDsjaRX5bC3cbC3JpcrBPd7YYpjoWKuBMidgGaKBK5Jye2v3wfMHCy",
"network": "Mainnet",
"spend": "258dfe7eef9be934839f3b8e0d40e79035fe85879c0a9eb0d7372ae2deb0004c",
"view": "f91382373045f3cc69233254ab0406bc9e008707569ff9db4718654812d839df",
"subaddress": true,
"integrated": false,
"guaranteed": false
},
{
"address": "CjWdTpuDaZ69nTGxzm9YarR82YDYFECi1WaaREZTMy5yDsjaRX5bC3cbC3JpcrBPd7YYpjoWKuBMidgGaKBK5JyeeJTo4p5ayvj36PStM5AX",
"network": "Mainnet",
"spend": "258dfe7eef9be934839f3b8e0d40e79035fe85879c0a9eb0d7372ae2deb0004c",
"view": "f91382373045f3cc69233254ab0406bc9e008707569ff9db4718654812d839df",
"subaddress": false,
"integrated": true,
"payment_id": [46, 48, 134, 34, 245, 148, 243, 195],
"guaranteed": false
},
{
"address": "CjWdTpuDaZ69nTGxzm9YarR82YDYFECi1WaaREZTMy5yDsjaRX5bC3cbC3JpcrBPd7YYpjoWKuBMidgGaKBK5JyeeJWv5WqMCNE2hRs9rJfy",
"network": "Mainnet",
"spend": "258dfe7eef9be934839f3b8e0d40e79035fe85879c0a9eb0d7372ae2deb0004c",
"view": "f91382373045f3cc69233254ab0406bc9e008707569ff9db4718654812d839df",
"subaddress": true,
"integrated": true,
"payment_id": [153, 176, 98, 204, 151, 27, 197, 168],
"guaranteed": false
},
{
"address": "CjWdTpuDaZ69nTGxzm9YarR82YDYFECi1WaaREZTMy5yDsjaRX5bC3cbC3JpcrBPd7YYpjoWKuBMidgGaKBK5Jye2v4DwqwH1",
"network": "Mainnet",
"spend": "258dfe7eef9be934839f3b8e0d40e79035fe85879c0a9eb0d7372ae2deb0004c",
"view": "f91382373045f3cc69233254ab0406bc9e008707569ff9db4718654812d839df",
"subaddress": false,
"integrated": false,
"guaranteed": true
},
{
"address": "CjWdTpuDaZ69nTGxzm9YarR82YDYFECi1WaaREZTMy5yDsjaRX5bC3cbC3JpcrBPd7YYpjoWKuBMidgGaKBK5Jye2v4Pyz8bD",
"network": "Mainnet",
"spend": "258dfe7eef9be934839f3b8e0d40e79035fe85879c0a9eb0d7372ae2deb0004c",
"view": "f91382373045f3cc69233254ab0406bc9e008707569ff9db4718654812d839df",
"subaddress": true,
"integrated": false,
"guaranteed": true
},
{
"address": "CjWdTpuDaZ69nTGxzm9YarR82YDYFECi1WaaREZTMy5yDsjaRX5bC3cbC3JpcrBPd7YYpjoWKuBMidgGaKBK5JyeeJcwt7hykou237MqZZDA",
"network": "Mainnet",
"spend": "258dfe7eef9be934839f3b8e0d40e79035fe85879c0a9eb0d7372ae2deb0004c",
"view": "f91382373045f3cc69233254ab0406bc9e008707569ff9db4718654812d839df",
"subaddress": false,
"integrated": true,
"payment_id": [88, 37, 149, 111, 171, 108, 120, 181],
"guaranteed": true
},
{
"address": "CjWdTpuDaZ69nTGxzm9YarR82YDYFECi1WaaREZTMy5yDsjaRX5bC3cbC3JpcrBPd7YYpjoWKuBMidgGaKBK5JyeeJfTrFAp69u2MYbf5YeN",
"network": "Mainnet",
"spend": "258dfe7eef9be934839f3b8e0d40e79035fe85879c0a9eb0d7372ae2deb0004c",
"view": "f91382373045f3cc69233254ab0406bc9e008707569ff9db4718654812d839df",
"subaddress": true,
"integrated": true,
"payment_id": [125, 69, 155, 152, 140, 160, 157, 186],
"guaranteed": true
},
{
"address": "Kgx5uCVsMSEVm7seL8tjyRGmmVXjWfEowKpKjgaXUGVyMViBYMh13VQ4mfqpB7zEVVcJx3E8FFgAuQ8cq6mg5x712U9w7ScYA",
"network": "Testnet",
"spend": "bba3a8a5bb47f7abf2e2dffeaf43385e4b308fd63a9ff6707e355f3b0a6c247a",
"view": "881713a4fa9777168a54bbdcb75290d319fb92fdf1026a8a4b125a8e341de8ab",
"subaddress": false,
"integrated": false,
"guaranteed": false
},
{
"address": "Kgx5uCVsMSEVm7seL8tjyRGmmVXjWfEowKpKjgaXUGVyMViBYMh13VQ4mfqpB7zEVVcJx3E8FFgAuQ8cq6mg5x712UA2gCrT1",
"network": "Testnet",
"spend": "bba3a8a5bb47f7abf2e2dffeaf43385e4b308fd63a9ff6707e355f3b0a6c247a",
"view": "881713a4fa9777168a54bbdcb75290d319fb92fdf1026a8a4b125a8e341de8ab",
"subaddress": true,
"integrated": false,
"guaranteed": false
},
{
"address": "Kgx5uCVsMSEVm7seL8tjyRGmmVXjWfEowKpKjgaXUGVyMViBYMh13VQ4mfqpB7zEVVcJx3E8FFgAuQ8cq6mg5x71Vc1DbPKwJu81cxJjqBkS",
"network": "Testnet",
"spend": "bba3a8a5bb47f7abf2e2dffeaf43385e4b308fd63a9ff6707e355f3b0a6c247a",
"view": "881713a4fa9777168a54bbdcb75290d319fb92fdf1026a8a4b125a8e341de8ab",
"subaddress": false,
"integrated": true,
"payment_id": [92, 225, 118, 220, 39, 3, 72, 51],
"guaranteed": false
},
{
"address": "Kgx5uCVsMSEVm7seL8tjyRGmmVXjWfEowKpKjgaXUGVyMViBYMh13VQ4mfqpB7zEVVcJx3E8FFgAuQ8cq6mg5x71Vc2o1rPMaXN31Fe5J6dn",
"network": "Testnet",
"spend": "bba3a8a5bb47f7abf2e2dffeaf43385e4b308fd63a9ff6707e355f3b0a6c247a",
"view": "881713a4fa9777168a54bbdcb75290d319fb92fdf1026a8a4b125a8e341de8ab",
"subaddress": true,
"integrated": true,
"payment_id": [20, 120, 47, 89, 72, 165, 233, 115],
"guaranteed": false
},
{
"address": "Kgx5uCVsMSEVm7seL8tjyRGmmVXjWfEowKpKjgaXUGVyMViBYMh13VQ4mfqpB7zEVVcJx3E8FFgAuQ8cq6mg5x712UAQHCRZ4",
"network": "Testnet",
"spend": "bba3a8a5bb47f7abf2e2dffeaf43385e4b308fd63a9ff6707e355f3b0a6c247a",
"view": "881713a4fa9777168a54bbdcb75290d319fb92fdf1026a8a4b125a8e341de8ab",
"subaddress": false,
"integrated": false,
"guaranteed": true
},
{
"address": "Kgx5uCVsMSEVm7seL8tjyRGmmVXjWfEowKpKjgaXUGVyMViBYMh13VQ4mfqpB7zEVVcJx3E8FFgAuQ8cq6mg5x712UAUzqaii",
"network": "Testnet",
"spend": "bba3a8a5bb47f7abf2e2dffeaf43385e4b308fd63a9ff6707e355f3b0a6c247a",
"view": "881713a4fa9777168a54bbdcb75290d319fb92fdf1026a8a4b125a8e341de8ab",
"subaddress": true,
"integrated": false,
"guaranteed": true
},
{
"address": "Kgx5uCVsMSEVm7seL8tjyRGmmVXjWfEowKpKjgaXUGVyMViBYMh13VQ4mfqpB7zEVVcJx3E8FFgAuQ8cq6mg5x71VcAsfQc3gJQ2gHLd5DiQ",
"network": "Testnet",
"spend": "bba3a8a5bb47f7abf2e2dffeaf43385e4b308fd63a9ff6707e355f3b0a6c247a",
"view": "881713a4fa9777168a54bbdcb75290d319fb92fdf1026a8a4b125a8e341de8ab",
"subaddress": false,
"integrated": true,
"payment_id": [193, 149, 123, 214, 180, 205, 195, 91],
"guaranteed": true
},
{
"address": "Kgx5uCVsMSEVm7seL8tjyRGmmVXjWfEowKpKjgaXUGVyMViBYMh13VQ4mfqpB7zEVVcJx3E8FFgAuQ8cq6mg5x71VcDBAD5jbZQ3AMHFyvQB",
"network": "Testnet",
"spend": "bba3a8a5bb47f7abf2e2dffeaf43385e4b308fd63a9ff6707e355f3b0a6c247a",
"view": "881713a4fa9777168a54bbdcb75290d319fb92fdf1026a8a4b125a8e341de8ab",
"subaddress": true,
"integrated": true,
"payment_id": [205, 170, 65, 0, 51, 175, 251, 184],
"guaranteed": true
},
{
"address": "FSDinqdKK54PbjF73GgW3nUpf7bF8QbyxFCUurENmUyeEfSxSLL2hxwANBLzq1A8gTSAzzEn65hKjetA8o5BvjV61VPJnBtTP",
"network": "Stagenet",
"spend": "4cd503040f5e43871bf37d8ca7177da655bda410859af754e24e7b44437f3151",
"view": "af60d42b6c6e4437fd93eb32657a14967efa393630d7aee27b5973c8e1c5ad39",
"subaddress": false,
"integrated": false,
"guaranteed": false
},
{
"address": "FSDinqdKK54PbjF73GgW3nUpf7bF8QbyxFCUurENmUyeEfSxSLL2hxwANBLzq1A8gTSAzzEn65hKjetA8o5BvjV61VPUrwMvP",
"network": "Stagenet",
"spend": "4cd503040f5e43871bf37d8ca7177da655bda410859af754e24e7b44437f3151",
"view": "af60d42b6c6e4437fd93eb32657a14967efa393630d7aee27b5973c8e1c5ad39",
"subaddress": true,
"integrated": false,
"guaranteed": false
},
{
"address": "FSDinqdKK54PbjF73GgW3nUpf7bF8QbyxFCUurENmUyeEfSxSLL2hxwANBLzq1A8gTSAzzEn65hKjetA8o5BvjV6AY5ECEhP5Nr1aCRPXdxk",
"network": "Stagenet",
"spend": "4cd503040f5e43871bf37d8ca7177da655bda410859af754e24e7b44437f3151",
"view": "af60d42b6c6e4437fd93eb32657a14967efa393630d7aee27b5973c8e1c5ad39",
"subaddress": false,
"integrated": true,
"payment_id": [173, 149, 78, 64, 215, 211, 66, 170],
"guaranteed": false
},
{
"address": "FSDinqdKK54PbjF73GgW3nUpf7bF8QbyxFCUurENmUyeEfSxSLL2hxwANBLzq1A8gTSAzzEn65hKjetA8o5BvjV6AY882kTUS1D2LttnPvTR",
"network": "Stagenet",
"spend": "4cd503040f5e43871bf37d8ca7177da655bda410859af754e24e7b44437f3151",
"view": "af60d42b6c6e4437fd93eb32657a14967efa393630d7aee27b5973c8e1c5ad39",
"subaddress": true,
"integrated": true,
"payment_id": [254, 159, 186, 162, 1, 8, 156, 108],
"guaranteed": false
},
{
"address": "FSDinqdKK54PbjF73GgW3nUpf7bF8QbyxFCUurENmUyeEfSxSLL2hxwANBLzq1A8gTSAzzEn65hKjetA8o5BvjV61VPpBBo8F",
"network": "Stagenet",
"spend": "4cd503040f5e43871bf37d8ca7177da655bda410859af754e24e7b44437f3151",
"view": "af60d42b6c6e4437fd93eb32657a14967efa393630d7aee27b5973c8e1c5ad39",
"subaddress": false,
"integrated": false,
"guaranteed": true
},
{
"address": "FSDinqdKK54PbjF73GgW3nUpf7bF8QbyxFCUurENmUyeEfSxSLL2hxwANBLzq1A8gTSAzzEn65hKjetA8o5BvjV61VPuUJX3b",
"network": "Stagenet",
"spend": "4cd503040f5e43871bf37d8ca7177da655bda410859af754e24e7b44437f3151",
"view": "af60d42b6c6e4437fd93eb32657a14967efa393630d7aee27b5973c8e1c5ad39",
"subaddress": true,
"integrated": false,
"guaranteed": true
},
{
"address": "FSDinqdKK54PbjF73GgW3nUpf7bF8QbyxFCUurENmUyeEfSxSLL2hxwANBLzq1A8gTSAzzEn65hKjetA8o5BvjV6AYCZPxVAoDu21DryMoto",
"network": "Stagenet",
"spend": "4cd503040f5e43871bf37d8ca7177da655bda410859af754e24e7b44437f3151",
"view": "af60d42b6c6e4437fd93eb32657a14967efa393630d7aee27b5973c8e1c5ad39",
"subaddress": false,
"integrated": true,
"payment_id": [3, 115, 230, 129, 172, 108, 116, 235],
"guaranteed": true
},
{
"address": "FSDinqdKK54PbjF73GgW3nUpf7bF8QbyxFCUurENmUyeEfSxSLL2hxwANBLzq1A8gTSAzzEn65hKjetA8o5BvjV6AYFYCqKQAWL18KkpBQ8R",
"network": "Stagenet",
"spend": "4cd503040f5e43871bf37d8ca7177da655bda410859af754e24e7b44437f3151",
"view": "af60d42b6c6e4437fd93eb32657a14967efa393630d7aee27b5973c8e1c5ad39",
"subaddress": true,
"integrated": true,
"payment_id": [94, 122, 63, 167, 209, 225, 14, 180],
"guaranteed": true
}
]

View File

@@ -1,36 +1,39 @@
use core::cmp::Ordering;
use std::io::{self, Read, Write};
use curve25519_dalek::edwards::EdwardsPoint;
use zeroize::Zeroize;
use crate::{hash, serialize::*, ringct::{RctPrunable, RctSignatures}};
use curve25519_dalek::{
scalar::Scalar,
edwards::{EdwardsPoint, CompressedEdwardsY},
};
pub const RING_LEN: usize = 11;
use crate::{
Protocol, hash,
serialize::*,
ringct::{RctBase, RctPrunable, RctSignatures},
};
#[derive(Clone, PartialEq, Debug)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Input {
Gen(u64),
ToKey {
amount: u64,
key_offsets: Vec<u64>,
key_image: EdwardsPoint
}
ToKey { amount: u64, key_offsets: Vec<u64>, key_image: EdwardsPoint },
}
impl Input {
// Worst-case predictive len
pub(crate) fn fee_weight() -> usize {
pub(crate) fn fee_weight(ring_len: usize) -> usize {
// Uses 1 byte for the VarInt amount due to amount being 0
// Uses 1 byte for the VarInt encoding of the length of the ring as well
1 + 1 + 1 + (8 * RING_LEN) + 32
1 + 1 + 1 + (8 * ring_len) + 32
}
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
match self {
Input::Gen(height) => {
w.write_all(&[255])?;
write_varint(height, w)
},
}
Input::ToKey { amount, key_offsets, key_image } => {
w.write_all(&[2])?;
@@ -41,29 +44,27 @@ impl Input {
}
}
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<Input> {
let mut variant = [0];
r.read_exact(&mut variant)?;
Ok(
match variant[0] {
255 => Input::Gen(read_varint(r)?),
2 => Input::ToKey {
amount: read_varint(r)?,
key_offsets: read_vec(read_varint, r)?,
key_image: read_point(r)?
},
_ => Err(std::io::Error::new(std::io::ErrorKind::Other, "Tried to deserialize unknown/unused input type"))?
pub fn read<R: Read>(r: &mut R) -> io::Result<Input> {
Ok(match read_byte(r)? {
255 => Input::Gen(read_varint(r)?),
2 => Input::ToKey {
amount: read_varint(r)?,
key_offsets: read_vec(read_varint, r)?,
key_image: read_torsion_free_point(r)?,
},
_ => {
Err(io::Error::new(io::ErrorKind::Other, "Tried to deserialize unknown/unused input type"))?
}
)
})
}
}
// Doesn't bother moving to an enum for the unused Script classes
#[derive(Clone, PartialEq, Debug)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Output {
pub amount: u64,
pub key: EdwardsPoint,
pub tag: Option<u8>
pub key: CompressedEdwardsY,
pub view_tag: Option<u8>,
}
impl Output {
@@ -71,39 +72,40 @@ impl Output {
1 + 1 + 32 + 1
}
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_varint(&self.amount, w)?;
w.write_all(&[2 + (if self.tag.is_some() { 1 } else { 0 })])?;
write_point(&self.key, w)?;
if let Some(tag) = self.tag {
w.write_all(&[tag])?;
w.write_all(&[2 + u8::from(self.view_tag.is_some())])?;
w.write_all(&self.key.to_bytes())?;
if let Some(view_tag) = self.view_tag {
w.write_all(&[view_tag])?;
}
Ok(())
}
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<Output> {
pub fn read<R: Read>(r: &mut R) -> io::Result<Output> {
let amount = read_varint(r)?;
let mut tag = [0];
r.read_exact(&mut tag)?;
if (tag[0] != 2) && (tag[0] != 3) {
Err(std::io::Error::new(std::io::ErrorKind::Other, "Tried to deserialize unknown/unused output type"))?;
}
let view_tag = match read_byte(r)? {
2 => false,
3 => true,
_ => Err(io::Error::new(
io::ErrorKind::Other,
"Tried to deserialize unknown/unused output type",
))?,
};
Ok(
Output {
amount,
key: read_point(r)?,
tag: if tag[0] == 3 { r.read_exact(&mut tag)?; Some(tag[0]) } else { None }
}
)
Ok(Output {
amount,
key: CompressedEdwardsY(read_bytes(r)?),
view_tag: if view_tag { Some(read_byte(r)?) } else { None },
})
}
}
#[derive(Clone, Copy, PartialEq, Debug)]
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub enum Timelock {
None,
Block(usize),
Time(u64)
Time(u64),
}
impl Timelock {
@@ -117,18 +119,14 @@ impl Timelock {
}
}
pub(crate) fn fee_weight() -> usize {
8
}
fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_varint(
&match self {
Timelock::None => 0,
Timelock::Block(block) => (*block).try_into().unwrap(),
Timelock::Time(time) => *time
Timelock::Time(time) => *time,
},
w
w,
)
}
}
@@ -139,135 +137,173 @@ impl PartialOrd for Timelock {
(Timelock::None, _) => Some(Ordering::Less),
(Timelock::Block(a), Timelock::Block(b)) => a.partial_cmp(b),
(Timelock::Time(a), Timelock::Time(b)) => a.partial_cmp(b),
_ => None
_ => None,
}
}
}
#[derive(Clone, PartialEq, Debug)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct TransactionPrefix {
pub version: u64,
pub timelock: Timelock,
pub inputs: Vec<Input>,
pub outputs: Vec<Output>,
pub extra: Vec<u8>
pub extra: Vec<u8>,
}
impl TransactionPrefix {
pub(crate) fn fee_weight(inputs: usize, outputs: usize, extra: usize) -> usize {
pub(crate) fn fee_weight(ring_len: usize, inputs: usize, outputs: usize, extra: usize) -> usize {
// Assumes Timelock::None since this library won't let you create a TX with a timelock
1 + 1 +
varint_len(inputs) + (inputs * Input::fee_weight()) +
// Only 16 outputs are possible under transactions by this lib
1 + (outputs * Output::fee_weight()) +
varint_len(extra) + extra
varint_len(inputs) +
(inputs * Input::fee_weight(ring_len)) +
1 +
(outputs * Output::fee_weight()) +
varint_len(extra) +
extra
}
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_varint(&self.version, w)?;
self.timelock.serialize(w)?;
write_vec(Input::serialize, &self.inputs, w)?;
write_vec(Output::serialize, &self.outputs, w)?;
self.timelock.write(w)?;
write_vec(Input::write, &self.inputs, w)?;
write_vec(Output::write, &self.outputs, w)?;
write_varint(&self.extra.len().try_into().unwrap(), w)?;
w.write_all(&self.extra)
}
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<TransactionPrefix> {
pub fn read<R: Read>(r: &mut R) -> io::Result<TransactionPrefix> {
let mut prefix = TransactionPrefix {
version: read_varint(r)?,
timelock: Timelock::from_raw(read_varint(r)?),
inputs: read_vec(Input::deserialize, r)?,
outputs: read_vec(Output::deserialize, r)?,
extra: vec![]
inputs: read_vec(Input::read, r)?,
outputs: read_vec(Output::read, r)?,
extra: vec![],
};
let len = read_varint(r)?;
prefix.extra.resize(len.try_into().unwrap(), 0);
r.read_exact(&mut prefix.extra)?;
prefix.extra = read_vec(read_byte, r)?;
Ok(prefix)
}
}
#[derive(Clone, PartialEq, Debug)]
/// Monero transaction. For version 1, rct_signatures still contains an accurate fee value.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Transaction {
pub prefix: TransactionPrefix,
pub rct_signatures: RctSignatures
pub signatures: Vec<(Scalar, Scalar)>,
pub rct_signatures: RctSignatures,
}
impl Transaction {
pub(crate) fn fee_weight(inputs: usize, outputs: usize, extra: usize) -> usize {
TransactionPrefix::fee_weight(inputs, outputs, extra) + RctSignatures::fee_weight(inputs, outputs)
pub(crate) fn fee_weight(
protocol: Protocol,
inputs: usize,
outputs: usize,
extra: usize,
) -> usize {
TransactionPrefix::fee_weight(protocol.ring_len(), inputs, outputs, extra) +
RctSignatures::fee_weight(protocol, inputs, outputs)
}
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
self.prefix.serialize(w)?;
self.rct_signatures.serialize(w)
}
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<Transaction> {
let prefix = TransactionPrefix::deserialize(r)?;
Ok(
Transaction {
rct_signatures: RctSignatures::deserialize(
prefix.inputs.iter().map(|input| match input {
Input::Gen(_) => 0,
Input::ToKey { key_offsets, .. } => key_offsets.len()
}).collect(),
prefix.outputs.len(),
r
)?,
prefix
}
)
}
pub fn hash(&self) -> [u8; 32] {
let mut serialized = Vec::with_capacity(2048);
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.prefix.write(w)?;
if self.prefix.version == 1 {
self.serialize(&mut serialized).unwrap();
hash(&serialized)
} else {
let mut sig_hash = Vec::with_capacity(96);
self.prefix.serialize(&mut serialized).unwrap();
sig_hash.extend(hash(&serialized));
serialized.clear();
self.rct_signatures.base.serialize(
&mut serialized,
self.rct_signatures.prunable.rct_type()
).unwrap();
sig_hash.extend(hash(&serialized));
serialized.clear();
match self.rct_signatures.prunable {
RctPrunable::Null => serialized.resize(32, 0),
_ => {
self.rct_signatures.prunable.serialize(&mut serialized).unwrap();
serialized = hash(&serialized).to_vec();
}
for sig in &self.signatures {
write_scalar(&sig.0, w)?;
write_scalar(&sig.1, w)?;
}
sig_hash.extend(&serialized);
hash(&sig_hash)
Ok(())
} else if self.prefix.version == 2 {
self.rct_signatures.write(w)
} else {
panic!("Serializing a transaction with an unknown version");
}
}
pub fn read<R: Read>(r: &mut R) -> io::Result<Transaction> {
let prefix = TransactionPrefix::read(r)?;
let mut signatures = vec![];
let mut rct_signatures = RctSignatures {
base: RctBase { fee: 0, ecdh_info: vec![], commitments: vec![] },
prunable: RctPrunable::Null,
};
if prefix.version == 1 {
for _ in 0 .. prefix.inputs.len() {
signatures.push((read_scalar(r)?, read_scalar(r)?));
}
rct_signatures.base.fee = prefix
.inputs
.iter()
.map(|input| match input {
Input::Gen(..) => 0,
Input::ToKey { amount, .. } => *amount,
})
.sum::<u64>()
.saturating_sub(prefix.outputs.iter().map(|output| output.amount).sum());
} else if prefix.version == 2 {
rct_signatures = RctSignatures::read(
prefix
.inputs
.iter()
.map(|input| match input {
Input::Gen(_) => 0,
Input::ToKey { key_offsets, .. } => key_offsets.len(),
})
.collect(),
prefix.outputs.len(),
r,
)?;
} else {
Err(io::Error::new(io::ErrorKind::Other, "Tried to deserialize unknown version"))?;
}
Ok(Transaction { prefix, signatures, rct_signatures })
}
pub fn hash(&self) -> [u8; 32] {
let mut buf = Vec::with_capacity(2048);
if self.prefix.version == 1 {
self.write(&mut buf).unwrap();
hash(&buf)
} else {
let mut hashes = Vec::with_capacity(96);
self.prefix.write(&mut buf).unwrap();
hashes.extend(hash(&buf));
buf.clear();
self.rct_signatures.base.write(&mut buf, self.rct_signatures.prunable.rct_type()).unwrap();
hashes.extend(hash(&buf));
buf.clear();
match self.rct_signatures.prunable {
RctPrunable::Null => buf.resize(32, 0),
_ => {
self.rct_signatures.prunable.write(&mut buf).unwrap();
buf = hash(&buf).to_vec();
}
}
hashes.extend(&buf);
hash(&hashes)
}
}
/// Calculate the hash of this transaction as needed for signing it.
pub fn signature_hash(&self) -> [u8; 32] {
let mut serialized = Vec::with_capacity(2048);
let mut buf = Vec::with_capacity(2048);
let mut sig_hash = Vec::with_capacity(96);
self.prefix.serialize(&mut serialized).unwrap();
sig_hash.extend(hash(&serialized));
serialized.clear();
self.prefix.write(&mut buf).unwrap();
sig_hash.extend(hash(&buf));
buf.clear();
self.rct_signatures.base.serialize(&mut serialized, self.rct_signatures.prunable.rct_type()).unwrap();
sig_hash.extend(hash(&serialized));
serialized.clear();
self.rct_signatures.base.write(&mut buf, self.rct_signatures.prunable.rct_type()).unwrap();
sig_hash.extend(hash(&buf));
buf.clear();
self.rct_signatures.prunable.signature_serialize(&mut serialized).unwrap();
sig_hash.extend(&hash(&serialized));
self.rct_signatures.prunable.signature_write(&mut buf).unwrap();
sig_hash.extend(hash(&buf));
hash(&sig_hash)
}

View File

@@ -1,45 +1,120 @@
use core::{marker::PhantomData, fmt::Debug};
use std::string::ToString;
use thiserror::Error;
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, edwards::{EdwardsPoint, CompressedEdwardsY}};
use zeroize::Zeroize;
use curve25519_dalek::edwards::{EdwardsPoint, CompressedEdwardsY};
use base58_monero::base58::{encode_check, decode_check};
use crate::wallet::ViewPair;
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
/// The network this address is for.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub enum Network {
Mainnet,
Testnet,
Stagenet
Stagenet,
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
/// The address type, supporting the officially documented addresses, along with
/// [Featured Addresses](https://gist.github.com/kayabaNerve/01c50bbc35441e0bbdcee63a9d823789).
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub enum AddressType {
Standard,
Integrated([u8; 8]),
Subaddress
Subaddress,
Featured { subaddress: bool, payment_id: Option<[u8; 8]>, guaranteed: bool },
}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct SubaddressIndex {
pub(crate) account: u32,
pub(crate) address: u32,
}
impl SubaddressIndex {
pub const fn new(account: u32, address: u32) -> Option<SubaddressIndex> {
if (account == 0) && (address == 0) {
return None;
}
Some(SubaddressIndex { account, address })
}
pub fn account(&self) -> u32 {
self.account
}
pub fn address(&self) -> u32 {
self.address
}
}
/// Address specification. Used internally to create addresses.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub enum AddressSpec {
Standard,
Integrated([u8; 8]),
Subaddress(SubaddressIndex),
Featured { subaddress: Option<SubaddressIndex>, payment_id: Option<[u8; 8]>, guaranteed: bool },
}
impl AddressType {
fn network_bytes(network: Network) -> (u8, u8, u8) {
pub fn subaddress(&self) -> bool {
matches!(self, AddressType::Subaddress) ||
matches!(self, AddressType::Featured { subaddress: true, .. })
}
pub fn payment_id(&self) -> Option<[u8; 8]> {
if let AddressType::Integrated(id) = self {
Some(*id)
} else if let AddressType::Featured { payment_id, .. } = self {
*payment_id
} else {
None
}
}
pub fn guaranteed(&self) -> bool {
matches!(self, AddressType::Featured { guaranteed: true, .. })
}
}
/// A type which returns the byte for a given address.
pub trait AddressBytes: Clone + Copy + PartialEq + Eq + Debug {
fn network_bytes(network: Network) -> (u8, u8, u8, u8);
}
/// Address bytes for Monero.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct MoneroAddressBytes;
impl AddressBytes for MoneroAddressBytes {
fn network_bytes(network: Network) -> (u8, u8, u8, u8) {
match network {
Network::Mainnet => (18, 19, 42),
Network::Testnet => (53, 54, 63),
Network::Stagenet => (24, 25, 36)
Network::Mainnet => (18, 19, 42, 70),
Network::Testnet => (53, 54, 63, 111),
Network::Stagenet => (24, 25, 36, 86),
}
}
}
/// Address metadata.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct AddressMeta {
pub struct AddressMeta<B: AddressBytes> {
_bytes: PhantomData<B>,
pub network: Network,
pub kind: AddressType,
pub guaranteed: bool
}
#[derive(Clone, Error, Debug)]
impl<B: AddressBytes> Zeroize for AddressMeta<B> {
fn zeroize(&mut self) {
self.network.zeroize();
self.kind.zeroize();
}
}
/// Error when decoding an address.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Error)]
pub enum AddressError {
#[error("invalid address byte")]
InvalidByte,
@@ -47,106 +122,192 @@ pub enum AddressError {
InvalidEncoding,
#[error("invalid length")]
InvalidLength,
#[error("invalid key")]
InvalidKey,
#[error("unknown features")]
UnknownFeatures,
#[error("different network than expected")]
DifferentNetwork,
#[error("invalid key")]
InvalidKey
}
impl AddressMeta {
impl<B: AddressBytes> AddressMeta<B> {
#[allow(clippy::wrong_self_convention)]
fn to_byte(&self) -> u8 {
let bytes = AddressType::network_bytes(self.network);
let byte = match self.kind {
let bytes = B::network_bytes(self.network);
match self.kind {
AddressType::Standard => bytes.0,
AddressType::Integrated(_) => bytes.1,
AddressType::Subaddress => bytes.2
};
byte | (if self.guaranteed { 1 << 7 } else { 0 })
AddressType::Subaddress => bytes.2,
AddressType::Featured { .. } => bytes.3,
}
}
// Returns an incomplete type in the case of Integrated addresses
fn from_byte(byte: u8) -> Result<AddressMeta, AddressError> {
let actual = byte & 0b01111111;
let guaranteed = (byte >> 7) == 1;
/// Create an address's metadata.
pub fn new(network: Network, kind: AddressType) -> Self {
AddressMeta { _bytes: PhantomData, network, kind }
}
// Returns an incomplete instantiation in the case of Integrated/Featured addresses
fn from_byte(byte: u8) -> Result<Self, AddressError> {
let mut meta = None;
for network in [Network::Mainnet, Network::Testnet, Network::Stagenet] {
let (standard, integrated, subaddress) = AddressType::network_bytes(network);
if let Some(kind) = match actual {
_ if actual == standard => Some(AddressType::Standard),
_ if actual == integrated => Some(AddressType::Integrated([0; 8])),
_ if actual == subaddress => Some(AddressType::Subaddress),
_ => None
let (standard, integrated, subaddress, featured) = B::network_bytes(network);
if let Some(kind) = match byte {
_ if byte == standard => Some(AddressType::Standard),
_ if byte == integrated => Some(AddressType::Integrated([0; 8])),
_ if byte == subaddress => Some(AddressType::Subaddress),
_ if byte == featured => {
Some(AddressType::Featured { subaddress: false, payment_id: None, guaranteed: false })
}
_ => None,
} {
meta = Some(AddressMeta { network, kind, guaranteed });
meta = Some(AddressMeta::new(network, kind));
break;
}
}
meta.ok_or(AddressError::InvalidByte)
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Address {
pub meta: AddressMeta,
pub spend: EdwardsPoint,
pub view: EdwardsPoint
}
pub fn subaddress(&self) -> bool {
self.kind.subaddress()
}
impl ViewPair {
pub fn address(&self, network: Network, kind: AddressType, guaranteed: bool) -> Address {
Address {
meta: AddressMeta {
network,
kind,
guaranteed
},
spend: self.spend,
view: &self.view * &ED25519_BASEPOINT_TABLE
}
pub fn payment_id(&self) -> Option<[u8; 8]> {
self.kind.payment_id()
}
pub fn guaranteed(&self) -> bool {
self.kind.guaranteed()
}
}
impl ToString for Address {
/// A Monero address, composed of metadata and a spend/view key.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Address<B: AddressBytes> {
pub meta: AddressMeta<B>,
pub spend: EdwardsPoint,
pub view: EdwardsPoint,
}
impl<B: AddressBytes> Zeroize for Address<B> {
fn zeroize(&mut self) {
self.meta.zeroize();
self.spend.zeroize();
self.view.zeroize();
}
}
impl<B: AddressBytes> ToString for Address<B> {
fn to_string(&self) -> String {
let mut data = vec![self.meta.to_byte()];
data.extend(self.spend.compress().to_bytes());
data.extend(self.view.compress().to_bytes());
if let AddressType::Integrated(id) = self.meta.kind {
if let AddressType::Featured { subaddress, payment_id, guaranteed } = self.meta.kind {
// Technically should be a VarInt, yet we don't have enough features it's needed
data.push(
u8::from(subaddress) + (u8::from(payment_id.is_some()) << 1) + (u8::from(guaranteed) << 2),
);
}
if let Some(id) = self.meta.kind.payment_id() {
data.extend(id);
}
encode_check(&data).unwrap()
}
}
impl Address {
pub fn from_str(s: &str, network: Network) -> Result<Self, AddressError> {
impl<B: AddressBytes> Address<B> {
pub fn new(meta: AddressMeta<B>, spend: EdwardsPoint, view: EdwardsPoint) -> Self {
Address { meta, spend, view }
}
pub fn from_str_raw(s: &str) -> Result<Self, AddressError> {
let raw = decode_check(s).map_err(|_| AddressError::InvalidEncoding)?;
if raw.len() == 1 {
if raw.len() < (1 + 32 + 32) {
Err(AddressError::InvalidLength)?;
}
let mut meta = AddressMeta::from_byte(raw[0])?;
if meta.network != network {
Err(AddressError::DifferentNetwork)?;
let spend = CompressedEdwardsY(raw[1 .. 33].try_into().unwrap())
.decompress()
.ok_or(AddressError::InvalidKey)?;
let view = CompressedEdwardsY(raw[33 .. 65].try_into().unwrap())
.decompress()
.ok_or(AddressError::InvalidKey)?;
let mut read = 65;
if matches!(meta.kind, AddressType::Featured { .. }) {
if raw[read] >= (2 << 3) {
Err(AddressError::UnknownFeatures)?;
}
let subaddress = (raw[read] & 1) == 1;
let integrated = ((raw[read] >> 1) & 1) == 1;
let guaranteed = ((raw[read] >> 2) & 1) == 1;
meta.kind = AddressType::Featured {
subaddress,
payment_id: Some([0; 8]).filter(|_| integrated),
guaranteed,
};
read += 1;
}
let len = match meta.kind {
AddressType::Standard | AddressType::Subaddress => 65,
AddressType::Integrated(_) => 73
};
if raw.len() != len {
// Update read early so we can verify the length
if meta.kind.payment_id().is_some() {
read += 8;
}
if raw.len() != read {
Err(AddressError::InvalidLength)?;
}
let spend = CompressedEdwardsY(raw[1 .. 33].try_into().unwrap()).decompress().ok_or(AddressError::InvalidKey)?;
let view = CompressedEdwardsY(raw[33 .. 65].try_into().unwrap()).decompress().ok_or(AddressError::InvalidKey)?;
if let AddressType::Integrated(ref mut payment_id) = meta.kind {
payment_id.copy_from_slice(&raw[65 .. 73]);
if let AddressType::Integrated(ref mut id) = meta.kind {
id.copy_from_slice(&raw[(read - 8) .. read]);
}
if let AddressType::Featured { payment_id: Some(ref mut id), .. } = meta.kind {
id.copy_from_slice(&raw[(read - 8) .. read]);
}
Ok(Address { meta, spend, view })
}
pub fn from_str(network: Network, s: &str) -> Result<Self, AddressError> {
Self::from_str_raw(s).and_then(|addr| {
if addr.meta.network == network {
Ok(addr)
} else {
Err(AddressError::DifferentNetwork)?
}
})
}
pub fn network(&self) -> Network {
self.meta.network
}
pub fn subaddress(&self) -> bool {
self.meta.subaddress()
}
pub fn payment_id(&self) -> Option<[u8; 8]> {
self.meta.payment_id()
}
pub fn guaranteed(&self) -> bool {
self.meta.guaranteed()
}
}
/// Instantiation of the Address type with Monero's network bytes.
pub type MoneroAddress = Address<MoneroAddressBytes>;
// Allow re-interpreting of an arbitrary address as a monero address so it can be used with the
// rest of this library. Doesn't use From as it was conflicting with From<T> for T.
impl MoneroAddress {
pub fn from<B: AddressBytes>(address: Address<B>) -> MoneroAddress {
MoneroAddress::new(
AddressMeta::new(address.meta.network, address.meta.kind),
address.spend,
address.view,
)
}
}

View File

@@ -5,9 +5,14 @@ use lazy_static::lazy_static;
use rand_core::{RngCore, CryptoRng};
use rand_distr::{Distribution, Gamma};
use zeroize::{Zeroize, ZeroizeOnDrop};
use curve25519_dalek::edwards::EdwardsPoint;
use crate::{transaction::RING_LEN, wallet::SpendableOutput, rpc::{RpcError, Rpc}};
use crate::{
wallet::SpendableOutput,
rpc::{RpcError, Rpc},
};
const LOCK_WINDOW: usize = 10;
const MATURITY: u64 = 60;
@@ -16,24 +21,25 @@ const BLOCK_TIME: usize = 120;
const BLOCKS_PER_YEAR: usize = 365 * 24 * 60 * 60 / BLOCK_TIME;
const TIP_APPLICATION: f64 = (LOCK_WINDOW * BLOCK_TIME) as f64;
const DECOYS: usize = RING_LEN - 1;
lazy_static! {
static ref GAMMA: Gamma<f64> = Gamma::new(19.28, 1.0 / 1.61).unwrap();
static ref DISTRIBUTION: Mutex<Vec<u64>> = Mutex::new(Vec::with_capacity(3000000));
}
#[allow(clippy::too_many_arguments)]
async fn select_n<R: RngCore + CryptoRng>(
rng: &mut R,
rpc: &Rpc,
height: usize,
high: u64,
per_second: f64,
real: &[u64],
used: &mut HashSet<u64>,
count: usize
count: usize,
) -> Result<Vec<(u64, [EdwardsPoint; 2])>, RpcError> {
let mut iters = 0;
let mut confirmed = Vec::with_capacity(count);
// Retries on failure. Retries are obvious as decoys, yet should be minimal
while confirmed.len() != count {
let remaining = count - confirmed.len();
let mut candidates = Vec::with_capacity(remaining);
@@ -41,7 +47,7 @@ async fn select_n<R: RngCore + CryptoRng>(
iters += 1;
// This is cheap and on fresh chains, thousands of rounds may be needed
if iters == 10000 {
Err(RpcError::InternalError("not enough decoy candidates".to_string()))?;
Err(RpcError::InternalError("not enough decoy candidates"))?;
}
// Use a gamma distribution
@@ -70,9 +76,28 @@ async fn select_n<R: RngCore + CryptoRng>(
}
}
let outputs = rpc.get_outputs(&candidates, height).await?;
for i in 0 .. outputs.len() {
if let Some(output) = outputs[i] {
// If this is the first time we're requesting these outputs, include the real one as well
// Prevents the node we're connected to from having a list of known decoys and then seeing a
// TX which uses all of them, with one additional output (the true spend)
let mut real_indexes = HashSet::with_capacity(real.len());
if confirmed.is_empty() {
for real in real {
candidates.push(*real);
}
// Sort candidates so the real spends aren't the ones at the end
candidates.sort();
for real in real {
real_indexes.insert(candidates.binary_search(real).unwrap());
}
}
for (i, output) in rpc.get_unlocked_outputs(&candidates, height).await?.iter_mut().enumerate() {
// Don't include the real spend as a decoy, despite requesting it
if real_indexes.contains(&i) {
continue;
}
if let Some(output) = output.take() {
confirmed.push((candidates[i], output));
}
}
@@ -90,11 +115,12 @@ fn offset(ring: &[u64]) -> Vec<u64> {
res
}
#[derive(Clone, PartialEq, Debug)]
/// Decoy data, containing the actual member as well (at index `i`).
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct Decoys {
pub i: u8,
pub offsets: Vec<u64>,
pub ring: Vec<[EdwardsPoint; 2]>
pub ring: Vec<[EdwardsPoint; 2]>,
}
impl Decoys {
@@ -102,19 +128,22 @@ impl Decoys {
self.offsets.len()
}
pub(crate) async fn select<R: RngCore + CryptoRng>(
/// Select decoys using the same distribution as Monero.
pub async fn select<R: RngCore + CryptoRng>(
rng: &mut R,
rpc: &Rpc,
ring_len: usize,
height: usize,
inputs: &[SpendableOutput]
inputs: &[SpendableOutput],
) -> Result<Vec<Decoys>, RpcError> {
let decoy_count = ring_len - 1;
// Convert the inputs in question to the raw output data
let mut real = Vec::with_capacity(inputs.len());
let mut outputs = Vec::with_capacity(inputs.len());
for input in inputs {
outputs.push((
rpc.get_o_indexes(input.tx).await?[usize::from(input.o)],
[input.key, input.commitment.calculate()]
));
real.push(input.global_index);
outputs.push((real[real.len() - 1], [input.key(), input.commitment().calculate()]));
}
let distribution_len = {
@@ -148,27 +177,22 @@ impl Decoys {
}
// TODO: Simply create a TX with less than the target amount
if (high - MATURITY) < u64::try_from(inputs.len() * RING_LEN).unwrap() {
Err(RpcError::InternalError("not enough decoy candidates".to_string()))?;
if (high - MATURITY) < u64::try_from(inputs.len() * ring_len).unwrap() {
Err(RpcError::InternalError("not enough decoy candidates"))?;
}
// Select all decoys for this transaction, assuming we generate a sane transaction
// We should almost never naturally generate an insane transaction, hence why this doesn't bother
// with an overage
let mut decoys = select_n(
rng,
rpc,
height,
high,
per_second,
&mut used,
inputs.len() * DECOYS
).await?;
// We should almost never naturally generate an insane transaction, hence why this doesn't
// bother with an overage
let mut decoys =
select_n(rng, rpc, height, high, per_second, &real, &mut used, inputs.len() * decoy_count)
.await?;
real.zeroize();
let mut res = Vec::with_capacity(inputs.len());
for o in outputs {
// Grab the decoys for this specific output
let mut ring = decoys.drain((decoys.len() - DECOYS) ..).collect::<Vec<_>>();
let mut ring = decoys.drain((decoys.len() - decoy_count) ..).collect::<Vec<_>>();
ring.push(o);
ring.sort_by(|a, b| a.0.cmp(&b.0));
@@ -178,40 +202,43 @@ impl Decoys {
// 500 outputs since while itself not being a sufficiently mature blockchain
// Considering Monero's p2p layer doesn't actually check transaction sanity, it should be
// fine for us to not have perfectly matching rules, especially since this code will infinite
// loop if it can't determine sanity, which is possible with sufficient inputs on sufficiently
// small chains
// loop if it can't determine sanity, which is possible with sufficient inputs on
// sufficiently small chains
if high > 500 {
// Make sure the TX passes the sanity check that the median output is within the last 40%
let target_median = high * 3 / 5;
while ring[RING_LEN / 2].0 < target_median {
while ring[ring_len / 2].0 < target_median {
// If it's not, update the bottom half with new values to ensure the median only moves up
for removed in ring.drain(0 .. (RING_LEN / 2)).collect::<Vec<_>>() {
for removed in ring.drain(0 .. (ring_len / 2)).collect::<Vec<_>>() {
// If we removed the real spend, add it back
if removed.0 == o.0 {
ring.push(o);
} else {
// We could not remove this, saving CPU time and removing low values as possibilities, yet
// it'd increase the amount of decoys required to create this transaction and some removed
// outputs may be the best option (as we drop the first half, not just the bottom n)
// We could not remove this, saving CPU time and removing low values as
// possibilities, yet it'd increase the amount of decoys required to create this
// transaction and some removed outputs may be the best option (as we drop the first
// half, not just the bottom n)
used.remove(&removed.0);
}
}
// Select new outputs until we have a full sized ring again
ring.extend(
select_n(rng, rpc, height, high, per_second, &mut used, RING_LEN - ring.len()).await?
select_n(rng, rpc, height, high, per_second, &[], &mut used, ring_len - ring.len())
.await?,
);
ring.sort_by(|a, b| a.0.cmp(&b.0));
}
// The other sanity check rule is about duplicates, yet we already enforce unique ring members
// The other sanity check rule is about duplicates, yet we already enforce unique ring
// members
}
res.push(Decoys {
// Binary searches for the real spend since we don't know where it sorted to
i: u8::try_from(ring.partition_point(|x| x.0 < o.0)).unwrap(),
offsets: offset(&ring.iter().map(|output| output.0).collect::<Vec<_>>()),
ring: ring.iter().map(|output| output.1).collect()
ring: ring.iter().map(|output| output.1).collect(),
});
}

View File

@@ -0,0 +1,197 @@
use core::ops::BitXor;
use std::io::{self, Read, Write};
use zeroize::Zeroize;
use curve25519_dalek::edwards::EdwardsPoint;
use crate::serialize::{
varint_len, read_byte, read_bytes, read_varint, read_point, read_vec, write_byte, write_varint,
write_point, write_vec,
};
pub const MAX_TX_EXTRA_NONCE_SIZE: usize = 255;
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub(crate) enum PaymentId {
Unencrypted([u8; 32]),
Encrypted([u8; 8]),
}
impl BitXor<[u8; 8]> for PaymentId {
type Output = PaymentId;
fn bitxor(self, bytes: [u8; 8]) -> PaymentId {
match self {
PaymentId::Unencrypted(_) => self,
PaymentId::Encrypted(id) => {
PaymentId::Encrypted((u64::from_le_bytes(id) ^ u64::from_le_bytes(bytes)).to_le_bytes())
}
}
}
}
impl PaymentId {
pub(crate) fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
match self {
PaymentId::Unencrypted(id) => {
w.write_all(&[0])?;
w.write_all(id)?;
}
PaymentId::Encrypted(id) => {
w.write_all(&[1])?;
w.write_all(id)?;
}
}
Ok(())
}
fn read<R: Read>(r: &mut R) -> io::Result<PaymentId> {
Ok(match read_byte(r)? {
0 => PaymentId::Unencrypted(read_bytes(r)?),
1 => PaymentId::Encrypted(read_bytes(r)?),
_ => Err(io::Error::new(io::ErrorKind::Other, "unknown payment ID type"))?,
})
}
}
// Doesn't bother with padding nor MinerGate
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub(crate) enum ExtraField {
PublicKey(EdwardsPoint),
Nonce(Vec<u8>),
MergeMining(usize, [u8; 32]),
PublicKeys(Vec<EdwardsPoint>),
}
impl ExtraField {
fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
match self {
ExtraField::PublicKey(key) => {
w.write_all(&[1])?;
w.write_all(&key.compress().to_bytes())?;
}
ExtraField::Nonce(data) => {
w.write_all(&[2])?;
write_vec(write_byte, data, w)?;
}
ExtraField::MergeMining(height, merkle) => {
w.write_all(&[3])?;
write_varint(&u64::try_from(*height).unwrap(), w)?;
w.write_all(merkle)?;
}
ExtraField::PublicKeys(keys) => {
w.write_all(&[4])?;
write_vec(write_point, keys, w)?;
}
}
Ok(())
}
fn read<R: Read>(r: &mut R) -> io::Result<ExtraField> {
Ok(match read_byte(r)? {
1 => ExtraField::PublicKey(read_point(r)?),
2 => ExtraField::Nonce({
let nonce = read_vec(read_byte, r)?;
if nonce.len() > MAX_TX_EXTRA_NONCE_SIZE {
Err(io::Error::new(io::ErrorKind::Other, "too long nonce"))?;
}
nonce
}),
3 => ExtraField::MergeMining(
usize::try_from(read_varint(r)?)
.map_err(|_| io::Error::new(io::ErrorKind::Other, "varint for height exceeds usize"))?,
read_bytes(r)?,
),
4 => ExtraField::PublicKeys(read_vec(read_point, r)?),
_ => Err(io::Error::new(io::ErrorKind::Other, "unknown extra field"))?,
})
}
}
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub(crate) struct Extra(Vec<ExtraField>);
impl Extra {
pub(crate) fn keys(&self) -> Vec<EdwardsPoint> {
let mut keys = Vec::with_capacity(2);
for field in &self.0 {
match field.clone() {
ExtraField::PublicKey(key) => keys.push(key),
ExtraField::PublicKeys(additional) => keys.extend(additional),
_ => (),
}
}
keys
}
pub(crate) fn payment_id(&self) -> Option<PaymentId> {
for field in &self.0 {
if let ExtraField::Nonce(data) = field {
return PaymentId::read::<&[u8]>(&mut data.as_ref()).ok();
}
}
None
}
pub(crate) fn data(&self) -> Vec<Vec<u8>> {
let mut first = true;
let mut res = vec![];
for field in &self.0 {
if let ExtraField::Nonce(data) = field {
// Skip the first Nonce, which should be the payment ID
if first {
first = false;
continue;
}
res.push(data.clone());
}
}
res
}
pub(crate) fn new(mut keys: Vec<EdwardsPoint>) -> Extra {
let mut res = Extra(Vec::with_capacity(3));
if !keys.is_empty() {
res.push(ExtraField::PublicKey(keys[0]));
}
if keys.len() > 1 {
res.push(ExtraField::PublicKeys(keys.drain(1 ..).collect()));
}
res
}
pub(crate) fn push(&mut self, field: ExtraField) {
self.0.push(field);
}
#[rustfmt::skip]
pub(crate) fn fee_weight(outputs: usize, data: &[Vec<u8>]) -> usize {
// PublicKey, key
(1 + 32) +
// PublicKeys, length, additional keys
(1 + 1 + (outputs.saturating_sub(1) * 32)) +
// PaymentId (Nonce), length, encrypted, ID
(1 + 1 + 1 + 8) +
// Nonce, length, data (if existent)
data.iter().map(|v| 1 + varint_len(v.len()) + v.len()).sum::<usize>()
}
pub(crate) fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
for field in &self.0 {
field.write(w)?;
}
Ok(())
}
pub(crate) fn read<R: Read>(r: &mut R) -> io::Result<Extra> {
let mut res = Extra(vec![]);
let mut field;
while {
field = ExtraField::read(r);
field.is_ok()
} {
res.0.push(field.unwrap());
}
Ok(res)
}
}

View File

@@ -1,21 +1,31 @@
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
use core::ops::Deref;
use std::collections::{HashSet, HashMap};
use crate::{
hash, hash_to_scalar,
serialize::write_varint,
transaction::Input
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
scalar::Scalar,
edwards::{EdwardsPoint, CompressedEdwardsY},
};
use crate::{hash, hash_to_scalar, serialize::write_varint, transaction::Input};
mod extra;
pub(crate) use extra::{PaymentId, ExtraField, Extra};
/// Address encoding and decoding functionality.
pub mod address;
use address::{Network, AddressType, SubaddressIndex, AddressSpec, AddressMeta, MoneroAddress};
mod scan;
pub use scan::SpendableOutput;
pub use scan::{ReceivedOutput, SpendableOutput, Timelocked};
pub(crate) mod decoys;
pub(crate) use decoys::Decoys;
mod send;
pub use send::{Fee, TransactionError, SignableTransaction};
pub use send::{Fee, TransactionError, SignableTransaction, SignableTransactionBuilder};
#[cfg(feature = "multisig")]
pub use send::TransactionMachine;
@@ -30,30 +40,48 @@ pub(crate) fn uniqueness(inputs: &[Input]) -> [u8; 32] {
match input {
// If Gen, this should be the only input, making this loop somewhat pointless
// This works and even if there were somehow multiple inputs, it'd be a false negative
Input::Gen(height) => { write_varint(&(*height).try_into().unwrap(), &mut u).unwrap(); },
Input::ToKey { key_image, .. } => u.extend(key_image.compress().to_bytes())
Input::Gen(height) => {
write_varint(height, &mut u).unwrap();
}
Input::ToKey { key_image, .. } => u.extend(key_image.compress().to_bytes()),
}
}
hash(&u)
}
// Hs(8Ra || o) with https://github.com/monero-project/research-lab/issues/103 as an option
// Hs("view_tag" || 8Ra || o), Hs(8Ra || o), and H(8Ra || 0x8d) with uniqueness inclusion in the
// Scalar as an option
#[allow(non_snake_case)]
pub(crate) fn shared_key(uniqueness: Option<[u8; 32]>, s: Scalar, P: &EdwardsPoint, o: usize) -> Scalar {
// uniqueness
let mut shared = uniqueness.map_or(vec![], |uniqueness| uniqueness.to_vec());
// || 8Ra
shared.extend((s * P).mul_by_cofactor().compress().to_bytes().to_vec());
pub(crate) fn shared_key(
uniqueness: Option<[u8; 32]>,
s: &Scalar,
P: &EdwardsPoint,
o: usize,
) -> (u8, Scalar, [u8; 8]) {
// 8Ra
let mut output_derivation = (s * P).mul_by_cofactor().compress().to_bytes().to_vec();
// || o
write_varint(&o.try_into().unwrap(), &mut shared).unwrap();
// Hs()
hash_to_scalar(&shared)
write_varint(&o.try_into().unwrap(), &mut output_derivation).unwrap();
let view_tag = hash(&[b"view_tag".as_ref(), &output_derivation].concat())[0];
let mut payment_id_xor = [0; 8];
payment_id_xor
.copy_from_slice(&hash(&[output_derivation.as_ref(), [0x8d].as_ref()].concat())[.. 8]);
// uniqueness ||
let shared_key = if let Some(uniqueness) = uniqueness {
[uniqueness.as_ref(), &output_derivation].concat().to_vec()
} else {
output_derivation
};
(view_tag, hash_to_scalar(&shared_key), payment_id_xor)
}
pub(crate) fn amount_encryption(amount: u64, key: Scalar) -> [u8; 8] {
let mut amount_mask = b"amount".to_vec();
amount_mask.extend(key.to_bytes());
(amount ^ u64::from_le_bytes(hash(&amount_mask)[0 .. 8].try_into().unwrap())).to_le_bytes()
(amount ^ u64::from_le_bytes(hash(&amount_mask)[.. 8].try_into().unwrap())).to_le_bytes()
}
fn amount_decryption(amount: [u8; 8], key: Scalar) -> u64 {
@@ -66,8 +94,125 @@ pub(crate) fn commitment_mask(shared_key: Scalar) -> Scalar {
hash_to_scalar(&mask)
}
#[derive(Clone, Copy)]
/// The private view key and public spend key, enabling scanning transactions.
#[derive(Clone, Zeroize, ZeroizeOnDrop)]
pub struct ViewPair {
pub spend: EdwardsPoint,
pub view: Scalar
spend: EdwardsPoint,
view: Zeroizing<Scalar>,
}
impl ViewPair {
pub fn new(spend: EdwardsPoint, view: Zeroizing<Scalar>) -> ViewPair {
ViewPair { spend, view }
}
fn subaddress_derivation(&self, index: SubaddressIndex) -> Scalar {
hash_to_scalar(&Zeroizing::new(
[
b"SubAddr\0".as_ref(),
Zeroizing::new(self.view.to_bytes()).as_ref(),
&index.account().to_le_bytes(),
&index.address().to_le_bytes(),
]
.concat(),
))
}
fn subaddress_keys(&self, index: SubaddressIndex) -> (EdwardsPoint, EdwardsPoint) {
let scalar = self.subaddress_derivation(index);
let spend = self.spend + (&scalar * &ED25519_BASEPOINT_TABLE);
let view = self.view.deref() * spend;
(spend, view)
}
/// Returns an address with the provided specification.
pub fn address(&self, network: Network, spec: AddressSpec) -> MoneroAddress {
let mut spend = self.spend;
let mut view: EdwardsPoint = self.view.deref() * &ED25519_BASEPOINT_TABLE;
// construct the address meta
let meta = match spec {
AddressSpec::Standard => AddressMeta::new(network, AddressType::Standard),
AddressSpec::Integrated(payment_id) => {
AddressMeta::new(network, AddressType::Integrated(payment_id))
}
AddressSpec::Subaddress(index) => {
(spend, view) = self.subaddress_keys(index);
AddressMeta::new(network, AddressType::Subaddress)
}
AddressSpec::Featured { subaddress, payment_id, guaranteed } => {
if let Some(index) = subaddress {
(spend, view) = self.subaddress_keys(index);
}
AddressMeta::new(
network,
AddressType::Featured { subaddress: subaddress.is_some(), payment_id, guaranteed },
)
}
};
MoneroAddress::new(meta, spend, view)
}
}
/// Transaction scanner.
/// This scanner is capable of generating subaddresses, additionally scanning for them once they've
/// been explicitly generated. If the burning bug is attempted, any secondary outputs will be
/// ignored.
#[derive(Clone)]
pub struct Scanner {
pair: ViewPair,
// Also contains the spend key as None
pub(crate) subaddresses: HashMap<CompressedEdwardsY, Option<SubaddressIndex>>,
pub(crate) burning_bug: Option<HashSet<CompressedEdwardsY>>,
}
impl Zeroize for Scanner {
fn zeroize(&mut self) {
self.pair.zeroize();
// These may not be effective, unfortunately
for (mut key, mut value) in self.subaddresses.drain() {
key.zeroize();
value.zeroize();
}
if let Some(ref mut burning_bug) = self.burning_bug.take() {
for mut output in burning_bug.drain() {
output.zeroize();
}
}
}
}
impl Drop for Scanner {
fn drop(&mut self) {
self.zeroize();
}
}
impl ZeroizeOnDrop for Scanner {}
impl Scanner {
/// Create a Scanner from a ViewPair.
/// burning_bug is a HashSet of used keys, intended to prevent key reuse which would burn funds.
/// When an output is successfully scanned, the output key MUST be saved to disk.
/// When a new scanner is created, ALL saved output keys must be passed in to be secure.
/// If None is passed, a modified shared key derivation is used which is immune to the burning
/// bug (specifically the Guaranteed feature from Featured Addresses).
// TODO: Should this take in a DB access handle to ensure output keys are saved?
pub fn from_view(pair: ViewPair, burning_bug: Option<HashSet<CompressedEdwardsY>>) -> Scanner {
let mut subaddresses = HashMap::new();
subaddresses.insert(pair.spend.compress(), None);
Scanner { pair, subaddresses, burning_bug }
}
/// Register a subaddress.
// There used to be an address function here, yet it wasn't safe. It could generate addresses
// incompatible with the Scanner. While we could return None for that, then we have the issue
// of runtime failures to generate an address.
// Removing that API was the simplest option.
pub fn register_subaddress(&mut self, subaddress: SubaddressIndex) {
let (spend, _) = self.pair.subaddress_keys(subaddress);
self.subaddresses.insert(spend.compress(), Some(subaddress));
}
}

View File

@@ -1,122 +1,341 @@
use std::convert::TryFrom;
use std::io::{self, Read, Write};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
scalar::Scalar,
edwards::EdwardsPoint
};
use zeroize::{Zeroize, ZeroizeOnDrop};
use monero::{consensus::deserialize, blockdata::transaction::ExtraField};
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar, edwards::EdwardsPoint};
use crate::{
Commitment,
serialize::{write_varint, read_32, read_scalar, read_point},
transaction::{Timelock, Transaction},
wallet::{ViewPair, uniqueness, shared_key, amount_decryption, commitment_mask}
serialize::{read_byte, read_u32, read_u64, read_bytes, read_scalar, read_point, read_raw_vec},
transaction::{Input, Timelock, Transaction},
block::Block,
rpc::{Rpc, RpcError},
wallet::{
PaymentId, Extra, address::SubaddressIndex, Scanner, uniqueness, shared_key, amount_decryption,
commitment_mask,
},
};
#[derive(Clone, PartialEq, Debug)]
pub struct SpendableOutput {
/// An absolute output ID, defined as its transaction hash and output index.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct AbsoluteId {
pub tx: [u8; 32],
pub o: u8,
pub key: EdwardsPoint,
pub key_offset: Scalar,
pub commitment: Commitment
}
pub struct Timelocked(Timelock, Vec<SpendableOutput>);
impl Timelocked {
impl AbsoluteId {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
w.write_all(&self.tx)?;
w.write_all(&[self.o])
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = Vec::with_capacity(32 + 1);
self.write(&mut serialized).unwrap();
serialized
}
pub fn read<R: Read>(r: &mut R) -> io::Result<AbsoluteId> {
Ok(AbsoluteId { tx: read_bytes(r)?, o: read_byte(r)? })
}
}
/// The data contained with an output.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct OutputData {
pub key: EdwardsPoint,
/// Absolute difference between the spend key and the key in this output
pub key_offset: Scalar,
pub commitment: Commitment,
}
impl OutputData {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
w.write_all(&self.key.compress().to_bytes())?;
w.write_all(&self.key_offset.to_bytes())?;
w.write_all(&self.commitment.mask.to_bytes())?;
w.write_all(&self.commitment.amount.to_le_bytes())
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = Vec::with_capacity(32 + 32 + 32 + 8);
self.write(&mut serialized).unwrap();
serialized
}
pub fn read<R: Read>(r: &mut R) -> io::Result<OutputData> {
Ok(OutputData {
key: read_point(r)?,
key_offset: read_scalar(r)?,
commitment: Commitment::new(read_scalar(r)?, read_u64(r)?),
})
}
}
/// The metadata for an output.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct Metadata {
/// The subaddress this output was sent to.
pub subaddress: Option<SubaddressIndex>,
/// The payment ID included with this output.
/// This will be gibberish if the payment ID wasn't intended for the recipient or wasn't included.
// Could be an Option, as extra doesn't necessarily have a payment ID, yet all Monero TXs should
// have this making it simplest for it to be as-is.
pub payment_id: [u8; 8],
/// Arbitrary data encoded in TX extra.
pub arbitrary_data: Vec<Vec<u8>>,
}
impl Metadata {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
if let Some(subaddress) = self.subaddress {
w.write_all(&[1])?;
w.write_all(&subaddress.account().to_le_bytes())?;
w.write_all(&subaddress.address().to_le_bytes())?;
} else {
w.write_all(&[0])?;
}
w.write_all(&self.payment_id)?;
w.write_all(&u32::try_from(self.arbitrary_data.len()).unwrap().to_le_bytes())?;
for part in &self.arbitrary_data {
w.write_all(&[u8::try_from(part.len()).unwrap()])?;
w.write_all(part)?;
}
Ok(())
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = Vec::with_capacity(1 + 8 + 1);
self.write(&mut serialized).unwrap();
serialized
}
pub fn read<R: Read>(r: &mut R) -> io::Result<Metadata> {
let subaddress = if read_byte(r)? == 1 {
Some(
SubaddressIndex::new(read_u32(r)?, read_u32(r)?)
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid subaddress in metadata"))?,
)
} else {
None
};
Ok(Metadata {
subaddress,
payment_id: read_bytes(r)?,
arbitrary_data: {
let mut data = vec![];
for _ in 0 .. read_u32(r)? {
let len = read_byte(r)?;
data.push(read_raw_vec(read_byte, usize::from(len), r)?);
}
data
},
})
}
}
/// A received output, defined as its absolute ID, data, and metadara.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct ReceivedOutput {
pub absolute: AbsoluteId,
pub data: OutputData,
pub metadata: Metadata,
}
impl ReceivedOutput {
pub fn key(&self) -> EdwardsPoint {
self.data.key
}
pub fn key_offset(&self) -> Scalar {
self.data.key_offset
}
pub fn commitment(&self) -> Commitment {
self.data.commitment.clone()
}
pub fn arbitrary_data(&self) -> &[Vec<u8>] {
&self.metadata.arbitrary_data
}
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.absolute.write(w)?;
self.data.write(w)?;
self.metadata.write(w)
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).unwrap();
serialized
}
pub fn read<R: Read>(r: &mut R) -> io::Result<ReceivedOutput> {
Ok(ReceivedOutput {
absolute: AbsoluteId::read(r)?,
data: OutputData::read(r)?,
metadata: Metadata::read(r)?,
})
}
}
/// A spendable output, defined as a received output and its index on the Monero blockchain.
/// This index is dependent on the Monero blockchain and will only be known once the output is
/// included within a block. This may change if there's a reorganization.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct SpendableOutput {
pub output: ReceivedOutput,
pub global_index: u64,
}
impl SpendableOutput {
/// Update the spendable output's global index. This is intended to be called if a
/// re-organization occurred.
pub async fn refresh_global_index(&mut self, rpc: &Rpc) -> Result<(), RpcError> {
self.global_index =
rpc.get_o_indexes(self.output.absolute.tx).await?[usize::from(self.output.absolute.o)];
Ok(())
}
pub async fn from(rpc: &Rpc, output: ReceivedOutput) -> Result<SpendableOutput, RpcError> {
let mut output = SpendableOutput { output, global_index: 0 };
output.refresh_global_index(rpc).await?;
Ok(output)
}
pub fn key(&self) -> EdwardsPoint {
self.output.key()
}
pub fn key_offset(&self) -> Scalar {
self.output.key_offset()
}
pub fn commitment(&self) -> Commitment {
self.output.commitment()
}
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.output.write(w)?;
w.write_all(&self.global_index.to_le_bytes())
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).unwrap();
serialized
}
pub fn read<R: Read>(r: &mut R) -> io::Result<SpendableOutput> {
Ok(SpendableOutput { output: ReceivedOutput::read(r)?, global_index: read_u64(r)? })
}
}
/// A collection of timelocked outputs, either received or spendable.
#[derive(Zeroize)]
pub struct Timelocked<O: Clone + Zeroize>(Timelock, Vec<O>);
impl<O: Clone + Zeroize> Drop for Timelocked<O> {
fn drop(&mut self) {
self.zeroize();
}
}
impl<O: Clone + Zeroize> ZeroizeOnDrop for Timelocked<O> {}
impl<O: Clone + Zeroize> Timelocked<O> {
pub fn timelock(&self) -> Timelock {
self.0
}
pub fn not_locked(&self) -> Vec<SpendableOutput> {
/// Return the outputs if they're not timelocked, or an empty vector if they are.
pub fn not_locked(&self) -> Vec<O> {
if self.0 == Timelock::None {
return self.1.clone();
}
vec![]
}
/// Returns None if the Timelocks aren't comparable. Returns Some(vec![]) if none are unlocked
pub fn unlocked(&self, timelock: Timelock) -> Option<Vec<SpendableOutput>> {
/// Returns None if the Timelocks aren't comparable. Returns Some(vec![]) if none are unlocked.
pub fn unlocked(&self, timelock: Timelock) -> Option<Vec<O>> {
// If the Timelocks are comparable, return the outputs if they're now unlocked
self.0.partial_cmp(&timelock).filter(|_| self.0 <= timelock).map(|_| self.1.clone())
}
pub fn ignore_timelock(&self) -> Vec<SpendableOutput> {
pub fn ignore_timelock(&self) -> Vec<O> {
self.1.clone()
}
}
impl SpendableOutput {
pub fn serialize(&self) -> Vec<u8> {
let mut res = Vec::with_capacity(32 + 1 + 32 + 32 + 40);
res.extend(&self.tx);
res.push(self.o);
res.extend(self.key.compress().to_bytes());
res.extend(self.key_offset.to_bytes());
res.extend(self.commitment.mask.to_bytes());
res.extend(self.commitment.amount.to_le_bytes());
res
}
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<SpendableOutput> {
Ok(
SpendableOutput {
tx: read_32(r)?,
o: { let mut o = [0; 1]; r.read_exact(&mut o)?; o[0] },
key: read_point(r)?,
key_offset: read_scalar(r)?,
commitment: Commitment::new(
read_scalar(r)?,
{ let mut amount = [0; 8]; r.read_exact(&mut amount)?; u64::from_le_bytes(amount) }
)
}
)
}
}
impl Transaction {
pub fn scan(
&self,
view: ViewPair,
guaranteed: bool
) -> Timelocked {
let mut extra = vec![];
write_varint(&u64::try_from(self.prefix.extra.len()).unwrap(), &mut extra).unwrap();
extra.extend(&self.prefix.extra);
let extra = deserialize::<ExtraField>(&extra);
let pubkeys: Vec<EdwardsPoint>;
if let Ok(extra) = extra {
let mut m_pubkeys = vec![];
if let Some(key) = extra.tx_pubkey() {
m_pubkeys.push(key);
}
if let Some(keys) = extra.tx_additional_pubkeys() {
m_pubkeys.extend(&keys);
}
pubkeys = m_pubkeys.iter().map(|key| key.point.decompress()).filter_map(|key| key).collect();
impl Scanner {
/// Scan a transaction to discover the received outputs.
pub fn scan_transaction(&mut self, tx: &Transaction) -> Timelocked<ReceivedOutput> {
let extra = Extra::read::<&[u8]>(&mut tx.prefix.extra.as_ref());
let keys;
let extra = if let Ok(extra) = extra {
keys = extra.keys();
extra
} else {
return Timelocked(self.prefix.timelock, vec![]);
return Timelocked(tx.prefix.timelock, vec![]);
};
let payment_id = extra.payment_id();
let mut res = vec![];
for (o, output) in self.prefix.outputs.iter().enumerate() {
// TODO: This may be replaceable by pubkeys[o]
for pubkey in &pubkeys {
let key_offset = shared_key(
Some(uniqueness(&self.prefix.inputs)).filter(|_| guaranteed),
view.view,
pubkey,
o
);
// P - shared == spend
if (output.key - (&key_offset * &ED25519_BASEPOINT_TABLE)) != view.spend {
for (o, output) in tx.prefix.outputs.iter().enumerate() {
// https://github.com/serai-dex/serai/issues/106
if let Some(burning_bug) = self.burning_bug.as_ref() {
if burning_bug.contains(&output.key) {
continue;
}
}
let output_key = output.key.decompress();
if output_key.is_none() {
continue;
}
let output_key = output_key.unwrap();
for key in &keys {
let (view_tag, shared_key, payment_id_xor) = shared_key(
if self.burning_bug.is_none() { Some(uniqueness(&tx.prefix.inputs)) } else { None },
&self.pair.view,
key,
o,
);
let payment_id =
if let Some(PaymentId::Encrypted(id)) = payment_id.map(|id| id ^ payment_id_xor) {
id
} else {
payment_id_xor
};
if let Some(actual_view_tag) = output.view_tag {
if actual_view_tag != view_tag {
continue;
}
}
// P - shared == spend
let subaddress = self
.subaddresses
.get(&(output_key - (&shared_key * &ED25519_BASEPOINT_TABLE)).compress());
if subaddress.is_none() {
continue;
}
let subaddress = *subaddress.unwrap();
// If it has torsion, it'll substract the non-torsioned shared key to a torsioned key
// We will not have a torsioned key in our HashMap of keys, so we wouldn't identify it as
// ours
// If we did though, it'd enable bypassing the included burning bug protection
debug_assert!(output_key.is_torsion_free());
let mut key_offset = shared_key;
if let Some(subaddress) = subaddress {
key_offset += self.pair.subaddress_derivation(subaddress);
}
// Since we've found an output to us, get its amount
let mut commitment = Commitment::zero();
@@ -125,30 +344,34 @@ impl Transaction {
commitment.amount = output.amount;
// Regular transaction
} else {
let amount = match self.rct_signatures.base.ecdh_info.get(o) {
Some(amount) => amount_decryption(*amount, key_offset),
let amount = match tx.rct_signatures.base.ecdh_info.get(o) {
Some(amount) => amount_decryption(*amount, shared_key),
// This should never happen, yet it may be possible with miner transactions?
// Using get just decreases the possibility of a panic and lets us move on in that case
None => break
None => break,
};
// Rebuild the commitment to verify it
commitment = Commitment::new(commitment_mask(key_offset), amount);
commitment = Commitment::new(commitment_mask(shared_key), amount);
// If this is a malicious commitment, move to the next output
// Any other R value will calculate to a different spend key and are therefore ignorable
if Some(&commitment.calculate()) != self.rct_signatures.base.commitments.get(o) {
if Some(&commitment.calculate()) != tx.rct_signatures.base.commitments.get(o) {
break;
}
}
if commitment.amount != 0 {
res.push(SpendableOutput {
tx: self.hash(),
o: o.try_into().unwrap(),
key: output.key,
key_offset,
commitment
res.push(ReceivedOutput {
absolute: AbsoluteId { tx: tx.hash(), o: o.try_into().unwrap() },
data: OutputData { key: output_key, key_offset, commitment },
metadata: Metadata { subaddress, payment_id, arbitrary_data: extra.data() },
});
if let Some(burning_bug) = self.burning_bug.as_mut() {
burning_bug.insert(output.key);
}
}
// Break to prevent public keys from being included multiple times, triggering multiple
// inclusions of the same output
@@ -156,6 +379,59 @@ impl Transaction {
}
}
Timelocked(self.prefix.timelock, res)
Timelocked(tx.prefix.timelock, res)
}
/// Scan a block to obtain its spendable outputs. Its the presence in a block giving these
/// transactions their global index, and this must be batched as asking for the index of specific
/// transactions is a dead giveaway for which transactions you successfully scanned. This
/// function obtains the output indexes for the miner transaction, incrementing from there
/// instead.
pub async fn scan(
&mut self,
rpc: &Rpc,
block: &Block,
) -> Result<Vec<Timelocked<SpendableOutput>>, RpcError> {
let mut index = rpc.get_o_indexes(block.miner_tx.hash()).await?[0];
let mut txs = vec![block.miner_tx.clone()];
txs.extend(rpc.get_transactions(&block.txs).await?);
let map = |mut timelock: Timelocked<ReceivedOutput>, index| {
if timelock.1.is_empty() {
None
} else {
Some(Timelocked(
timelock.0,
timelock
.1
.drain(..)
.map(|output| SpendableOutput {
global_index: index + u64::from(output.absolute.o),
output,
})
.collect(),
))
}
};
let mut res = vec![];
for tx in txs.drain(..) {
if let Some(timelock) = map(self.scan_transaction(&tx), index) {
res.push(timelock);
}
index += u64::try_from(
tx.prefix
.outputs
.iter()
// Filter to miner TX outputs/0-amount outputs since we're tacking the 0-amount index
// This will fail to scan blocks containing pre-RingCT miner TXs
.filter(|output| {
matches!(tx.prefix.inputs.get(0), Some(Input::Gen(..))) || (output.amount == 0)
})
.count(),
)
.unwrap()
}
Ok(res)
}
}

View File

@@ -0,0 +1,125 @@
use std::sync::{Arc, RwLock};
use zeroize::{Zeroize, ZeroizeOnDrop};
use crate::{
Protocol,
wallet::{
address::MoneroAddress, Fee, SpendableOutput, SignableTransaction, TransactionError,
extra::MAX_TX_EXTRA_NONCE_SIZE,
},
};
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
struct SignableTransactionBuilderInternal {
protocol: Protocol,
fee: Fee,
inputs: Vec<SpendableOutput>,
payments: Vec<(MoneroAddress, u64)>,
change_address: Option<MoneroAddress>,
data: Vec<Vec<u8>>,
}
impl SignableTransactionBuilderInternal {
// Takes in the change address so users don't miss that they have to manually set one
// If they don't, all leftover funds will become part of the fee
fn new(protocol: Protocol, fee: Fee, change_address: Option<MoneroAddress>) -> Self {
Self { protocol, fee, inputs: vec![], payments: vec![], change_address, data: vec![] }
}
fn add_input(&mut self, input: SpendableOutput) {
self.inputs.push(input);
}
fn add_inputs(&mut self, inputs: &[SpendableOutput]) {
self.inputs.extend(inputs.iter().cloned());
}
fn add_payment(&mut self, dest: MoneroAddress, amount: u64) {
self.payments.push((dest, amount));
}
fn add_payments(&mut self, payments: &[(MoneroAddress, u64)]) {
self.payments.extend(payments);
}
fn add_data(&mut self, data: Vec<u8>) {
self.data.push(data);
}
}
/// A Transaction Builder for Monero transactions.
/// All methods provided will modify self while also returning a shallow copy, enabling efficient
/// chaining with a clean API.
/// In order to fork the builder at some point, clone will still return a deep copy.
#[derive(Debug)]
pub struct SignableTransactionBuilder(Arc<RwLock<SignableTransactionBuilderInternal>>);
impl Clone for SignableTransactionBuilder {
fn clone(&self) -> Self {
Self(Arc::new(RwLock::new((*self.0.read().unwrap()).clone())))
}
}
impl PartialEq for SignableTransactionBuilder {
fn eq(&self, other: &Self) -> bool {
*self.0.read().unwrap() == *other.0.read().unwrap()
}
}
impl Eq for SignableTransactionBuilder {}
impl Zeroize for SignableTransactionBuilder {
fn zeroize(&mut self) {
self.0.write().unwrap().zeroize()
}
}
impl SignableTransactionBuilder {
fn shallow_copy(&self) -> Self {
Self(self.0.clone())
}
pub fn new(protocol: Protocol, fee: Fee, change_address: Option<MoneroAddress>) -> Self {
Self(Arc::new(RwLock::new(SignableTransactionBuilderInternal::new(
protocol,
fee,
change_address,
))))
}
pub fn add_input(&mut self, input: SpendableOutput) -> Self {
self.0.write().unwrap().add_input(input);
self.shallow_copy()
}
pub fn add_inputs(&mut self, inputs: &[SpendableOutput]) -> Self {
self.0.write().unwrap().add_inputs(inputs);
self.shallow_copy()
}
pub fn add_payment(&mut self, dest: MoneroAddress, amount: u64) -> Self {
self.0.write().unwrap().add_payment(dest, amount);
self.shallow_copy()
}
pub fn add_payments(&mut self, payments: &[(MoneroAddress, u64)]) -> Self {
self.0.write().unwrap().add_payments(payments);
self.shallow_copy()
}
pub fn add_data(&mut self, data: Vec<u8>) -> Result<Self, TransactionError> {
if data.len() > MAX_TX_EXTRA_NONCE_SIZE {
Err(TransactionError::TooMuchData)?;
}
self.0.write().unwrap().add_data(data);
Ok(self.shallow_copy())
}
pub fn build(self) -> Result<SignableTransaction, TransactionError> {
let read = self.0.read().unwrap();
SignableTransaction::new(
read.protocol,
read.inputs.clone(),
read.payments.clone(),
read.change_address,
read.data.clone(),
read.fee,
)
}
}

View File

@@ -1,37 +1,35 @@
use core::ops::Deref;
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use rand::seq::SliceRandom;
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
scalar::Scalar,
edwards::EdwardsPoint
};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use monero::{consensus::Encodable, PublicKey, blockdata::transaction::SubField};
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar, edwards::EdwardsPoint};
#[cfg(feature = "multisig")]
use frost::FrostError;
use crate::{
Commitment,
random_scalar,
Protocol, Commitment, random_scalar,
ringct::{
generate_key_image,
clsag::{ClsagError, ClsagInput, Clsag},
bulletproofs::{MAX_OUTPUTS, Bulletproofs},
RctBase, RctPrunable, RctSignatures
RctBase, RctPrunable, RctSignatures,
},
transaction::{Input, Output, Timelock, TransactionPrefix, Transaction},
rpc::{Rpc, RpcError},
wallet::{
address::{AddressType, Address}, SpendableOutput, Decoys,
key_image_sort, uniqueness, shared_key, commitment_mask, amount_encryption
}
address::MoneroAddress, SpendableOutput, Decoys, PaymentId, ExtraField, Extra, key_image_sort,
uniqueness, shared_key, commitment_mask, amount_encryption, extra::MAX_TX_EXTRA_NONCE_SIZE,
},
};
#[cfg(feature = "multisig")]
use crate::frost::MultisigError;
mod builder;
pub use builder::SignableTransactionBuilder;
#[cfg(feature = "multisig")]
mod multisig;
@@ -39,47 +37,52 @@ mod multisig;
pub use multisig::TransactionMachine;
#[allow(non_snake_case)]
#[derive(Clone, PartialEq, Debug)]
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
struct SendOutput {
R: EdwardsPoint,
view_tag: u8,
dest: EdwardsPoint,
commitment: Commitment,
amount: [u8; 8]
amount: [u8; 8],
}
impl SendOutput {
fn new<R: RngCore + CryptoRng>(
rng: &mut R,
unique: [u8; 32],
output: (Address, u64),
o: usize
) -> SendOutput {
let r = random_scalar(rng);
let shared_key = shared_key(
Some(unique).filter(|_| output.0.meta.guaranteed),
r,
&output.0.view,
o
);
output: (usize, (MoneroAddress, u64)),
) -> (SendOutput, Option<[u8; 8]>) {
let o = output.0;
let output = output.1;
let spend = output.0.spend;
SendOutput {
R: match output.0.meta.kind {
AddressType::Standard => &r * &ED25519_BASEPOINT_TABLE,
AddressType::Integrated(_) => unimplemented!("SendOutput::new doesn't support Integrated addresses"),
AddressType::Subaddress => &r * spend
let r = random_scalar(rng);
let (view_tag, shared_key, payment_id_xor) =
shared_key(Some(unique).filter(|_| output.0.meta.kind.guaranteed()), &r, &output.0.view, o);
(
SendOutput {
R: if !output.0.meta.kind.subaddress() {
&r * &ED25519_BASEPOINT_TABLE
} else {
r * output.0.spend
},
view_tag,
dest: ((&shared_key * &ED25519_BASEPOINT_TABLE) + output.0.spend),
commitment: Commitment::new(commitment_mask(shared_key), output.1),
amount: amount_encryption(output.1, shared_key),
},
dest: ((&shared_key * &ED25519_BASEPOINT_TABLE) + spend),
commitment: Commitment::new(commitment_mask(shared_key), output.1),
amount: amount_encryption(output.1, shared_key)
}
output
.0
.payment_id()
.map(|id| (u64::from_le_bytes(id) ^ u64::from_le_bytes(payment_id_xor)).to_le_bytes()),
)
}
}
#[derive(Clone, Error, Debug)]
#[derive(Clone, PartialEq, Eq, Debug, Error)]
pub enum TransactionError {
#[error("invalid address")]
InvalidAddress,
#[error("multiple addresses with payment IDs")]
MultiplePaymentIds,
#[error("no inputs")]
NoInputs,
#[error("no outputs")]
@@ -88,6 +91,8 @@ pub enum TransactionError {
NoChange,
#[error("too many outputs")]
TooManyOutputs,
#[error("too much data")]
TooMuchData,
#[error("not enough funds (in {0}, out {1})")]
NotEnoughFunds(u64, u64),
#[error("wrong spend private key")]
@@ -101,62 +106,63 @@ pub enum TransactionError {
#[cfg(feature = "multisig")]
#[error("frost error {0}")]
FrostError(FrostError),
#[cfg(feature = "multisig")]
#[error("multisig error {0}")]
MultisigError(MultisigError)
}
async fn prepare_inputs<R: RngCore + CryptoRng>(
rng: &mut R,
rpc: &Rpc,
ring_len: usize,
inputs: &[SpendableOutput],
spend: &Scalar,
tx: &mut Transaction
) -> Result<Vec<(Scalar, EdwardsPoint, ClsagInput)>, TransactionError> {
spend: &Zeroizing<Scalar>,
tx: &mut Transaction,
) -> Result<Vec<(Zeroizing<Scalar>, EdwardsPoint, ClsagInput)>, TransactionError> {
let mut signable = Vec::with_capacity(inputs.len());
// Select decoys
let decoys = Decoys::select(
rng,
rpc,
rpc.get_height().await.map_err(|e| TransactionError::RpcError(e))? - 10,
inputs
).await.map_err(|e| TransactionError::RpcError(e))?;
ring_len,
rpc.get_height().await.map_err(TransactionError::RpcError)? - 10,
inputs,
)
.await
.map_err(TransactionError::RpcError)?;
for (i, input) in inputs.iter().enumerate() {
let input_spend = Zeroizing::new(input.key_offset() + spend.deref());
let image = generate_key_image(&input_spend);
signable.push((
spend + input.key_offset,
generate_key_image(spend + input.key_offset),
ClsagInput::new(
input.commitment,
decoys[i].clone()
).map_err(|e| TransactionError::ClsagError(e))?
input_spend,
image,
ClsagInput::new(input.commitment().clone(), decoys[i].clone())
.map_err(TransactionError::ClsagError)?,
));
tx.prefix.inputs.push(Input::ToKey {
amount: 0,
key_offsets: decoys[i].offsets.clone(),
key_image: signable[i].1
key_image: signable[i].1,
});
}
signable.sort_by(|x, y| x.1.compress().to_bytes().cmp(&y.1.compress().to_bytes()).reverse());
tx.prefix.inputs.sort_by(|x, y| if let (
Input::ToKey { key_image: x, ..},
Input::ToKey { key_image: y, ..}
) = (x, y) {
x.compress().to_bytes().cmp(&y.compress().to_bytes()).reverse()
} else {
panic!("Input wasn't ToKey")
tx.prefix.inputs.sort_by(|x, y| {
if let (Input::ToKey { key_image: x, .. }, Input::ToKey { key_image: y, .. }) = (x, y) {
x.compress().to_bytes().cmp(&y.compress().to_bytes()).reverse()
} else {
panic!("Input wasn't ToKey")
}
});
Ok(signable)
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
/// Fee struct, defined as a per-unit cost and a mask for rounding purposes.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct Fee {
pub per_weight: u64,
pub mask: u64
pub mask: u64,
}
impl Fee {
@@ -165,44 +171,61 @@ impl Fee {
}
}
#[derive(Clone, PartialEq, Debug)]
/// A signable transaction, either in a single-signer or multisig context.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct SignableTransaction {
protocol: Protocol,
inputs: Vec<SpendableOutput>,
payments: Vec<(Address, u64)>,
outputs: Vec<SendOutput>,
fee: u64
payments: Vec<(MoneroAddress, u64)>,
data: Vec<Vec<u8>>,
fee: u64,
}
impl SignableTransaction {
/// Create a signable transaction. If the change address is specified, leftover funds will be
/// sent to it. If the change address isn't specified, up to 16 outputs may be specified, using
/// any leftover funds as a bonus to the fee. The optional data field will be embedded in TX
/// extra.
pub fn new(
protocol: Protocol,
inputs: Vec<SpendableOutput>,
mut payments: Vec<(Address, u64)>,
change_address: Option<Address>,
fee_rate: Fee
mut payments: Vec<(MoneroAddress, u64)>,
change_address: Option<MoneroAddress>,
data: Vec<Vec<u8>>,
fee_rate: Fee,
) -> Result<SignableTransaction, TransactionError> {
// Make sure all addresses are valid
let test = |addr: Address| {
match addr.meta.kind {
AddressType::Standard => Ok(()),
AddressType::Integrated(..) => Err(TransactionError::InvalidAddress),
AddressType::Subaddress => Ok(())
// Make sure there's only one payment ID
{
let mut payment_ids = 0;
let mut count = |addr: MoneroAddress| {
if addr.payment_id().is_some() {
payment_ids += 1
}
};
for payment in &payments {
count(payment.0);
}
if let Some(change) = change_address {
count(change);
}
if payment_ids > 1 {
Err(TransactionError::MultiplePaymentIds)?;
}
};
for payment in &payments {
test(payment.0)?;
}
if let Some(change) = change_address {
test(change)?;
}
if inputs.len() == 0 {
if inputs.is_empty() {
Err(TransactionError::NoInputs)?;
}
if payments.len() == 0 {
if payments.is_empty() {
Err(TransactionError::NoOutputs)?;
}
for part in &data {
if part.len() > MAX_TX_EXTRA_NONCE_SIZE {
Err(TransactionError::TooMuchData)?;
}
}
// TODO TX MAX SIZE
// If we don't have two outputs, as required by Monero, add a second
@@ -210,17 +233,17 @@ impl SignableTransaction {
if change && change_address.is_none() {
Err(TransactionError::NoChange)?;
}
let mut outputs = payments.len() + (if change { 1 } else { 0 });
let outputs = payments.len() + usize::from(change);
// Calculate the extra length.
// Type, length, value, with 1 field for the first key and 1 field for the rest
let extra = (outputs * (2 + 32)) - (outputs.saturating_sub(2) * 2);
// Calculate the extra length
let extra = Extra::fee_weight(outputs, data.as_ref());
// Calculate the fee.
let mut fee = fee_rate.calculate(Transaction::fee_weight(inputs.len(), outputs, extra));
let mut fee =
fee_rate.calculate(Transaction::fee_weight(protocol, inputs.len(), outputs, extra));
// Make sure we have enough funds
let in_amount = inputs.iter().map(|input| input.commitment.amount).sum::<u64>();
let in_amount = inputs.iter().map(|input| input.commitment().amount).sum::<u64>();
let mut out_amount = payments.iter().map(|payment| payment.1).sum::<u64>() + fee;
if in_amount < out_amount {
Err(TransactionError::NotEnoughFunds(in_amount, out_amount))?;
@@ -229,139 +252,154 @@ impl SignableTransaction {
// If we have yet to add a change output, do so if it's economically viable
if (!change) && change_address.is_some() && (in_amount != out_amount) {
// Check even with the new fee, there's remaining funds
let change_fee = fee_rate.calculate(Transaction::fee_weight(inputs.len(), outputs + 1, extra)) - fee;
let change_fee =
fee_rate.calculate(Transaction::fee_weight(protocol, inputs.len(), outputs + 1, extra)) -
fee;
if (out_amount + change_fee) < in_amount {
change = true;
outputs += 1;
out_amount += change_fee;
fee += change_fee;
}
}
if outputs > MAX_OUTPUTS {
Err(TransactionError::TooManyOutputs)?;
}
if change {
payments.push((change_address.unwrap(), in_amount - out_amount));
}
Ok(
SignableTransaction {
inputs,
payments,
outputs: vec![],
fee
}
)
if payments.len() > MAX_OUTPUTS {
Err(TransactionError::TooManyOutputs)?;
}
Ok(SignableTransaction { protocol, inputs, payments, data, fee })
}
fn prepare_outputs<R: RngCore + CryptoRng>(
fn prepare_transaction<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
uniqueness: [u8; 32]
) -> (Vec<Commitment>, Scalar) {
uniqueness: [u8; 32],
) -> (Transaction, Scalar) {
// Shuffle the payments
self.payments.shuffle(rng);
// Actually create the outputs
self.outputs = Vec::with_capacity(self.payments.len() + 1);
for (o, output) in self.payments.iter().enumerate() {
self.outputs.push(SendOutput::new(rng, uniqueness, *output, o));
let mut outputs = Vec::with_capacity(self.payments.len());
let mut id = None;
for payment in self.payments.drain(..).enumerate() {
let (output, payment_id) = SendOutput::new(rng, uniqueness, payment);
outputs.push(output);
id = id.or(payment_id);
}
let commitments = self.outputs.iter().map(|output| output.commitment).collect::<Vec<_>>();
// Include a random payment ID if we don't actually have one
// It prevents transactions from leaking if they're sending to integrated addresses or not
let id = if let Some(id) = id {
id
} else {
let mut id = [0; 8];
rng.fill_bytes(&mut id);
id
};
let commitments = outputs.iter().map(|output| output.commitment.clone()).collect::<Vec<_>>();
let sum = commitments.iter().map(|commitment| commitment.mask).sum();
(commitments, sum)
}
fn prepare_transaction(
&self,
commitments: &[Commitment],
bp: Bulletproofs
) -> Transaction {
// Safe due to the constructor checking MAX_OUTPUTS
let bp = Bulletproofs::prove(rng, &commitments, self.protocol.bp_plus()).unwrap();
// Create the TX extra
// TODO: Review this for canonicity with Monero
let mut extra = vec![];
SubField::TxPublicKey(
PublicKey { point: self.outputs[0].R.compress() }
).consensus_encode(&mut extra).unwrap();
SubField::AdditionalPublickKey(
self.outputs[1 ..].iter().map(|output| PublicKey { point: output.R.compress() }).collect()
).consensus_encode(&mut extra).unwrap();
let extra = {
let mut extra = Extra::new(outputs.iter().map(|output| output.R).collect());
let mut tx_outputs = Vec::with_capacity(self.outputs.len());
let mut ecdh_info = Vec::with_capacity(self.outputs.len());
for o in 0 .. self.outputs.len() {
let mut id_vec = Vec::with_capacity(1 + 8);
PaymentId::Encrypted(id).write(&mut id_vec).unwrap();
extra.push(ExtraField::Nonce(id_vec));
// Include data if present
for part in self.data.drain(..) {
extra.push(ExtraField::Nonce(part));
}
let mut serialized = Vec::with_capacity(Extra::fee_weight(outputs.len(), self.data.as_ref()));
extra.write(&mut serialized).unwrap();
serialized
};
let mut tx_outputs = Vec::with_capacity(outputs.len());
let mut ecdh_info = Vec::with_capacity(outputs.len());
for output in &outputs {
tx_outputs.push(Output {
amount: 0,
key: self.outputs[o].dest,
tag: None
key: output.dest.compress(),
view_tag: Some(output.view_tag).filter(|_| matches!(self.protocol, Protocol::v16)),
});
ecdh_info.push(self.outputs[o].amount);
ecdh_info.push(output.amount);
}
Transaction {
prefix: TransactionPrefix {
version: 2,
timelock: Timelock::None,
inputs: vec![],
outputs: tx_outputs,
extra
},
rct_signatures: RctSignatures {
base: RctBase {
fee: self.fee,
ecdh_info,
commitments: commitments.iter().map(|commitment| commitment.calculate()).collect()
(
Transaction {
prefix: TransactionPrefix {
version: 2,
timelock: Timelock::None,
inputs: vec![],
outputs: tx_outputs,
extra,
},
prunable: RctPrunable::Clsag {
bulletproofs: vec![bp],
clsags: vec![],
pseudo_outs: vec![]
}
}
}
signatures: vec![],
rct_signatures: RctSignatures {
base: RctBase {
fee: self.fee,
ecdh_info,
commitments: commitments.iter().map(|commitment| commitment.calculate()).collect(),
},
prunable: RctPrunable::Clsag {
bulletproofs: vec![bp],
clsags: vec![],
pseudo_outs: vec![],
},
},
},
sum,
)
}
/// Sign this transaction.
pub async fn sign<R: RngCore + CryptoRng>(
&mut self,
mut self,
rng: &mut R,
rpc: &Rpc,
spend: &Scalar
spend: &Zeroizing<Scalar>,
) -> Result<Transaction, TransactionError> {
let mut images = Vec::with_capacity(self.inputs.len());
for input in &self.inputs {
let offset = spend + input.key_offset;
if (&offset * &ED25519_BASEPOINT_TABLE) != input.key {
let mut offset = Zeroizing::new(spend.deref() + input.key_offset());
if (offset.deref() * &ED25519_BASEPOINT_TABLE) != input.key() {
Err(TransactionError::WrongPrivateKey)?;
}
images.push(generate_key_image(offset));
images.push(generate_key_image(&offset));
offset.zeroize();
}
images.sort_by(key_image_sort);
let (commitments, mask_sum) = self.prepare_outputs(
let (mut tx, mask_sum) = self.prepare_transaction(
rng,
uniqueness(
&images.iter().map(|image| Input::ToKey {
amount: 0,
key_offsets: vec![],
key_image: *image
}).collect::<Vec<_>>()
)
&images
.iter()
.map(|image| Input::ToKey { amount: 0, key_offsets: vec![], key_image: *image })
.collect::<Vec<_>>(),
),
);
let mut tx = self.prepare_transaction(&commitments, Bulletproofs::new(rng, &commitments)?);
let signable =
prepare_inputs(rng, rpc, self.protocol.ring_len(), &self.inputs, spend, &mut tx).await?;
let signable = prepare_inputs(rng, rpc, &self.inputs, spend, &mut tx).await?;
let clsag_pairs = Clsag::sign(rng, &signable, mask_sum, tx.signature_hash());
let clsag_pairs = Clsag::sign(rng, signable, mask_sum, tx.signature_hash());
match tx.rct_signatures.prunable {
RctPrunable::Null => panic!("Signing for RctPrunable::Null"),
RctPrunable::Clsag { ref mut clsags, ref mut pseudo_outs, .. } => {
clsags.append(&mut clsag_pairs.iter().map(|clsag| clsag.0.clone()).collect::<Vec<_>>());
pseudo_outs.append(&mut clsag_pairs.iter().map(|clsag| clsag.1.clone()).collect::<Vec<_>>());
pseudo_outs.append(&mut clsag_pairs.iter().map(|clsag| clsag.1).collect::<Vec<_>>());
}
}
Ok(tx)

View File

@@ -1,66 +1,79 @@
use std::{io::{Read, Cursor}, sync::{Arc, RwLock}, collections::HashMap};
use std::{
io::{self, Read},
sync::{Arc, RwLock},
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha12Rng;
use rand_chacha::ChaCha20Rng;
use curve25519_dalek::{traits::Identity, scalar::Scalar, edwards::{EdwardsPoint, CompressedEdwardsY}};
use group::ff::Field;
use curve25519_dalek::{traits::Identity, scalar::Scalar, edwards::EdwardsPoint};
use dalek_ff_group as dfg;
use transcript::{Transcript, RecommendedTranscript};
use frost::{
curve::Ed25519,
FrostError, FrostKeys,
FrostError, ThresholdKeys,
sign::{
PreprocessMachine, SignMachine, SignatureMachine,
AlgorithmMachine, AlgorithmSignMachine, AlgorithmSignatureMachine
}
Writable, Preprocess, CachedPreprocess, SignatureShare, PreprocessMachine, SignMachine,
SignatureMachine, AlgorithmMachine, AlgorithmSignMachine, AlgorithmSignatureMachine,
},
};
use crate::{
random_scalar, ringct::{clsag::{ClsagInput, ClsagDetails, ClsagMultisig}, bulletproofs::Bulletproofs, RctPrunable},
random_scalar,
ringct::{
clsag::{ClsagInput, ClsagDetails, ClsagAddendum, ClsagMultisig, add_key_image_share},
RctPrunable,
},
transaction::{Input, Transaction},
rpc::Rpc,
wallet::{TransactionError, SignableTransaction, Decoys, key_image_sort, uniqueness}
wallet::{TransactionError, SignableTransaction, Decoys, key_image_sort, uniqueness},
};
/// FROST signing machine to produce a signed transaction.
pub struct TransactionMachine {
signable: SignableTransaction,
i: u16,
included: Vec<u16>,
transcript: RecommendedTranscript,
decoys: Vec<Decoys>,
// Hashed key and scalar offset
key_images: Vec<(EdwardsPoint, Scalar)>,
inputs: Vec<Arc<RwLock<Option<ClsagDetails>>>>,
clsags: Vec<AlgorithmMachine<Ed25519, ClsagMultisig>>
clsags: Vec<AlgorithmMachine<Ed25519, ClsagMultisig>>,
}
pub struct TransactionSignMachine {
signable: SignableTransaction,
i: u16,
included: Vec<u16>,
transcript: RecommendedTranscript,
decoys: Vec<Decoys>,
key_images: Vec<(EdwardsPoint, Scalar)>,
inputs: Vec<Arc<RwLock<Option<ClsagDetails>>>>,
clsags: Vec<AlgorithmSignMachine<Ed25519, ClsagMultisig>>,
our_preprocess: Vec<u8>
our_preprocess: Vec<Preprocess<Ed25519, ClsagAddendum>>,
}
pub struct TransactionSignatureMachine {
tx: Transaction,
clsags: Vec<AlgorithmSignatureMachine<Ed25519, ClsagMultisig>>
clsags: Vec<AlgorithmSignatureMachine<Ed25519, ClsagMultisig>>,
}
impl SignableTransaction {
/// Create a FROST signing machine out of this signable transaction.
/// The height is the Monero blockchain height to synchronize around.
pub async fn multisig(
self,
rpc: &Rpc,
keys: FrostKeys<Ed25519>,
keys: ThresholdKeys<Ed25519>,
mut transcript: RecommendedTranscript,
height: usize,
mut included: Vec<u16>
) -> Result<TransactionMachine, TransactionError> {
let mut inputs = vec![];
for _ in 0 .. self.inputs.len() {
@@ -79,46 +92,40 @@ impl SignableTransaction {
// Include the height we're using for our data
// The data itself will be included, making this unnecessary, yet a lot of this is technically
// unnecessary. Anything which further increases security at almost no cost should be followed
transcript.append_message(b"height", &u64::try_from(height).unwrap().to_le_bytes());
// Also include the spend_key as below only the key offset is included, so this confirms the sum product
// Useful as confirming the sum product confirms the key image, further guaranteeing the one time
// properties noted below
transcript.append_message(b"spend_key", &keys.group_key().0.compress().to_bytes());
transcript.append_message(b"height", u64::try_from(height).unwrap().to_le_bytes());
// Also include the spend_key as below only the key offset is included, so this transcripts the
// sum product
// Useful as transcripting the sum product effectively transcripts the key image, further
// guaranteeing the one time properties noted below
transcript.append_message(b"spend_key", keys.group_key().0.compress().to_bytes());
for input in &self.inputs {
// These outputs can only be spent once. Therefore, it forces all RNGs derived from this
// transcript (such as the one used to create one time keys) to be unique
transcript.append_message(b"input_hash", &input.tx);
transcript.append_message(b"input_output_index", &[input.o]);
transcript.append_message(b"input_hash", input.output.absolute.tx);
transcript.append_message(b"input_output_index", [input.output.absolute.o]);
// Not including this, with a doxxed list of payments, would allow brute forcing the inputs
// to determine RNG seeds and therefore the true spends
transcript.append_message(b"input_shared_key", &input.key_offset.to_bytes());
transcript.append_message(b"input_shared_key", input.key_offset().to_bytes());
}
for payment in &self.payments {
transcript.append_message(b"payment_address", &payment.0.to_string().as_bytes());
transcript.append_message(b"payment_amount", &payment.1.to_le_bytes());
transcript.append_message(b"payment_address", payment.0.to_string().as_bytes());
transcript.append_message(b"payment_amount", payment.1.to_le_bytes());
}
// Sort included before cloning it around
included.sort_unstable();
let mut key_images = vec![];
for (i, input) in self.inputs.iter().enumerate() {
// Check this the right set of keys
let offset = keys.offset(dalek_ff_group::Scalar(input.key_offset));
if offset.group_key().0 != input.key {
let offset = keys.offset(dfg::Scalar(input.key_offset()));
if offset.group_key().0 != input.key() {
Err(TransactionError::WrongPrivateKey)?;
}
clsags.push(
AlgorithmMachine::new(
ClsagMultisig::new(
transcript.clone(),
input.key,
inputs[i].clone()
).map_err(|e| TransactionError::MultisigError(e))?,
Arc::new(offset),
&included
).map_err(|e| TransactionError::FrostError(e))?
);
let clsag = ClsagMultisig::new(transcript.clone(), input.key(), inputs[i].clone());
key_images.push((
clsag.H,
keys.current_offset().unwrap_or_else(dfg::Scalar::zero).0 + self.inputs[i].key_offset(),
));
clsags.push(AlgorithmMachine::new(clsag, offset).map_err(TransactionError::FrostError)?);
}
// Select decoys
@@ -129,47 +136,50 @@ impl SignableTransaction {
let decoys = Decoys::select(
// Using a seeded RNG with a specific height, committed to above, should make these decoys
// committed to. They'll also be committed to later via the TX message as a whole
&mut ChaCha12Rng::from_seed(transcript.rng_seed(b"decoys")),
&mut ChaCha20Rng::from_seed(transcript.rng_seed(b"decoys")),
rpc,
self.protocol.ring_len(),
height,
&self.inputs
).await.map_err(|e| TransactionError::RpcError(e))?;
Ok(
TransactionMachine {
signable: self,
i: keys.params().i(),
included,
transcript,
decoys,
inputs,
clsags
}
&self.inputs,
)
.await
.map_err(TransactionError::RpcError)?;
Ok(TransactionMachine {
signable: self,
i: keys.params().i(),
transcript,
decoys,
key_images,
inputs,
clsags,
})
}
}
impl PreprocessMachine for TransactionMachine {
type Preprocess = Vec<Preprocess<Ed25519, ClsagAddendum>>;
type Signature = Transaction;
type SignMachine = TransactionSignMachine;
fn preprocess<R: RngCore + CryptoRng>(
mut self,
rng: &mut R
) -> (TransactionSignMachine, Vec<u8>) {
rng: &mut R,
) -> (TransactionSignMachine, Self::Preprocess) {
// Iterate over each CLSAG calling preprocess
let mut serialized = Vec::with_capacity(
// D_{G, H}, E_{G, H}, DLEqs, key image addendum
self.clsags.len() * ((2 * (32 + 32)) + (2 * (32 + 32)) + ClsagMultisig::serialized_len())
);
let clsags = self.clsags.drain(..).map(|clsag| {
let (clsag, preprocess) = clsag.preprocess(rng);
serialized.extend(&preprocess);
clsag
}).collect();
let our_preprocess = serialized.clone();
let mut preprocesses = Vec::with_capacity(self.clsags.len());
let clsags = self
.clsags
.drain(..)
.map(|clsag| {
let (clsag, preprocess) = clsag.preprocess(rng);
preprocesses.push(preprocess);
clsag
})
.collect();
let our_preprocess = preprocesses.clone();
// We could add further entropy here, and previous versions of this library did so
// As of right now, the multisig's key, the inputs being spent, and the FROST data itself
@@ -184,70 +194,108 @@ impl PreprocessMachine for TransactionMachine {
TransactionSignMachine {
signable: self.signable,
i: self.i,
included: self.included,
transcript: self.transcript,
decoys: self.decoys,
key_images: self.key_images,
inputs: self.inputs,
clsags,
our_preprocess,
},
serialized
preprocesses,
)
}
}
impl SignMachine<Transaction> for TransactionSignMachine {
type Params = ();
type Keys = ThresholdKeys<Ed25519>;
type Preprocess = Vec<Preprocess<Ed25519, ClsagAddendum>>;
type SignatureShare = Vec<SignatureShare<Ed25519>>;
type SignatureMachine = TransactionSignatureMachine;
fn sign<Re: Read>(
fn cache(self) -> CachedPreprocess {
unimplemented!(
"Monero transactions don't support caching their preprocesses due to {}",
"being already bound to a specific transaction"
);
}
fn from_cache(_: (), _: ThresholdKeys<Ed25519>, _: CachedPreprocess) -> Result<Self, FrostError> {
unimplemented!(
"Monero transactions don't support caching their preprocesses due to {}",
"being already bound to a specific transaction"
);
}
fn read_preprocess<R: Read>(&self, reader: &mut R) -> io::Result<Self::Preprocess> {
self.clsags.iter().map(|clsag| clsag.read_preprocess(reader)).collect()
}
fn sign(
mut self,
mut commitments: HashMap<u16, Re>,
msg: &[u8]
) -> Result<(TransactionSignatureMachine, Vec<u8>), FrostError> {
if msg.len() != 0 {
Err(
FrostError::InternalError(
"message was passed to the TransactionMachine when it generates its own"
)
)?;
mut commitments: HashMap<u16, Self::Preprocess>,
msg: &[u8],
) -> Result<(TransactionSignatureMachine, Self::SignatureShare), FrostError> {
if !msg.is_empty() {
Err(FrostError::InternalError(
"message was passed to the TransactionMachine when it generates its own",
))?;
}
// FROST commitments and their DLEqs, and the image and its DLEq
const CLSAG_LEN: usize = (2 * (32 + 32)) + (2 * (32 + 32)) + ClsagMultisig::serialized_len();
// Find out who's included
// This may not be a valid set of signers yet the algorithm machine will error if it's not
commitments.remove(&self.i); // Remove, if it was included for some reason
let mut included = commitments.keys().into_iter().cloned().collect::<Vec<_>>();
included.push(self.i);
included.sort_unstable();
// Convert the unified commitments to a Vec of the individual commitments
let mut images = vec![EdwardsPoint::identity(); self.clsags.len()];
let mut commitments = (0 .. self.clsags.len()).map(|c| {
let mut buf = [0; CLSAG_LEN];
(&self.included).iter().map(|l| {
// Add all commitments to the transcript for their entropy
// While each CLSAG will do this as they need to for security, they have their own transcripts
// cloned from this TX's initial premise's transcript. For our TX transcript to have the CLSAG
// data for entropy, it'll have to be added ourselves here
self.transcript.append_message(b"participant", &(*l).to_be_bytes());
if *l == self.i {
buf.copy_from_slice(self.our_preprocess.drain(.. CLSAG_LEN).as_slice());
} else {
commitments.get_mut(l).ok_or(FrostError::MissingParticipant(*l))?
.read_exact(&mut buf).map_err(|_| FrostError::InvalidCommitment(*l))?;
}
self.transcript.append_message(b"preprocess", &buf);
let mut commitments = (0 .. self.clsags.len())
.map(|c| {
included
.iter()
.map(|l| {
// Add all commitments to the transcript for their entropy
// While each CLSAG will do this as they need to for security, they have their own
// transcripts cloned from this TX's initial premise's transcript. For our TX
// transcript to have the CLSAG data for entropy, it'll have to be added ourselves here
self.transcript.append_message(b"participant", (*l).to_be_bytes());
// While here, calculate the key image
// Clsag will parse/calculate/validate this as needed, yet doing so here as well provides
// the easiest API overall, as this is where the TX is (which needs the key images in its
// message), along with where the outputs are determined (where our outputs may need
// these in order to guarantee uniqueness)
images[c] += CompressedEdwardsY(
buf[(CLSAG_LEN - 96) .. (CLSAG_LEN - 64)].try_into().map_err(|_| FrostError::InvalidCommitment(*l))?
).decompress().ok_or(FrostError::InvalidCommitment(*l))?;
let preprocess = if *l == self.i {
self.our_preprocess[c].clone()
} else {
commitments.get_mut(l).ok_or(FrostError::MissingParticipant(*l))?[c].clone()
};
Ok((*l, Cursor::new(buf)))
}).collect::<Result<HashMap<_, _>, _>>()
}).collect::<Result<Vec<_>, _>>()?;
{
let mut buf = vec![];
preprocess.write(&mut buf).unwrap();
self.transcript.append_message(b"preprocess", buf);
}
// While here, calculate the key image
// Clsag will parse/calculate/validate this as needed, yet doing so here as well
// provides the easiest API overall, as this is where the TX is (which needs the key
// images in its message), along with where the outputs are determined (where our
// outputs may need these in order to guarantee uniqueness)
add_key_image_share(
&mut images[c],
self.key_images[c].0,
self.key_images[c].1,
&included,
*l,
preprocess.addendum.key_image.0,
);
Ok((*l, preprocess))
})
.collect::<Result<HashMap<_, _>, _>>()
})
.collect::<Result<Vec<_>, _>>()?;
// Remove our preprocess which shouldn't be here. It was just the easiest way to implement the
// above
@@ -256,75 +304,59 @@ impl SignMachine<Transaction> for TransactionSignMachine {
}
// Create the actual transaction
let output_masks;
let mut tx = {
let (mut tx, output_masks) = {
let mut sorted_images = images.clone();
sorted_images.sort_by(key_image_sort);
let commitments;
(commitments, output_masks) = self.signable.prepare_outputs(
&mut ChaCha12Rng::from_seed(self.transcript.rng_seed(b"tx_keys")),
uniqueness(
&images.iter().map(|image| Input::ToKey {
amount: 0,
key_offsets: vec![],
key_image: *image
}).collect::<Vec<_>>()
)
);
self.signable.prepare_transaction(
&commitments,
Bulletproofs::new(
&mut ChaCha12Rng::from_seed(self.transcript.rng_seed(b"bulletproofs")),
&commitments
).unwrap()
&mut ChaCha20Rng::from_seed(self.transcript.rng_seed(b"transaction_keys_bulletproofs")),
uniqueness(
&sorted_images
.iter()
.map(|image| Input::ToKey { amount: 0, key_offsets: vec![], key_image: *image })
.collect::<Vec<_>>(),
),
)
};
// Sort the inputs, as expected
let mut sorted = Vec::with_capacity(self.clsags.len());
while self.clsags.len() != 0 {
while !self.clsags.is_empty() {
sorted.push((
images.swap_remove(0),
self.signable.inputs.swap_remove(0),
self.decoys.swap_remove(0),
self.inputs.swap_remove(0),
self.clsags.swap_remove(0),
commitments.swap_remove(0)
commitments.swap_remove(0),
));
}
sorted.sort_by(|x, y| key_image_sort(&x.0, &y.0));
let mut rng = ChaCha12Rng::from_seed(self.transcript.rng_seed(b"pseudo_out_masks"));
let mut rng = ChaCha20Rng::from_seed(self.transcript.rng_seed(b"pseudo_out_masks"));
let mut sum_pseudo_outs = Scalar::zero();
while sorted.len() != 0 {
while !sorted.is_empty() {
let value = sorted.remove(0);
let mut mask = random_scalar(&mut rng);
if sorted.len() == 0 {
if sorted.is_empty() {
mask = output_masks - sum_pseudo_outs;
} else {
sum_pseudo_outs += mask;
}
tx.prefix.inputs.push(
Input::ToKey {
amount: 0,
key_offsets: value.2.offsets.clone(),
key_image: value.0
}
);
tx.prefix.inputs.push(Input::ToKey {
amount: 0,
key_offsets: value.2.offsets.clone(),
key_image: value.0,
});
*value.3.write().unwrap() = Some(
ClsagDetails::new(
ClsagInput::new(
value.1.commitment,
value.2
).map_err(|_| panic!("Signing an input which isn't present in the ring we created for it"))?,
mask
)
);
*value.3.write().unwrap() = Some(ClsagDetails::new(
ClsagInput::new(value.1.commitment().clone(), value.2).map_err(|_| {
panic!("Signing an input which isn't present in the ring we created for it")
})?,
mask,
));
self.clsags.push(value.4);
commitments.push(value.5);
@@ -333,30 +365,39 @@ impl SignMachine<Transaction> for TransactionSignMachine {
let msg = tx.signature_hash();
// Iterate over each CLSAG calling sign
let mut serialized = Vec::with_capacity(self.clsags.len() * 32);
let clsags = self.clsags.drain(..).map(|clsag| {
let (clsag, share) = clsag.sign(commitments.remove(0), &msg)?;
serialized.extend(&share);
Ok(clsag)
}).collect::<Result<_, _>>()?;
let mut shares = Vec::with_capacity(self.clsags.len());
let clsags = self
.clsags
.drain(..)
.map(|clsag| {
let (clsag, share) = clsag.sign(commitments.remove(0), &msg)?;
shares.push(share);
Ok(clsag)
})
.collect::<Result<_, _>>()?;
Ok((TransactionSignatureMachine { tx, clsags }, serialized))
Ok((TransactionSignatureMachine { tx, clsags }, shares))
}
}
impl SignatureMachine<Transaction> for TransactionSignatureMachine {
fn complete<Re: Read>(self, mut shares: HashMap<u16, Re>) -> Result<Transaction, FrostError> {
type SignatureShare = Vec<SignatureShare<Ed25519>>;
fn read_share<R: Read>(&self, reader: &mut R) -> io::Result<Self::SignatureShare> {
self.clsags.iter().map(|clsag| clsag.read_share(reader)).collect()
}
fn complete(
mut self,
shares: HashMap<u16, Self::SignatureShare>,
) -> Result<Transaction, FrostError> {
let mut tx = self.tx;
match tx.rct_signatures.prunable {
RctPrunable::Null => panic!("Signing for RctPrunable::Null"),
RctPrunable::Clsag { ref mut clsags, ref mut pseudo_outs, .. } => {
for clsag in self.clsags {
for (c, clsag) in self.clsags.drain(..).enumerate() {
let (clsag, pseudo_out) = clsag.complete(
shares.iter_mut().map(|(l, shares)| {
let mut buf = [0; 32];
shares.read_exact(&mut buf).map_err(|_| FrostError::InvalidShare(*l))?;
Ok((*l, Cursor::new(buf)))
}).collect::<Result<HashMap<_, _>, _>>()?
shares.iter().map(|(l, shares)| (*l, shares[c].clone())).collect::<HashMap<_, _>>(),
)?;
clsags.push(clsag);
pseudo_outs.push(pseudo_out);

View File

@@ -0,0 +1,72 @@
use monero_serai::{wallet::TransactionError, transaction::Transaction};
mod runner;
test!(
add_single_data_less_than_255,
(
|_, mut builder: Builder, addr| async move {
let arbitrary_data = vec![b'\0', 254];
// make sure we can add to tx
let result = builder.add_data(arbitrary_data.clone());
assert!(result.is_ok());
builder.add_payment(addr, 5);
(builder.build().unwrap(), (arbitrary_data,))
},
|_, tx: Transaction, mut scanner: Scanner, data: (Vec<u8>,)| async move {
let output = scanner.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.arbitrary_data()[0], data.0);
},
),
);
test!(
add_multiple_data_less_than_255,
(
|_, mut builder: Builder, addr| async move {
let data = vec![b'\0', 254];
// Add tx multiple times
for _ in 0 .. 5 {
let result = builder.add_data(data.clone());
assert!(result.is_ok());
}
builder.add_payment(addr, 5);
(builder.build().unwrap(), data)
},
|_, tx: Transaction, mut scanner: Scanner, data: Vec<u8>| async move {
let output = scanner.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.arbitrary_data(), vec![data; 5]);
},
),
);
test!(
add_single_data_more_than_255,
(
|_, mut builder: Builder, addr| async move {
// Make a data that is bigger than 255 bytes
let mut data = vec![b'a'; 256];
// Make sure we get an error if we try to add it to the TX
assert_eq!(builder.add_data(data.clone()), Err(TransactionError::TooMuchData));
// Reduce data size and retry. The data will now be 255 bytes long, exactly
data.pop();
assert!(builder.add_data(data.clone()).is_ok());
builder.add_payment(addr, 5);
(builder.build().unwrap(), data)
},
|_, tx: Transaction, mut scanner: Scanner, data: Vec<u8>| async move {
let output = scanner.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.arbitrary_data(), vec![data]);
},
),
);

View File

@@ -1,42 +0,0 @@
use rand::rngs::OsRng;
use curve25519_dalek::constants::ED25519_BASEPOINT_TABLE;
use serde_json::json;
use monero::{
network::Network,
util::{key::PublicKey, address::Address}
};
use monero_serai::{random_scalar, rpc::{EmptyResponse, RpcError, Rpc}};
pub async fn rpc() -> Rpc {
let rpc = Rpc::new("http://127.0.0.1:18081".to_string());
// Only run once
if rpc.get_height().await.unwrap() != 1 {
return rpc;
}
let addr = Address::standard(
Network::Mainnet,
PublicKey { point: (&random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE).compress() },
PublicKey { point: (&random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE).compress() }
).to_string();
// Mine 10 blocks so we have 10 decoys so decoy selection doesn't fail
mine_block(&rpc, &addr).await.unwrap();
rpc
}
pub async fn mine_block(rpc: &Rpc, address: &str) -> Result<EmptyResponse, RpcError> {
rpc.rpc_call("json_rpc", Some(json!({
"method": "generateblocks",
"params": {
"wallet_address": address,
"amount_of_blocks": 10
},
}))).await
}

View File

@@ -0,0 +1,280 @@
use core::ops::Deref;
use std::collections::HashSet;
use lazy_static::lazy_static;
use zeroize::Zeroizing;
use rand_core::OsRng;
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar};
use tokio::sync::Mutex;
use monero_serai::{
Protocol, random_scalar,
wallet::{
ViewPair, Scanner,
address::{Network, AddressType, AddressSpec, AddressMeta, MoneroAddress},
SpendableOutput,
},
rpc::Rpc,
};
pub fn random_address() -> (Scalar, ViewPair, MoneroAddress) {
let spend = random_scalar(&mut OsRng);
let spend_pub = &spend * &ED25519_BASEPOINT_TABLE;
let view = Zeroizing::new(random_scalar(&mut OsRng));
(
spend,
ViewPair::new(spend_pub, view.clone()),
MoneroAddress {
meta: AddressMeta::new(Network::Mainnet, AddressType::Standard),
spend: spend_pub,
view: view.deref() * &ED25519_BASEPOINT_TABLE,
},
)
}
// TODO: Support transactions already on-chain
// TODO: Don't have a side effect of mining blocks more blocks than needed under race conditions
// TODO: mine as much as needed instead of default 10 blocks
pub async fn mine_until_unlocked(rpc: &Rpc, addr: &str, tx_hash: [u8; 32]) {
// mine until tx is in a block
let mut height = rpc.get_height().await.unwrap();
let mut found = false;
while !found {
let block = rpc.get_block_by_number(height - 1).await.unwrap();
found = match block.txs.iter().find(|&&x| x == tx_hash) {
Some(_) => true,
None => {
rpc.generate_blocks(addr, 1).await.unwrap();
height += 1;
false
}
}
}
// mine 9 more blocks to unlock the tx
rpc.generate_blocks(addr, 9).await.unwrap();
}
// Mines 60 blocks and returns an unlocked miner TX output.
pub async fn get_miner_tx_output(rpc: &Rpc, view: &ViewPair) -> SpendableOutput {
let mut scanner = Scanner::from_view(view.clone(), Some(HashSet::new()));
// Mine 60 blocks to unlock a miner TX
let start = rpc.get_height().await.unwrap();
rpc
.generate_blocks(&view.address(Network::Mainnet, AddressSpec::Standard).to_string(), 60)
.await
.unwrap();
let block = rpc.get_block_by_number(start).await.unwrap();
scanner.scan(rpc, &block).await.unwrap().swap_remove(0).ignore_timelock().swap_remove(0)
}
pub async fn rpc() -> Rpc {
let rpc = Rpc::new("http://127.0.0.1:18081".to_string()).unwrap();
// Only run once
if rpc.get_height().await.unwrap() != 1 {
return rpc;
}
let addr = MoneroAddress {
meta: AddressMeta::new(Network::Mainnet, AddressType::Standard),
spend: &random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE,
view: &random_scalar(&mut OsRng) * &ED25519_BASEPOINT_TABLE,
}
.to_string();
// Mine 40 blocks to ensure decoy availability
rpc.generate_blocks(&addr, 40).await.unwrap();
assert!(!matches!(rpc.get_protocol().await.unwrap(), Protocol::Unsupported(_)));
rpc
}
lazy_static! {
pub static ref SEQUENTIAL: Mutex<()> = Mutex::new(());
}
#[macro_export]
macro_rules! async_sequential {
($(async fn $name: ident() $body: block)*) => {
$(
#[tokio::test]
async fn $name() {
let guard = runner::SEQUENTIAL.lock().await;
let local = tokio::task::LocalSet::new();
local.run_until(async move {
if let Err(err) = tokio::task::spawn_local(async move { $body }).await {
drop(guard);
Err(err).unwrap()
}
}).await;
}
)*
}
}
#[macro_export]
macro_rules! test {
(
$name: ident,
(
$first_tx: expr,
$first_checks: expr,
),
$((
$tx: expr,
$checks: expr,
)$(,)?),*
) => {
async_sequential! {
async fn $name() {
use core::{ops::Deref, any::Any};
use std::collections::HashSet;
#[cfg(feature = "multisig")]
use std::collections::HashMap;
use zeroize::Zeroizing;
use rand_core::OsRng;
use curve25519_dalek::constants::ED25519_BASEPOINT_TABLE;
#[cfg(feature = "multisig")]
use transcript::{Transcript, RecommendedTranscript};
#[cfg(feature = "multisig")]
use frost::{
curve::Ed25519,
tests::{THRESHOLD, key_gen},
};
use monero_serai::{
random_scalar,
wallet::{
address::{Network, AddressSpec}, ViewPair, Scanner, SignableTransaction,
SignableTransactionBuilder,
},
};
use runner::{random_address, rpc, mine_until_unlocked, get_miner_tx_output};
type Builder = SignableTransactionBuilder;
// Run each function as both a single signer and as a multisig
#[allow(clippy::redundant_closure_call)]
for multisig in [false, true] {
// Only run the multisig variant if multisig is enabled
if multisig {
#[cfg(not(feature = "multisig"))]
continue;
}
let spend = Zeroizing::new(random_scalar(&mut OsRng));
#[cfg(feature = "multisig")]
let keys = key_gen::<_, Ed25519>(&mut OsRng);
let spend_pub = if !multisig {
spend.deref() * &ED25519_BASEPOINT_TABLE
} else {
#[cfg(not(feature = "multisig"))]
panic!("Multisig branch called without the multisig feature");
#[cfg(feature = "multisig")]
keys[&1].group_key().0
};
let rpc = rpc().await;
let view = ViewPair::new(spend_pub, Zeroizing::new(random_scalar(&mut OsRng)));
let addr = view.address(Network::Mainnet, AddressSpec::Standard);
let miner_tx = get_miner_tx_output(&rpc, &view).await;
let builder = SignableTransactionBuilder::new(
rpc.get_protocol().await.unwrap(),
rpc.get_fee().await.unwrap(),
Some(random_address().2),
);
let sign = |tx: SignableTransaction| {
let rpc = rpc.clone();
let spend = spend.clone();
#[cfg(feature = "multisig")]
let keys = keys.clone();
async move {
if !multisig {
tx.sign(&mut OsRng, &rpc, &spend).await.unwrap()
} else {
#[cfg(not(feature = "multisig"))]
panic!("Multisig branch called without the multisig feature");
#[cfg(feature = "multisig")]
{
let mut machines = HashMap::new();
for i in 1 ..= THRESHOLD {
machines.insert(
i,
tx
.clone()
.multisig(
&rpc,
keys[&i].clone(),
RecommendedTranscript::new(b"Monero Serai Test Transaction"),
rpc.get_height().await.unwrap() - 10,
)
.await
.unwrap(),
);
}
frost::tests::sign_without_caching(&mut OsRng, machines, &[])
}
}
}
};
// TODO: Generate a distinct wallet for each transaction to prevent overlap
let next_addr = addr;
let temp = Box::new({
let mut builder = builder.clone();
builder.add_input(miner_tx);
let (tx, state) = ($first_tx)(rpc.clone(), builder, next_addr).await;
let signed = sign(tx).await;
rpc.publish_transaction(&signed).await.unwrap();
mine_until_unlocked(&rpc, &random_address().2.to_string(), signed.hash()).await;
let tx = rpc.get_transaction(signed.hash()).await.unwrap();
let scanner =
Scanner::from_view(view.clone(), Some(HashSet::new()));
($first_checks)(rpc.clone(), tx, scanner, state).await
});
#[allow(unused_variables, unused_mut, unused_assignments)]
let mut carried_state: Box<dyn Any> = temp;
$(
let (tx, state) = ($tx)(
rpc.clone(),
builder.clone(),
next_addr,
*carried_state.downcast().unwrap()
).await;
let signed = sign(tx).await;
rpc.publish_transaction(&signed).await.unwrap();
mine_until_unlocked(&rpc, &random_address().2.to_string(), signed.hash()).await;
let tx = rpc.get_transaction(signed.hash()).await.unwrap();
#[allow(unused_assignments)]
{
let scanner =
Scanner::from_view(view.clone(), Some(HashSet::new()));
carried_state =
Box::new(($checks)(rpc.clone(), tx, scanner, state).await);
}
)*
}
}
}
}
}

300
coins/monero/tests/scan.rs Normal file
View File

@@ -0,0 +1,300 @@
use rand::RngCore;
use monero_serai::{transaction::Transaction, wallet::address::SubaddressIndex};
mod runner;
test!(
scan_standard_address,
(
|_, mut builder: Builder, _| async move {
let view = runner::random_address().1;
let scanner = Scanner::from_view(view.clone(), Some(HashSet::new()));
builder.add_payment(view.address(Network::Mainnet, AddressSpec::Standard), 5);
(builder.build().unwrap(), scanner)
},
|_, tx: Transaction, _, mut state: Scanner| async move {
let output = state.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
},
),
);
test!(
scan_subaddress,
(
|_, mut builder: Builder, _| async move {
let subaddress = SubaddressIndex::new(0, 1).unwrap();
let view = runner::random_address().1;
let mut scanner = Scanner::from_view(view.clone(), Some(HashSet::new()));
scanner.register_subaddress(subaddress);
builder.add_payment(view.address(Network::Mainnet, AddressSpec::Subaddress(subaddress)), 5);
(builder.build().unwrap(), (scanner, subaddress))
},
|_, tx: Transaction, _, mut state: (Scanner, SubaddressIndex)| async move {
let output = state.0.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.metadata.subaddress, Some(state.1));
},
),
);
test!(
scan_integrated_address,
(
|_, mut builder: Builder, _| async move {
let view = runner::random_address().1;
let scanner = Scanner::from_view(view.clone(), Some(HashSet::new()));
let mut payment_id = [0u8; 8];
OsRng.fill_bytes(&mut payment_id);
builder.add_payment(view.address(Network::Mainnet, AddressSpec::Integrated(payment_id)), 5);
(builder.build().unwrap(), (scanner, payment_id))
},
|_, tx: Transaction, _, mut state: (Scanner, [u8; 8])| async move {
let output = state.0.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.metadata.payment_id, state.1);
},
),
);
test!(
scan_featured_standard,
(
|_, mut builder: Builder, _| async move {
let view = runner::random_address().1;
let scanner = Scanner::from_view(view.clone(), Some(HashSet::new()));
builder.add_payment(
view.address(
Network::Mainnet,
AddressSpec::Featured { subaddress: None, payment_id: None, guaranteed: false },
),
5,
);
(builder.build().unwrap(), scanner)
},
|_, tx: Transaction, _, mut state: Scanner| async move {
let output = state.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
},
),
);
test!(
scan_featured_subaddress,
(
|_, mut builder: Builder, _| async move {
let subaddress = SubaddressIndex::new(0, 2).unwrap();
let view = runner::random_address().1;
let mut scanner = Scanner::from_view(view.clone(), Some(HashSet::new()));
scanner.register_subaddress(subaddress);
builder.add_payment(
view.address(
Network::Mainnet,
AddressSpec::Featured {
subaddress: Some(subaddress),
payment_id: None,
guaranteed: false,
},
),
5,
);
(builder.build().unwrap(), (scanner, subaddress))
},
|_, tx: Transaction, _, mut state: (Scanner, SubaddressIndex)| async move {
let output = state.0.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.metadata.subaddress, Some(state.1));
},
),
);
test!(
scan_featured_integrated,
(
|_, mut builder: Builder, _| async move {
let view = runner::random_address().1;
let scanner = Scanner::from_view(view.clone(), Some(HashSet::new()));
let mut payment_id = [0u8; 8];
OsRng.fill_bytes(&mut payment_id);
builder.add_payment(
view.address(
Network::Mainnet,
AddressSpec::Featured {
subaddress: None,
payment_id: Some(payment_id),
guaranteed: false,
},
),
5,
);
(builder.build().unwrap(), (scanner, payment_id))
},
|_, tx: Transaction, _, mut state: (Scanner, [u8; 8])| async move {
let output = state.0.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.metadata.payment_id, state.1);
},
),
);
test!(
scan_featured_integrated_subaddress,
(
|_, mut builder: Builder, _| async move {
let subaddress = SubaddressIndex::new(0, 3).unwrap();
let view = runner::random_address().1;
let mut scanner = Scanner::from_view(view.clone(), Some(HashSet::new()));
scanner.register_subaddress(subaddress);
let mut payment_id = [0u8; 8];
OsRng.fill_bytes(&mut payment_id);
builder.add_payment(
view.address(
Network::Mainnet,
AddressSpec::Featured {
subaddress: Some(subaddress),
payment_id: Some(payment_id),
guaranteed: false,
},
),
5,
);
(builder.build().unwrap(), (scanner, payment_id, subaddress))
},
|_, tx: Transaction, _, mut state: (Scanner, [u8; 8], SubaddressIndex)| async move {
let output = state.0.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.metadata.payment_id, state.1);
assert_eq!(output.metadata.subaddress, Some(state.2));
},
),
);
test!(
scan_guaranteed_standard,
(
|_, mut builder: Builder, _| async move {
let view = runner::random_address().1;
let scanner = Scanner::from_view(view.clone(), None);
builder.add_payment(
view.address(
Network::Mainnet,
AddressSpec::Featured { subaddress: None, payment_id: None, guaranteed: true },
),
5,
);
(builder.build().unwrap(), scanner)
},
|_, tx: Transaction, _, mut state: Scanner| async move {
let output = state.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
},
),
);
test!(
scan_guaranteed_subaddress,
(
|_, mut builder: Builder, _| async move {
let subaddress = SubaddressIndex::new(1, 0).unwrap();
let view = runner::random_address().1;
let mut scanner = Scanner::from_view(view.clone(), None);
scanner.register_subaddress(subaddress);
builder.add_payment(
view.address(
Network::Mainnet,
AddressSpec::Featured {
subaddress: Some(subaddress),
payment_id: None,
guaranteed: true,
},
),
5,
);
(builder.build().unwrap(), (scanner, subaddress))
},
|_, tx: Transaction, _, mut state: (Scanner, SubaddressIndex)| async move {
let output = state.0.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.metadata.subaddress, Some(state.1));
},
),
);
test!(
scan_guaranteed_integrated,
(
|_, mut builder: Builder, _| async move {
let view = runner::random_address().1;
let scanner = Scanner::from_view(view.clone(), None);
let mut payment_id = [0u8; 8];
OsRng.fill_bytes(&mut payment_id);
builder.add_payment(
view.address(
Network::Mainnet,
AddressSpec::Featured {
subaddress: None,
payment_id: Some(payment_id),
guaranteed: true,
},
),
5,
);
(builder.build().unwrap(), (scanner, payment_id))
},
|_, tx: Transaction, _, mut state: (Scanner, [u8; 8])| async move {
let output = state.0.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.metadata.payment_id, state.1);
},
),
);
test!(
scan_guaranteed_integrated_subaddress,
(
|_, mut builder: Builder, _| async move {
let subaddress = SubaddressIndex::new(1, 1).unwrap();
let view = runner::random_address().1;
let mut scanner = Scanner::from_view(view.clone(), None);
scanner.register_subaddress(subaddress);
let mut payment_id = [0u8; 8];
OsRng.fill_bytes(&mut payment_id);
builder.add_payment(
view.address(
Network::Mainnet,
AddressSpec::Featured {
subaddress: Some(subaddress),
payment_id: Some(payment_id),
guaranteed: true,
},
),
5,
);
(builder.build().unwrap(), (scanner, payment_id, subaddress))
},
|_, tx: Transaction, _, mut state: (Scanner, [u8; 8], SubaddressIndex)| async move {
let output = state.0.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
assert_eq!(output.metadata.payment_id, state.1);
assert_eq!(output.metadata.subaddress, Some(state.2));
},
),
);

View File

@@ -1,176 +1,51 @@
use std::sync::Mutex;
#[cfg(feature = "multisig")]
use std::collections::HashMap;
use monero_serai::{
wallet::{ReceivedOutput, SpendableOutput},
transaction::Transaction,
};
use lazy_static::lazy_static;
mod runner;
use rand::rngs::OsRng;
test!(
spend_miner_output,
(
|_, mut builder: Builder, addr| async move {
builder.add_payment(addr, 5);
(builder.build().unwrap(), ())
},
|_, tx: Transaction, mut scanner: Scanner, _| async move {
let output = scanner.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 5);
},
),
);
#[cfg(feature = "multisig")]
use blake2::{digest::Update, Digest, Blake2b512};
use curve25519_dalek::constants::ED25519_BASEPOINT_TABLE;
#[cfg(feature = "multisig")]
use dalek_ff_group::Scalar;
#[cfg(feature = "multisig")]
use transcript::{Transcript, RecommendedTranscript};
#[cfg(feature = "multisig")]
use frost::{curve::Ed25519, tests::{THRESHOLD, key_gen, sign}};
use monero_serai::{random_scalar, wallet::{ViewPair, address::{Network, AddressType}, SignableTransaction}};
mod rpc;
use crate::rpc::{rpc, mine_block};
lazy_static! {
static ref SEQUENTIAL: Mutex<()> = Mutex::new(());
}
macro_rules! async_sequential {
($(async fn $name: ident() $body: block)*) => {
$(
#[tokio::test]
async fn $name() {
let guard = SEQUENTIAL.lock().unwrap();
let local = tokio::task::LocalSet::new();
local.run_until(async move {
if let Err(err) = tokio::task::spawn_local(async move { $body }).await {
drop(guard);
Err(err).unwrap()
}
}).await;
test!(
spend_multiple_outputs,
(
|_, mut builder: Builder, addr| async move {
builder.add_payment(addr, 1000000000000);
builder.add_payment(addr, 2000000000000);
(builder.build().unwrap(), ())
},
|_, tx: Transaction, mut scanner: Scanner, _| async move {
let mut outputs = scanner.scan_transaction(&tx).not_locked();
outputs.sort_by(|x, y| x.commitment().amount.cmp(&y.commitment().amount));
assert_eq!(outputs[0].commitment().amount, 1000000000000);
assert_eq!(outputs[1].commitment().amount, 2000000000000);
outputs
},
),
(
|rpc, mut builder: Builder, addr, mut outputs: Vec<ReceivedOutput>| async move {
for output in outputs.drain(..) {
builder.add_input(SpendableOutput::from(&rpc, output).await.unwrap());
}
)*
};
}
async fn send_core(test: usize, multisig: bool) {
let rpc = rpc().await;
// Generate an address
let spend = random_scalar(&mut OsRng);
#[allow(unused_mut)]
let mut view = random_scalar(&mut OsRng);
#[allow(unused_mut)]
let mut spend_pub = &spend * &ED25519_BASEPOINT_TABLE;
#[cfg(feature = "multisig")]
let keys = key_gen::<_, Ed25519>(&mut OsRng);
if multisig {
#[cfg(not(feature = "multisig"))]
panic!("Running a multisig test without the multisig feature");
#[cfg(feature = "multisig")]
{
view = Scalar::from_hash(Blake2b512::new().chain("Monero Serai Transaction Test")).0;
spend_pub = keys[&1].group_key().0;
}
}
let view_pair = ViewPair { view, spend: spend_pub };
let addr = view_pair.address(Network::Mainnet, AddressType::Standard, false);
let fee = rpc.get_fee().await.unwrap();
let start = rpc.get_height().await.unwrap();
for _ in 0 .. 7 {
mine_block(&rpc, &addr.to_string()).await.unwrap();
}
let mut tx = None;
// Allow tests to test variable transactions
for i in 0 .. [2, 1][test] {
let mut outputs = vec![];
let mut amount = 0;
// Test spending both a miner output and a normal output
if test == 0 {
if i == 0 {
tx = Some(rpc.get_block_transactions(start).await.unwrap().swap_remove(0));
}
// Grab the largest output available
let output = {
let mut outputs = tx.as_ref().unwrap().scan(view_pair, false).ignore_timelock();
outputs.sort_by(|x, y| x.commitment.amount.cmp(&y.commitment.amount).reverse());
outputs.swap_remove(0)
};
// Test creating a zero change output and a non-zero change output
amount = output.commitment.amount - u64::try_from(i).unwrap();
outputs.push(output);
// Test spending multiple inputs
} else if test == 1 {
if i != 0 {
continue;
}
// We actually need 80 decoys for this transaction, so mine until then
// 80 + 60 (miner TX maturity) + 10 (lock blocks)
// It is possible for this to be lower, by noting maturity is sufficient regardless of lock
// blocks, yet that's not currently implemented
// TODO, if we care
while rpc.get_height().await.unwrap() < 160 {
mine_block(&rpc, &addr.to_string()).await.unwrap();
}
for i in (start + 1) .. (start + 9) {
let tx = rpc.get_block_transactions(i).await.unwrap().swap_remove(0);
let output = tx.scan(view_pair, false).ignore_timelock().swap_remove(0);
amount += output.commitment.amount;
outputs.push(output);
}
}
let mut signable = SignableTransaction::new(
outputs, vec![(addr, amount - 10000000000)], Some(addr), fee
).unwrap();
if !multisig {
tx = Some(signable.sign(&mut OsRng, &rpc, &spend).await.unwrap());
} else {
#[cfg(feature = "multisig")]
{
let mut machines = HashMap::new();
for i in 1 ..= THRESHOLD {
machines.insert(
i,
signable.clone().multisig(
&rpc,
(*keys[&i]).clone(),
RecommendedTranscript::new(b"Monero Serai Test Transaction"),
rpc.get_height().await.unwrap() - 10,
(1 ..= THRESHOLD).collect::<Vec<_>>()
).await.unwrap()
);
}
tx = Some(sign(&mut OsRng, machines, &vec![]));
}
}
rpc.publish_transaction(tx.as_ref().unwrap()).await.unwrap();
mine_block(&rpc, &addr.to_string()).await.unwrap();
}
}
async_sequential! {
async fn send_single_input() {
send_core(0, false).await;
}
async fn send_multiple_inputs() {
send_core(1, false).await;
}
}
#[cfg(feature = "multisig")]
async_sequential! {
async fn multisig_send_single_input() {
send_core(0, true).await;
}
async fn multisig_send_multiple_inputs() {
send_core(1, true).await;
}
}
builder.add_payment(addr, 6);
(builder.build().unwrap(), ())
},
|_, tx: Transaction, mut scanner: Scanner, _| async move {
let output = scanner.scan_transaction(&tx).not_locked().swap_remove(0);
assert_eq!(output.commitment().amount, 6);
},
),
);

20
common/zalloc/Cargo.toml Normal file
View File

@@ -0,0 +1,20 @@
[package]
name = "zalloc"
version = "0.1.0"
description = "An allocator wrapper which zeroizes memory on dealloc"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/common/zalloc"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = []
edition = "2021"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
zeroize = "1.5"
[features]
# Commented for now as it requires nightly and we don't use nightly
# allocator = []

21
common/zalloc/LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022-2023 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

46
common/zalloc/src/lib.rs Normal file
View File

@@ -0,0 +1,46 @@
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(feature = "allocator", feature(allocator_api))]
//! Implementation of a Zeroizing Allocator, enabling zeroizing memory on deallocation.
//! This can either be used with Box (requires nightly and the "allocator" feature) to provide the
//! functionality of zeroize on types which don't implement zeroize, or used as a wrapper around
//! the global allocator to ensure *all* memory is zeroized.
use core::{
slice,
alloc::{Layout, GlobalAlloc},
};
use zeroize::Zeroize;
/// An allocator wrapper which zeroizes its memory on dealloc.
pub struct ZeroizingAlloc<T>(pub T);
#[cfg(feature = "allocator")]
use core::{
ptr::NonNull,
alloc::{AllocError, Allocator},
};
#[cfg(feature = "allocator")]
unsafe impl<T: Allocator> Allocator for ZeroizingAlloc<T> {
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
self.0.allocate(layout)
}
unsafe fn deallocate(&self, mut ptr: NonNull<u8>, layout: Layout) {
slice::from_raw_parts_mut(ptr.as_mut(), layout.size()).zeroize();
self.0.deallocate(ptr, layout);
}
}
unsafe impl<T: GlobalAlloc> GlobalAlloc for ZeroizingAlloc<T> {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
self.0.alloc(layout)
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
slice::from_raw_parts_mut(ptr, layout.size()).zeroize();
self.0.dealloc(ptr, layout);
}
}

View File

@@ -0,0 +1,54 @@
[package]
name = "ciphersuite"
version = "0.1.1"
description = "Ciphersuites built around ff/group"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/ciphersuite"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["ciphersuite", "ff", "group"]
edition = "2021"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
rand_core = "0.6"
zeroize = { version = "1.5", features = ["zeroize_derive"] }
subtle = "2"
digest = "0.10"
sha2 = { version = "0.10", optional = true }
sha3 = { version = "0.10", optional = true }
ff = { version = "0.12", features = ["bits"] }
group = "0.12"
dalek-ff-group = { path = "../dalek-ff-group", version = "^0.1.2", optional = true }
elliptic-curve = { version = "0.12", features = ["hash2curve"], optional = true }
p256 = { version = "0.11", features = ["arithmetic", "bits", "hash2curve"], optional = true }
k256 = { version = "0.11", features = ["arithmetic", "bits", "hash2curve"], optional = true }
minimal-ed448 = { path = "../ed448", version = "^0.1.2", optional = true }
[dev-dependencies]
hex = "0.4"
ff-group-tests = { version = "0.12", path = "../ff-group-tests" }
[features]
std = []
dalek = ["sha2", "dalek-ff-group"]
ed25519 = ["dalek"]
ristretto = ["dalek"]
kp256 = ["sha2", "elliptic-curve"]
p256 = ["kp256", "dep:p256"]
secp256k1 = ["kp256", "k256"]
ed448 = ["sha3", "minimal-ed448"]
default = ["std"]

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2021-2023 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,35 @@
# Ciphersuite
Ciphersuites for elliptic curves premised on ff/group.
### Secp256k1/P-256
Secp256k1 and P-256 are offered via [k256](https://crates.io/crates/k256) and
[p256](https://crates.io/crates/p256), two libraries maintained by
[RustCrypto](https://github.com/RustCrypto).
Their `hash_to_F` is the
[IETF's hash to curve](https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html),
yet applied to their scalar field.
### Ed25519/Ristretto
Ed25519/Ristretto are offered via
[dalek-ff-group](https://crates.io/crates/dalek-ff-group), an ff/group wrapper
around [curve25519-dalek](https://crates.io/crates/curve25519-dalek).
Their `hash_to_F` is the wide reduction of SHA2-512, as used in
[RFC-8032](https://www.rfc-editor.org/rfc/rfc8032). This is also compliant with
the draft
[RFC-RISTRETTO](https://www.ietf.org/archive/id/draft-irtf-cfrg-ristretto255-decaf448-05.html).
The domain-separation tag is naively prefixed to the message.
### Ed448
Ed448 is offered via [minimal-ed448](https://crates.io/crates/minimal-ed448), an
explicitly not recommended, unaudited Ed448 implementation, limited to its
prime-order subgroup.
Its `hash_to_F` is the wide reduction of SHAKE256, with a 114-byte output, as
used in [RFC-8032](https://www.rfc-editor.org/rfc/rfc8032). The
domain-separation tag is naively prefixed to the message.

View File

@@ -0,0 +1,86 @@
use zeroize::Zeroize;
use sha2::{Digest, Sha512};
use group::Group;
use dalek_ff_group::Scalar;
use crate::Ciphersuite;
macro_rules! dalek_curve {
(
$feature: literal,
$Ciphersuite: ident,
$Point: ident,
$ID: literal
) => {
use dalek_ff_group::$Point;
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct $Ciphersuite;
impl Ciphersuite for $Ciphersuite {
type F = Scalar;
type G = $Point;
type H = Sha512;
const ID: &'static [u8] = $ID;
fn generator() -> Self::G {
$Point::generator()
}
fn hash_to_F(dst: &[u8], data: &[u8]) -> Self::F {
Scalar::from_hash(Sha512::new_with_prefix(&[dst, data].concat()))
}
}
};
}
#[cfg(any(test, feature = "ristretto"))]
dalek_curve!("ristretto", Ristretto, RistrettoPoint, b"ristretto");
#[cfg(any(test, feature = "ristretto"))]
#[test]
fn test_ristretto() {
ff_group_tests::group::test_prime_group_bits::<RistrettoPoint>();
assert_eq!(
Ristretto::hash_to_F(
b"FROST-RISTRETTO255-SHA512-v11nonce",
&hex::decode(
"\
81800157bb554f299fe0b6bd658e4c4591d74168b5177bf55e8dceed59dc80c7\
5c3430d391552f6e60ecdc093ff9f6f4488756aa6cebdbad75a768010b8f830e"
)
.unwrap()
)
.to_bytes()
.as_ref(),
&hex::decode("40f58e8df202b21c94f826e76e4647efdb0ea3ca7ae7e3689bc0cbe2e2f6660c").unwrap()
);
}
#[cfg(feature = "ed25519")]
dalek_curve!("ed25519", Ed25519, EdwardsPoint, b"edwards25519");
#[cfg(feature = "ed25519")]
#[test]
fn test_ed25519() {
ff_group_tests::group::test_prime_group_bits::<EdwardsPoint>();
// Ideally, a test vector from RFC-8032 (not FROST) would be here
// Unfortunately, the IETF draft doesn't provide any vectors for the derived challenges
assert_eq!(
Ed25519::hash_to_F(
b"FROST-ED25519-SHA512-v11nonce",
&hex::decode(
"\
9d06a6381c7a4493929761a73692776772b274236fb5cfcc7d1b48ac3a9c249f\
929dcc590407aae7d388761cddb0c0db6f5627aea8e217f4a033f2ec83d93509"
)
.unwrap()
)
.to_bytes()
.as_ref(),
&hex::decode("70652da3e8d7533a0e4b9e9104f01b48c396b5b553717784ed8d05c6a36b9609").unwrap()
);
}

View File

@@ -0,0 +1,102 @@
use zeroize::Zeroize;
use digest::{
typenum::U114, core_api::BlockSizeUser, Update, Output, OutputSizeUser, FixedOutput,
ExtendableOutput, XofReader, HashMarker, Digest,
};
use sha3::Shake256;
use group::Group;
use minimal_ed448::{scalar::Scalar, point::Point};
use crate::Ciphersuite;
// Re-define Shake256 as a traditional Digest to meet API expectations
#[derive(Clone, Default)]
pub struct Shake256_114(Shake256);
impl BlockSizeUser for Shake256_114 {
type BlockSize = <Shake256 as BlockSizeUser>::BlockSize;
fn block_size() -> usize {
Shake256::block_size()
}
}
impl OutputSizeUser for Shake256_114 {
type OutputSize = U114;
fn output_size() -> usize {
114
}
}
impl Update for Shake256_114 {
fn update(&mut self, data: &[u8]) {
self.0.update(data);
}
fn chain(mut self, data: impl AsRef<[u8]>) -> Self {
Update::update(&mut self, data.as_ref());
self
}
}
impl FixedOutput for Shake256_114 {
fn finalize_fixed(self) -> Output<Self> {
let mut res = Default::default();
FixedOutput::finalize_into(self, &mut res);
res
}
fn finalize_into(self, out: &mut Output<Self>) {
let mut reader = self.0.finalize_xof();
reader.read(out);
}
}
impl HashMarker for Shake256_114 {}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct Ed448;
impl Ciphersuite for Ed448 {
type F = Scalar;
type G = Point;
type H = Shake256_114;
const ID: &'static [u8] = b"ed448";
fn generator() -> Self::G {
Point::generator()
}
fn hash_to_F(dst: &[u8], data: &[u8]) -> Self::F {
Scalar::wide_reduce(Self::H::digest([dst, data].concat()).as_ref().try_into().unwrap())
}
}
#[test]
fn test_ed448() {
use ff::PrimeField;
// TODO: Enable once ed448 passes these tests
//ff_group_tests::group::test_prime_group_bits::<Point>();
// Ideally, a test vector from RFC-8032 (not FROST) would be here
// Unfortunately, the IETF draft doesn't provide any vectors for the derived challenges
assert_eq!(
Ed448::hash_to_F(
b"FROST-ED448-SHAKE256-v11nonce",
&hex::decode(
"\
89bf16040081ff2990336b200613787937ebe1f024b8cdff90eb6f1c741d91c1\
4a2b2f5858a932ad3d3b18bd16e76ced3070d72fd79ae4402df201f5\
25e754716a1bc1b87a502297f2a99d89ea054e0018eb55d39562fd01\
00"
)
.unwrap()
)
.to_repr()
.iter()
.cloned()
.collect::<Vec<_>>(),
hex::decode(
"\
67a6f023e77361707c6e894c625e809e80f33fdb310810053ae29e28\
e7011f3193b9020e73c183a98cc3a519160ed759376dd92c94831622\
00"
)
.unwrap()
);
}

View File

@@ -0,0 +1,118 @@
use zeroize::Zeroize;
use sha2::{Digest, Sha256};
use group::ff::{Field, PrimeField};
use elliptic_curve::{
generic_array::GenericArray,
bigint::{Encoding, U384},
hash2curve::{Expander, ExpandMsg, ExpandMsgXmd},
};
use crate::Ciphersuite;
macro_rules! kp_curve {
(
$feature: literal,
$lib: ident,
$Ciphersuite: ident,
$ID: literal
) => {
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct $Ciphersuite;
impl Ciphersuite for $Ciphersuite {
type F = $lib::Scalar;
type G = $lib::ProjectivePoint;
type H = Sha256;
const ID: &'static [u8] = $ID;
fn generator() -> Self::G {
$lib::ProjectivePoint::GENERATOR
}
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F {
let mut dst = dst;
let oversize = Sha256::digest([b"H2C-OVERSIZE-DST-".as_ref(), dst].concat());
if dst.len() > 255 {
dst = oversize.as_ref();
}
// While one of these two libraries does support directly hashing to the Scalar field, the
// other doesn't. While that's probably an oversight, this is a universally working method
let mut modulus = [0; 48];
modulus[16 ..].copy_from_slice(&(Self::F::zero() - Self::F::one()).to_bytes());
let modulus = U384::from_be_slice(&modulus).wrapping_add(&U384::ONE);
let mut unreduced = U384::from_be_bytes({
let mut bytes = [0; 48];
ExpandMsgXmd::<Sha256>::expand_message(&[msg], dst, 48).unwrap().fill_bytes(&mut bytes);
bytes
})
.reduce(&modulus)
.unwrap()
.to_be_bytes();
let mut array = *GenericArray::from_slice(&unreduced[16 ..]);
let res = $lib::Scalar::from_repr(array).unwrap();
unreduced.zeroize();
array.zeroize();
res
}
}
};
}
#[cfg(feature = "secp256k1")]
kp_curve!("secp256k1", k256, Secp256k1, b"secp256k1");
#[cfg(feature = "secp256k1")]
#[test]
fn test_secp256k1() {
ff_group_tests::group::test_prime_group_bits::<k256::ProjectivePoint>();
// Ideally, a test vector from hash to field (not FROST) would be here
// Unfortunately, the IETF draft only provides vectors for field elements, not scalars
assert_eq!(
Secp256k1::hash_to_F(
b"FROST-secp256k1-SHA256-v11nonce",
&hex::decode(
"\
80cbea5e405d169999d8c4b30b755fedb26ab07ec8198cda4873ed8ce5e16773\
08f89ffe80ac94dcb920c26f3f46140bfc7f95b493f8310f5fc1ea2b01f4254c"
)
.unwrap()
)
.to_repr()
.iter()
.cloned()
.collect::<Vec<_>>(),
hex::decode("acc83278035223c1ba464e2d11bfacfc872b2b23e1041cf5f6130da21e4d8068").unwrap()
);
}
#[cfg(feature = "p256")]
kp_curve!("p256", p256, P256, b"P-256");
#[cfg(feature = "p256")]
#[test]
fn test_p256() {
ff_group_tests::group::test_prime_group_bits::<p256::ProjectivePoint>();
assert_eq!(
P256::hash_to_F(
b"FROST-P256-SHA256-v11nonce",
&hex::decode(
"\
f4e8cf80aec3f888d997900ac7e3e349944b5a6b47649fc32186d2f1238103c6\
0c9c1a0fe806c184add50bbdcac913dda73e482daf95dcb9f35dbb0d8a9f7731"
)
.unwrap()
)
.to_repr()
.iter()
.cloned()
.collect::<Vec<_>>(),
hex::decode("f871dfcf6bcd199342651adc361b92c941cb6a0d8c8c1a3b91d79e2c1bf3722d").unwrap()
);
}

View File

@@ -0,0 +1,113 @@
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(not(feature = "std"), no_std)]
use core::fmt::Debug;
#[cfg(feature = "std")]
use std::io::{self, Read};
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use subtle::ConstantTimeEq;
use digest::{core_api::BlockSizeUser, Digest};
use group::{
ff::{Field, PrimeField, PrimeFieldBits},
Group, GroupOps,
prime::PrimeGroup,
};
#[cfg(feature = "std")]
use group::GroupEncoding;
#[cfg(feature = "dalek")]
mod dalek;
#[cfg(feature = "ristretto")]
pub use dalek::Ristretto;
#[cfg(feature = "ed25519")]
pub use dalek::Ed25519;
#[cfg(feature = "kp256")]
mod kp256;
#[cfg(feature = "secp256k1")]
pub use kp256::Secp256k1;
#[cfg(feature = "p256")]
pub use kp256::P256;
#[cfg(feature = "ed448")]
mod ed448;
#[cfg(feature = "ed448")]
pub use ed448::*;
/// Unified trait defining a ciphersuite around an elliptic curve.
pub trait Ciphersuite: Clone + Copy + PartialEq + Eq + Debug + Zeroize {
/// Scalar field element type.
// This is available via G::Scalar yet `C::G::Scalar` is ambiguous, forcing horrific accesses
type F: PrimeField + PrimeFieldBits + Zeroize;
/// Group element type.
type G: Group<Scalar = Self::F> + GroupOps + PrimeGroup + Zeroize + ConstantTimeEq;
/// Hash algorithm used with this curve.
// Requires BlockSizeUser so it can be used within Hkdf which requies that.
type H: Clone + BlockSizeUser + Digest;
/// ID for this curve.
const ID: &'static [u8];
/// Generator for the group.
// While group does provide this in its API, privacy coins may want to use a custom basepoint
fn generator() -> Self::G;
/// Hash the provided domain-separation tag and message to a scalar. Ciphersuites MAY naively
/// prefix the tag to the message, enabling transpotion between the two. Accordingly, this
/// function should NOT be used in any scheme where one tag is a valid substring of another
/// UNLESS the specific Ciphersuite is verified to handle the DST securely.
///
/// Verifying specific ciphersuites have secure tag handling is not recommended, due to it
/// breaking the intended modularity of ciphersuites. Instead, component-specific tags with
/// further purpose tags are recommended ("Schnorr-nonce", "Schnorr-chal").
#[allow(non_snake_case)]
fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F;
/// Generate a random non-zero scalar.
#[allow(non_snake_case)]
fn random_nonzero_F<R: RngCore + CryptoRng>(rng: &mut R) -> Self::F {
let mut res;
while {
res = Self::F::random(&mut *rng);
res.ct_eq(&Self::F::zero()).into()
} {}
res
}
/// Read a canonical scalar from something implementing std::io::Read.
#[cfg(feature = "std")]
#[allow(non_snake_case)]
fn read_F<R: Read>(reader: &mut R) -> io::Result<Self::F> {
let mut encoding = <Self::F as PrimeField>::Repr::default();
reader.read_exact(encoding.as_mut())?;
// ff mandates this is canonical
let res = Option::<Self::F>::from(Self::F::from_repr(encoding))
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "non-canonical scalar"));
for b in encoding.as_mut() {
b.zeroize();
}
res
}
/// Read a canonical point from something implementing std::io::Read.
#[cfg(feature = "std")]
#[allow(non_snake_case)]
fn read_G<R: Read>(reader: &mut R) -> io::Result<Self::G> {
let mut encoding = <Self::G as GroupEncoding>::Repr::default();
reader.read_exact(encoding.as_mut())?;
let point = Option::<Self::G>::from(Self::G::from_bytes(&encoding))
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "invalid point"))?;
if point.to_bytes().as_ref() != encoding.as_ref() {
Err(io::Error::new(io::ErrorKind::Other, "non-canonical point"))?;
}
Ok(point)
}
}

View File

@@ -1,17 +1,22 @@
[package]
name = "dalek-ff-group"
version = "0.1.2"
version = "0.1.5"
description = "ff/group bindings around curve25519-dalek"
license = "MIT"
repository = "https://github.com/serai-dex/serai"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/dalek-ff-group"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["curve25519", "ed25519", "ristretto", "dalek", "group"]
edition = "2021"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
rand_core = "0.6"
digest = "0.10"
zeroize = { version = "1.5", features = ["zeroize_derive"] }
subtle = "2.4"
ff = "0.12"
@@ -19,3 +24,6 @@ group = "0.12"
crypto-bigint = "0.4"
curve25519-dalek = "3.2"
[dev-dependencies]
ff-group-tests = { path = "../ff-group-tests" }

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2022 Luke Parker
Copyright (c) 2022-2023 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -2,5 +2,3 @@
ff/group bindings around curve25519-dalek with a from_hash/random function based
around modern dependencies.
Some functions currently remain unimplemented.

View File

@@ -2,87 +2,103 @@ use core::ops::{Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign};
use rand_core::RngCore;
use subtle::{Choice, CtOption, ConstantTimeEq, ConditionallySelectable};
use crypto_bigint::{Encoding, U256, U512};
use subtle::{
Choice, CtOption, ConstantTimeEq, ConstantTimeLess, ConditionallyNegatable,
ConditionallySelectable,
};
use crypto_bigint::{Integer, Encoding, U256, U512};
use ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
use crate::{choice, constant_time, math_op, math, from_wrapper, from_uint};
use crate::{constant_time, math, from_uint};
const FIELD_MODULUS: U256 = U256::from_be_hex(
const MODULUS: U256 =
U256::from_be_hex("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed");
const WIDE_MODULUS: U512 = U512::from_be_hex(concat!(
"0000000000000000000000000000000000000000000000000000000000000000",
"7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed"
);
));
#[derive(Clone, Copy, PartialEq, Eq, Debug, Default)]
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
pub struct FieldElement(U256);
pub const SQRT_M1: FieldElement = FieldElement(
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0")
);
pub const MOD_3_8: FieldElement =
FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)));
pub const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE));
pub const EDWARDS_D: FieldElement = FieldElement(U256::from_be_hex(
"52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3",
));
pub const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex(
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
));
fn reduce(x: U512) -> U256 {
U256::from_le_slice(&x.reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32])
}
constant_time!(FieldElement, U256);
math!(
FieldElement,
FieldElement,
|x, y| U256::add_mod(&x, &y, &FIELD_MODULUS),
|x, y| U256::sub_mod(&x, &y, &FIELD_MODULUS),
|x, y| U256::add_mod(&x, &y, &MODULUS),
|x, y| U256::sub_mod(&x, &y, &MODULUS),
|x, y| {
#[allow(non_snake_case)]
let WIDE_MODULUS: U512 = U512::from((U256::ZERO, FIELD_MODULUS));
debug_assert_eq!(FIELD_MODULUS.to_le_bytes()[..], WIDE_MODULUS.to_le_bytes()[.. 32]);
let wide = U256::mul_wide(&x, &y);
U256::from_le_slice(
&U512::from((wide.1, wide.0)).reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32]
)
reduce(U512::from((wide.1, wide.0)))
}
);
from_uint!(FieldElement, U256);
impl Neg for FieldElement {
type Output = Self;
fn neg(self) -> Self::Output { Self(self.0.neg_mod(&FIELD_MODULUS)) }
fn neg(self) -> Self::Output {
Self(self.0.neg_mod(&MODULUS))
}
}
impl<'a> Neg for &'a FieldElement {
type Output = FieldElement;
fn neg(self) -> Self::Output {
(*self).neg()
}
}
impl Field for FieldElement {
fn random(mut rng: impl RngCore) -> Self {
let mut bytes = [0; 64];
rng.fill_bytes(&mut bytes);
#[allow(non_snake_case)]
let WIDE_MODULUS: U512 = U512::from((U256::ZERO, FIELD_MODULUS));
debug_assert_eq!(FIELD_MODULUS.to_le_bytes()[..], WIDE_MODULUS.to_le_bytes()[.. 32]);
FieldElement(
U256::from_le_slice(
&U512::from_be_bytes(bytes).reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32]
)
)
FieldElement(reduce(U512::from_le_bytes(bytes)))
}
fn zero() -> Self { Self(U256::ZERO) }
fn one() -> Self { Self(U256::ONE) }
fn square(&self) -> Self { *self * self }
fn double(&self) -> Self { *self + self }
fn zero() -> Self {
Self(U256::ZERO)
}
fn one() -> Self {
Self(U256::ONE)
}
fn square(&self) -> Self {
FieldElement(reduce(self.0.square()))
}
fn double(&self) -> Self {
FieldElement((self.0 << 1).reduce(&MODULUS).unwrap())
}
fn invert(&self) -> CtOption<Self> {
CtOption::new(self.pow(-FieldElement(U256::from(2u64))), !self.is_zero())
const NEG_2: FieldElement = FieldElement(MODULUS.saturating_sub(&U256::from_u8(2)));
CtOption::new(self.pow(NEG_2), !self.is_zero())
}
fn sqrt(&self) -> CtOption<Self> {
let c1 = SQRT_M1;
let c2 = FIELD_MODULUS.saturating_add(&U256::from(3u8)).checked_div(&U256::from(8u8)).unwrap();
let tv1 = self.pow(FieldElement(c2));
let tv2 = tv1 * c1;
let res = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self));
debug_assert_eq!(res * res, *self);
CtOption::new(Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self)), 1.into())
let tv1 = self.pow(MOD_3_8);
let tv2 = tv1 * SQRT_M1;
let candidate = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self));
CtOption::new(candidate, candidate.square().ct_eq(self))
}
fn is_zero(&self) -> Choice { self.0.ct_eq(&U256::ZERO) }
fn cube(&self) -> Self { *self * self * self }
fn pow_vartime<S: AsRef<[u64]>>(&self, _exp: S) -> Self { unimplemented!() }
}
impl PrimeField for FieldElement {
@@ -91,17 +107,23 @@ impl PrimeField for FieldElement {
const CAPACITY: u32 = 254;
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
let res = Self(U256::from_le_bytes(bytes));
CtOption::new(res, res.0.add_mod(&U256::ZERO, &FIELD_MODULUS).ct_eq(&res.0))
CtOption::new(res, res.0.ct_lt(&MODULUS))
}
fn to_repr(&self) -> [u8; 32] {
self.0.to_le_bytes()
}
fn to_repr(&self) -> [u8; 32] { self.0.to_le_bytes() }
const S: u32 = 2;
fn is_odd(&self) -> Choice { unimplemented!() }
fn multiplicative_generator() -> Self { 2u64.into() }
fn is_odd(&self) -> Choice {
self.0.is_odd()
}
fn multiplicative_generator() -> Self {
2u64.into()
}
fn root_of_unity() -> Self {
FieldElement(
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0")
)
FieldElement(U256::from_be_hex(
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
))
}
}
@@ -113,7 +135,7 @@ impl PrimeFieldBits for FieldElement {
}
fn char_le_bits() -> FieldBits<Self::ReprBits> {
FIELD_MODULUS.to_le_bytes().into()
MODULUS.to_le_bytes().into()
}
}
@@ -124,19 +146,54 @@ impl FieldElement {
}
pub fn pow(&self, other: FieldElement) -> FieldElement {
let mut res = FieldElement(U256::ONE);
let mut m = *self;
for bit in other.to_le_bits() {
res *= FieldElement::conditional_select(&FieldElement(U256::ONE), &m, choice(bit));
m *= m;
let mut table = [FieldElement::one(); 16];
table[1] = *self;
for i in 2 .. 16 {
table[i] = table[i - 1] * self;
}
let mut res = FieldElement::one();
let mut bits = 0;
for (i, bit) in other.to_le_bits().iter().rev().enumerate() {
bits <<= 1;
let bit = u8::from(*bit);
bits |= bit;
if ((i + 1) % 4) == 0 {
if i != 3 {
for _ in 0 .. 4 {
res *= res;
}
}
res *= table[usize::from(bits)];
bits = 0;
}
}
res
}
pub fn sqrt_ratio_i(u: FieldElement, v: FieldElement) -> (Choice, FieldElement) {
let i = SQRT_M1;
let v3 = v.square() * v;
let v7 = v3.square() * v;
let mut r = (u * v3) * (u * v7).pow(MOD_5_8);
let check = v * r.square();
let correct_sign = check.ct_eq(&u);
let flipped_sign = check.ct_eq(&(-u));
let flipped_sign_i = check.ct_eq(&((-u) * i));
r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i);
let r_is_negative = r.is_odd();
r.conditional_negate(r_is_negative);
(correct_sign | flipped_sign, r)
}
}
#[test]
fn test_mul() {
assert_eq!(FieldElement(FIELD_MODULUS) * FieldElement::one(), FieldElement::zero());
assert_eq!(FieldElement(FIELD_MODULUS) * FieldElement::one().double(), FieldElement::zero());
assert_eq!(SQRT_M1.square(), -FieldElement::one());
fn test_field() {
ff_group_tests::prime_field::test_prime_field_bits::<FieldElement>();
}

View File

@@ -1,18 +1,21 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![no_std]
use core::{
ops::{Deref, Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign},
borrow::Borrow,
iter::{Iterator, Sum}
iter::{Iterator, Sum},
};
use zeroize::Zeroize;
use subtle::{ConstantTimeEq, ConditionallySelectable};
use rand_core::RngCore;
use digest::{consts::U64, Digest};
use digest::{consts::U64, Digest, HashMarker};
use subtle::{Choice, CtOption};
use crypto_bigint::{Encoding, U256};
pub use curve25519_dalek as dalek;
use dalek::{
@@ -20,15 +23,13 @@ use dalek::{
traits::Identity,
scalar::Scalar as DScalar,
edwards::{
EdwardsPoint as DEdwardsPoint,
EdwardsBasepointTable as DEdwardsBasepointTable,
CompressedEdwardsY as DCompressedEdwards
EdwardsPoint as DEdwardsPoint, EdwardsBasepointTable as DEdwardsBasepointTable,
CompressedEdwardsY as DCompressedEdwards,
},
ristretto::{
RistrettoPoint as DRistrettoPoint,
RistrettoBasepointTable as DRistrettoBasepointTable,
CompressedRistretto as DCompressedRistretto
}
RistrettoPoint as DRistrettoPoint, RistrettoBasepointTable as DRistrettoBasepointTable,
CompressedRistretto as DCompressedRistretto,
},
};
use ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
@@ -38,9 +39,7 @@ pub mod field;
// Convert a boolean to a Choice in a *presumably* constant time manner
fn choice(value: bool) -> Choice {
let bit = value as u8;
debug_assert_eq!(bit | 1, 1);
Choice::from(bit)
Choice::from(u8::from(value))
}
macro_rules! deref_borrow {
@@ -64,7 +63,7 @@ macro_rules! deref_borrow {
&self.0
}
}
}
};
}
#[doc(hidden)]
@@ -72,7 +71,9 @@ macro_rules! deref_borrow {
macro_rules! constant_time {
($Value: ident, $Inner: ident) => {
impl ConstantTimeEq for $Value {
fn ct_eq(&self, other: &Self) -> Choice { self.0.ct_eq(&other.0) }
fn ct_eq(&self, other: &Self) -> Choice {
self.0.ct_eq(&other.0)
}
}
impl ConditionallySelectable for $Value {
@@ -80,7 +81,7 @@ macro_rules! constant_time {
$Value($Inner::conditional_select(&a.0, &b.0, choice))
}
}
}
};
}
#[doc(hidden)]
@@ -117,28 +118,32 @@ macro_rules! math_op {
self.0 = $function(self.0, other.0);
}
}
}
};
}
#[doc(hidden)]
#[macro_export]
#[macro_export(local_inner_macros)]
macro_rules! math {
($Value: ident, $Factor: ident, $add: expr, $sub: expr, $mul: expr) => {
math_op!($Value, $Value, Add, add, AddAssign, add_assign, $add);
math_op!($Value, $Value, Sub, sub, SubAssign, sub_assign, $sub);
math_op!($Value, $Factor, Mul, mul, MulAssign, mul_assign, $mul);
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! math_neg {
($Value: ident, $Factor: ident, $add: expr, $sub: expr, $mul: expr) => {
math!($Value, $Factor, $add, $sub, $mul);
impl Neg for $Value {
type Output = Self;
fn neg(self) -> Self::Output { Self(-self.0) }
fn neg(self) -> Self::Output {
Self(-self.0)
}
}
}
};
}
#[doc(hidden)]
@@ -146,41 +151,75 @@ macro_rules! math_neg {
macro_rules! from_wrapper {
($wrapper: ident, $inner: ident, $uint: ident) => {
impl From<$uint> for $wrapper {
fn from(a: $uint) -> $wrapper { Self($inner::from(a)) }
fn from(a: $uint) -> $wrapper {
Self($inner::from(a))
}
}
}
};
}
#[doc(hidden)]
#[macro_export]
#[macro_export(local_inner_macros)]
macro_rules! from_uint {
($wrapper: ident, $inner: ident) => {
from_wrapper!($wrapper, $inner, u8);
from_wrapper!($wrapper, $inner, u16);
from_wrapper!($wrapper, $inner, u32);
from_wrapper!($wrapper, $inner, u64);
}
};
}
/// Wrapper around the dalek Scalar type
#[derive(Clone, Copy, PartialEq, Eq, Debug, Default)]
/// Wrapper around the dalek Scalar type.
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug, Zeroize)]
pub struct Scalar(pub DScalar);
deref_borrow!(Scalar, DScalar);
constant_time!(Scalar, DScalar);
math_neg!(Scalar, Scalar, DScalar::add, DScalar::sub, DScalar::mul);
from_uint!(Scalar, DScalar);
const MODULUS: U256 =
U256::from_be_hex("1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed");
impl Scalar {
/// Perform wide reduction on a 64-byte array to create a Scalar without bias
pub fn pow(&self, other: Scalar) -> Scalar {
let mut table = [Scalar::one(); 16];
table[1] = *self;
for i in 2 .. 16 {
table[i] = table[i - 1] * self;
}
let mut res = Scalar::one();
let mut bits = 0;
for (i, bit) in other.to_le_bits().iter().rev().enumerate() {
bits <<= 1;
let bit = u8::from(*bit);
bits |= bit;
if ((i + 1) % 4) == 0 {
if i != 3 {
for _ in 0 .. 4 {
res *= res;
}
}
res *= table[usize::from(bits)];
bits = 0;
}
}
res
}
/// Perform wide reduction on a 64-byte array to create a Scalar without bias.
pub fn from_bytes_mod_order_wide(bytes: &[u8; 64]) -> Scalar {
Self(DScalar::from_bytes_mod_order_wide(bytes))
}
/// Derive a Scalar without bias from a digest via wide reduction
pub fn from_hash<D: Digest<OutputSize = U64>>(hash: D) -> Scalar {
/// Derive a Scalar without bias from a digest via wide reduction.
pub fn from_hash<D: Digest<OutputSize = U64> + HashMarker>(hash: D) -> Scalar {
let mut output = [0u8; 64];
output.copy_from_slice(&hash.finalize());
Scalar(DScalar::from_bytes_mod_order_wide(&output))
let res = Scalar(DScalar::from_bytes_mod_order_wide(&output));
output.zeroize();
res
}
}
@@ -191,17 +230,33 @@ impl Field for Scalar {
Self(DScalar::from_bytes_mod_order_wide(&r))
}
fn zero() -> Self { Self(DScalar::zero()) }
fn one() -> Self { Self(DScalar::one()) }
fn square(&self) -> Self { *self * self }
fn double(&self) -> Self { *self + self }
fn zero() -> Self {
Self(DScalar::zero())
}
fn one() -> Self {
Self(DScalar::one())
}
fn square(&self) -> Self {
*self * self
}
fn double(&self) -> Self {
*self + self
}
fn invert(&self) -> CtOption<Self> {
CtOption::new(Self(self.0.invert()), !self.is_zero())
}
fn sqrt(&self) -> CtOption<Self> { unimplemented!() }
fn is_zero(&self) -> Choice { self.0.ct_eq(&DScalar::zero()) }
fn cube(&self) -> Self { *self * self * self }
fn pow_vartime<S: AsRef<[u64]>>(&self, _exp: S) -> Self { unimplemented!() }
fn sqrt(&self) -> CtOption<Self> {
let mod_3_8 = MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8));
let mod_3_8 = Scalar::from_repr(mod_3_8.to_le_bytes()).unwrap();
let sqrt_m1 = MODULUS.saturating_sub(&U256::from_u8(1)).wrapping_div(&U256::from_u8(4));
let sqrt_m1 = Scalar::one().double().pow(Scalar::from_repr(sqrt_m1.to_le_bytes()).unwrap());
let tv1 = self.pow(mod_3_8);
let tv2 = tv1 * sqrt_m1;
let candidate = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self));
CtOption::new(candidate, candidate.square().ct_eq(self))
}
}
impl PrimeField for Scalar {
@@ -210,15 +265,27 @@ impl PrimeField for Scalar {
const CAPACITY: u32 = 252;
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
let scalar = DScalar::from_canonical_bytes(bytes);
// TODO: This unwrap_or isn't constant time, yet do we have an alternative?
CtOption::new(Scalar(scalar.unwrap_or(DScalar::zero())), choice(scalar.is_some()))
// TODO: This unwrap_or isn't constant time, yet we don't exactly have an alternative...
CtOption::new(Scalar(scalar.unwrap_or_else(DScalar::zero)), choice(scalar.is_some()))
}
fn to_repr(&self) -> [u8; 32] {
self.0.to_bytes()
}
fn to_repr(&self) -> [u8; 32] { self.0.to_bytes() }
const S: u32 = 2;
fn is_odd(&self) -> Choice { unimplemented!() }
fn multiplicative_generator() -> Self { 2u64.into() }
fn root_of_unity() -> Self { unimplemented!() }
fn is_odd(&self) -> Choice {
choice(self.to_le_bits()[0])
}
fn multiplicative_generator() -> Self {
2u64.into()
}
fn root_of_unity() -> Self {
const ROOT: [u8; 32] = [
212, 7, 190, 235, 223, 117, 135, 190, 254, 131, 206, 66, 83, 86, 240, 14, 122, 194, 193, 171,
96, 109, 61, 125, 231, 129, 121, 224, 16, 115, 74, 9,
];
Scalar::from_repr(ROOT).unwrap()
}
}
impl PrimeFieldBits for Scalar {
@@ -236,6 +303,12 @@ impl PrimeFieldBits for Scalar {
}
}
impl Sum<Scalar> for Scalar {
fn sum<I: Iterator<Item = Scalar>>(iter: I) -> Scalar {
Self(DScalar::sum(iter))
}
}
macro_rules! dalek_group {
(
$Point: ident,
@@ -250,8 +323,8 @@ macro_rules! dalek_group {
$BASEPOINT_POINT: ident,
$BASEPOINT_TABLE: ident
) => {
/// Wrapper around the dalek Point type. For Ed25519, this is restricted to the prime subgroup
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
/// Wrapper around the dalek Point type. For Ed25519, this is restricted to the prime subgroup.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct $Point(pub $DPoint);
deref_borrow!($Point, $DPoint);
constant_time!($Point, $DPoint);
@@ -260,21 +333,40 @@ macro_rules! dalek_group {
pub const $BASEPOINT_POINT: $Point = $Point(constants::$BASEPOINT_POINT);
impl Sum<$Point> for $Point {
fn sum<I: Iterator<Item = $Point>>(iter: I) -> $Point { Self($DPoint::sum(iter)) }
fn sum<I: Iterator<Item = $Point>>(iter: I) -> $Point {
Self($DPoint::sum(iter))
}
}
impl<'a> Sum<&'a $Point> for $Point {
fn sum<I: Iterator<Item = &'a $Point>>(iter: I) -> $Point { Self($DPoint::sum(iter)) }
fn sum<I: Iterator<Item = &'a $Point>>(iter: I) -> $Point {
Self($DPoint::sum(iter))
}
}
impl Group for $Point {
type Scalar = Scalar;
// Ideally, this would be cryptographically secure, yet that's not a bound on the trait
// k256 also does this
fn random(rng: impl RngCore) -> Self { &$BASEPOINT_TABLE * Scalar::random(rng) }
fn identity() -> Self { Self($DPoint::identity()) }
fn generator() -> Self { $BASEPOINT_POINT }
fn is_identity(&self) -> Choice { self.0.ct_eq(&$DPoint::identity()) }
fn double(&self) -> Self { *self + self }
fn random(mut rng: impl RngCore) -> Self {
loop {
let mut bytes = field::FieldElement::random(&mut rng).to_repr();
bytes[31] |= u8::try_from(rng.next_u32() % 2).unwrap() << 7;
let opt = Self::from_bytes(&bytes);
if opt.is_some().into() {
return opt.unwrap();
}
}
}
fn identity() -> Self {
Self($DPoint::identity())
}
fn generator() -> Self {
$BASEPOINT_POINT
}
fn is_identity(&self) -> Choice {
self.0.ct_eq(&$DPoint::identity())
}
fn double(&self) -> Self {
*self + self
}
}
impl GroupEncoding for $Point {
@@ -299,14 +391,16 @@ macro_rules! dalek_group {
impl PrimeGroup for $Point {}
/// Wrapper around the dalek Table type, offering efficient multiplication against the
/// basepoint
/// basepoint.
pub struct $Table(pub $DTable);
deref_borrow!($Table, $DTable);
pub const $BASEPOINT_TABLE: $Table = $Table(constants::$BASEPOINT_TABLE);
impl Mul<Scalar> for &$Table {
type Output = $Point;
fn mul(self, b: Scalar) -> $Point { $Point(&b.0 * &self.0) }
fn mul(self, b: Scalar) -> $Point {
$Point(&b.0 * &self.0)
}
}
};
}
@@ -315,26 +409,36 @@ dalek_group!(
EdwardsPoint,
DEdwardsPoint,
|point: DEdwardsPoint| point.is_torsion_free(),
EdwardsBasepointTable,
DEdwardsBasepointTable,
DCompressedEdwards,
ED25519_BASEPOINT_POINT,
ED25519_BASEPOINT_TABLE
);
impl EdwardsPoint {
pub fn mul_by_cofactor(&self) -> EdwardsPoint {
EdwardsPoint(self.0.mul_by_cofactor())
}
}
dalek_group!(
RistrettoPoint,
DRistrettoPoint,
|_| true,
RistrettoBasepointTable,
DRistrettoBasepointTable,
DCompressedRistretto,
RISTRETTO_BASEPOINT_POINT,
RISTRETTO_BASEPOINT_TABLE
);
#[test]
fn test_ed25519_group() {
ff_group_tests::group::test_prime_group_bits::<EdwardsPoint>();
}
#[test]
fn test_ristretto_group() {
ff_group_tests::group::test_prime_group_bits::<RistrettoPoint>();
}

39
crypto/dkg/Cargo.toml Normal file
View File

@@ -0,0 +1,39 @@
[package]
name = "dkg"
version = "0.2.0"
description = "Distributed key generation over ff/group"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/crypto/dkg"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = ["dkg", "multisig", "threshold", "ff", "group"]
edition = "2021"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
thiserror = "1"
rand_core = "0.6"
zeroize = { version = "1.5", features = ["zeroize_derive"] }
subtle = "2"
hex = "0.4"
transcript = { package = "flexible-transcript", path = "../transcript", version = "0.2", features = ["recommended"] }
chacha20 = { version = "0.9", features = ["zeroize"] }
group = "0.12"
multiexp = { path = "../multiexp", version = "0.2", features = ["batch"] }
ciphersuite = { path = "../ciphersuite", version = "0.1", features = ["std"] }
schnorr = { package = "schnorr-signatures", path = "../schnorr", version = "0.2" }
dleq = { path = "../dleq", version = "0.2", features = ["serialize"] }
[dev-dependencies]
ciphersuite = { path = "../ciphersuite", version = "0.1", features = ["std", "ristretto"] }
[features]
tests = []

21
crypto/dkg/LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2021-2023 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

12
crypto/dkg/README.md Normal file
View File

@@ -0,0 +1,12 @@
# Distributed Key Generation
A collection of implementations of various distributed key generation protocols.
All included protocols resolve into the provided `Threshold` types, intended to
enable their modularity.
Additional utilities around them, such as promotion from one generator to
another, are also provided.
Currently included is the two-round protocol from the
[FROST paper](https://eprint.iacr.org/2020/852).

View File

@@ -0,0 +1,442 @@
use core::fmt::Debug;
use std::{
ops::Deref,
io::{self, Read, Write},
collections::HashMap,
};
use thiserror::Error;
use zeroize::{Zeroize, Zeroizing};
use rand_core::{RngCore, CryptoRng};
use chacha20::{
cipher::{crypto_common::KeyIvInit, StreamCipher},
Key as Cc20Key, Nonce as Cc20Iv, ChaCha20,
};
use transcript::{Transcript, RecommendedTranscript};
#[cfg(test)]
use group::ff::Field;
use group::GroupEncoding;
use ciphersuite::Ciphersuite;
use multiexp::BatchVerifier;
use schnorr::SchnorrSignature;
use dleq::DLEqProof;
use crate::ThresholdParams;
pub trait ReadWrite: Sized {
fn read<R: Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self>;
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()>;
fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
}
pub trait Message: Clone + PartialEq + Eq + Debug + Zeroize + ReadWrite {}
impl<M: Clone + PartialEq + Eq + Debug + Zeroize + ReadWrite> Message for M {}
/// Wraps a message with a key to use for encryption in the future.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct EncryptionKeyMessage<C: Ciphersuite, M: Message> {
msg: M,
enc_key: C::G,
}
// Doesn't impl ReadWrite so that doesn't need to be imported
impl<C: Ciphersuite, M: Message> EncryptionKeyMessage<C, M> {
pub fn read<R: Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
Ok(Self { msg: M::read(reader, params)?, enc_key: C::read_G(reader)? })
}
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
self.msg.write(writer)?;
writer.write_all(self.enc_key.to_bytes().as_ref())
}
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
// Used by tests
pub(crate) fn enc_key(&self) -> C::G {
self.enc_key
}
}
pub trait Encryptable: Clone + AsRef<[u8]> + AsMut<[u8]> + Zeroize + ReadWrite {}
impl<E: Clone + AsRef<[u8]> + AsMut<[u8]> + Zeroize + ReadWrite> Encryptable for E {}
/// An encrypted message, with a per-message encryption key enabling revealing specific messages
/// without side effects.
#[derive(Clone, Zeroize)]
pub struct EncryptedMessage<C: Ciphersuite, E: Encryptable> {
key: C::G,
// Also include a proof-of-possession for the key.
// If this proof-of-possession wasn't here, Eve could observe Alice encrypt to Bob with key X,
// then send Bob a message also claiming to use X.
// While Eve's message would fail to meaningfully decrypt, Bob would then use this to create a
// blame argument against Eve. When they do, they'd reveal bX, revealing Alice's message to Bob.
// This is a massive side effect which could break some protocols, in the worst case.
// While Eve can still reuse their own keys, causing Bob to leak all messages by revealing for
// any single one, that's effectively Eve revealing themselves, and not considered relevant.
pop: SchnorrSignature<C>,
msg: Zeroizing<E>,
}
fn ecdh<C: Ciphersuite>(private: &Zeroizing<C::F>, public: C::G) -> Zeroizing<C::G> {
Zeroizing::new(public * private.deref())
}
fn cipher<C: Ciphersuite>(dst: &'static [u8], ecdh: &Zeroizing<C::G>) -> ChaCha20 {
// Ideally, we'd box this transcript with ZAlloc, yet that's only possible on nightly
// TODO: https://github.com/serai-dex/serai/issues/151
let mut transcript = RecommendedTranscript::new(b"DKG Encryption v0.2");
transcript.domain_separate(dst);
let mut ecdh = ecdh.to_bytes();
transcript.append_message(b"shared_key", ecdh.as_ref());
ecdh.as_mut().zeroize();
let zeroize = |buf: &mut [u8]| buf.zeroize();
let mut key = Cc20Key::default();
let mut challenge = transcript.challenge(b"key");
key.copy_from_slice(&challenge[.. 32]);
zeroize(challenge.as_mut());
// The RecommendedTranscript isn't vulnerable to length extension attacks, yet if it was,
// it'd make sense to clone it (and fork it) just to hedge against that
let mut iv = Cc20Iv::default();
let mut challenge = transcript.challenge(b"iv");
iv.copy_from_slice(&challenge[.. 12]);
zeroize(challenge.as_mut());
// Same commentary as the transcript regarding ZAlloc
// TODO: https://github.com/serai-dex/serai/issues/151
let res = ChaCha20::new(&key, &iv);
zeroize(key.as_mut());
zeroize(iv.as_mut());
res
}
fn encrypt<R: RngCore + CryptoRng, C: Ciphersuite, E: Encryptable>(
rng: &mut R,
dst: &'static [u8],
from: u16,
to: C::G,
mut msg: Zeroizing<E>,
) -> EncryptedMessage<C, E> {
/*
The following code could be used to replace the requirement on an RNG here.
It's just currently not an issue to require taking in an RNG here.
let last = self.last_enc_key.to_bytes();
self.last_enc_key = C::hash_to_F(b"encryption_base", last.as_ref());
let key = C::hash_to_F(b"encryption_key", last.as_ref());
last.as_mut().zeroize();
*/
let key = Zeroizing::new(C::random_nonzero_F(rng));
cipher::<C>(dst, &ecdh::<C>(&key, to)).apply_keystream(msg.as_mut().as_mut());
let pub_key = C::generator() * key.deref();
let nonce = Zeroizing::new(C::random_nonzero_F(rng));
let pub_nonce = C::generator() * nonce.deref();
EncryptedMessage {
key: pub_key,
pop: SchnorrSignature::sign(
&key,
nonce,
pop_challenge::<C>(pub_nonce, pub_key, from, msg.deref().as_ref()),
),
msg,
}
}
impl<C: Ciphersuite, E: Encryptable> EncryptedMessage<C, E> {
pub fn read<R: Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
Ok(Self {
key: C::read_G(reader)?,
pop: SchnorrSignature::<C>::read(reader)?,
msg: Zeroizing::new(E::read(reader, params)?),
})
}
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.key.to_bytes().as_ref())?;
self.pop.write(writer)?;
self.msg.write(writer)
}
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
#[cfg(test)]
pub(crate) fn invalidate_pop(&mut self) {
self.pop.s += C::F::one();
}
#[cfg(test)]
pub(crate) fn invalidate_msg<R: RngCore + CryptoRng>(&mut self, rng: &mut R, from: u16) {
// Invalidate the message by specifying a new key/Schnorr PoP
// This will cause all initial checks to pass, yet a decrypt to gibberish
let key = Zeroizing::new(C::random_nonzero_F(rng));
let pub_key = C::generator() * key.deref();
let nonce = Zeroizing::new(C::random_nonzero_F(rng));
let pub_nonce = C::generator() * nonce.deref();
self.key = pub_key;
self.pop = SchnorrSignature::sign(
&key,
nonce,
pop_challenge::<C>(pub_nonce, pub_key, from, self.msg.deref().as_ref()),
);
}
// Assumes the encrypted message is a secret share.
#[cfg(test)]
pub(crate) fn invalidate_share_serialization<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
dst: &'static [u8],
from: u16,
to: C::G,
) {
use group::ff::PrimeField;
let mut repr = <C::F as PrimeField>::Repr::default();
for b in repr.as_mut().iter_mut() {
*b = 255;
}
// Tries to guarantee the above assumption.
assert_eq!(repr.as_ref().len(), self.msg.as_ref().len());
// Checks that this isn't over a field where this is somehow valid
assert!(!bool::from(C::F::from_repr(repr).is_some()));
self.msg.as_mut().as_mut().copy_from_slice(repr.as_ref());
*self = encrypt(rng, dst, from, to, self.msg.clone());
}
// Assumes the encrypted message is a secret share.
#[cfg(test)]
pub(crate) fn invalidate_share_value<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
dst: &'static [u8],
from: u16,
to: C::G,
) {
use group::ff::PrimeField;
// Assumes the share isn't randomly 1
let repr = C::F::one().to_repr();
self.msg.as_mut().as_mut().copy_from_slice(repr.as_ref());
*self = encrypt(rng, dst, from, to, self.msg.clone());
}
}
/// A proof that the provided point is the legitimately derived shared key for some message.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct EncryptionKeyProof<C: Ciphersuite> {
key: Zeroizing<C::G>,
dleq: DLEqProof<C::G>,
}
impl<C: Ciphersuite> EncryptionKeyProof<C> {
pub fn read<R: Read>(reader: &mut R) -> io::Result<Self> {
Ok(Self { key: Zeroizing::new(C::read_G(reader)?), dleq: DLEqProof::read(reader)? })
}
pub fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.key.to_bytes().as_ref())?;
self.dleq.write(writer)
}
pub fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.write(&mut buf).unwrap();
buf
}
#[cfg(test)]
pub(crate) fn invalidate_key(&mut self) {
*self.key += C::generator();
}
#[cfg(test)]
pub(crate) fn invalidate_dleq(&mut self) {
let mut buf = vec![];
self.dleq.write(&mut buf).unwrap();
// Adds one to c since this is serialized c, s
// Adding one to c will leave a validly serialized c
// Adding one to s may leave an invalidly serialized s
buf[0] = buf[0].wrapping_add(1);
self.dleq = DLEqProof::read::<&[u8]>(&mut buf.as_ref()).unwrap();
}
}
// This doesn't need to take the msg. It just doesn't hurt as an extra layer.
// This still doesn't mean the DKG offers an authenticated channel. The per-message keys have no
// root of trust other than their existence in the assumed-to-exist external authenticated channel.
fn pop_challenge<C: Ciphersuite>(nonce: C::G, key: C::G, sender: u16, msg: &[u8]) -> C::F {
let mut transcript = RecommendedTranscript::new(b"DKG Encryption Key Proof of Possession v0.2");
transcript.append_message(b"nonce", nonce.to_bytes());
transcript.append_message(b"key", key.to_bytes());
// This is sufficient to prevent the attack this is meant to stop
transcript.append_message(b"sender", sender.to_le_bytes());
// This, as written above, doesn't hurt
transcript.append_message(b"message", msg);
// While this is a PoK and a PoP, it's called a PoP here since the important part is its owner
// Elsewhere, where we use the term PoK, the important part is that it isn't some inverse, with
// an unknown to anyone discrete log, breaking the system
C::hash_to_F(b"DKG-encryption-proof_of_possession", &transcript.challenge(b"schnorr"))
}
fn encryption_key_transcript() -> RecommendedTranscript {
RecommendedTranscript::new(b"DKG Encryption Key Correctness Proof v0.2")
}
#[derive(Clone, Copy, PartialEq, Eq, Debug, Error)]
pub(crate) enum DecryptionError {
#[error("accused provided an invalid signature")]
InvalidSignature,
#[error("accuser provided an invalid decryption key")]
InvalidProof,
}
// A simple box for managing encryption.
#[derive(Clone)]
pub(crate) struct Encryption<C: Ciphersuite> {
dst: &'static [u8],
i: u16,
enc_key: Zeroizing<C::F>,
enc_pub_key: C::G,
enc_keys: HashMap<u16, C::G>,
}
impl<C: Ciphersuite> Zeroize for Encryption<C> {
fn zeroize(&mut self) {
self.enc_key.zeroize();
self.enc_pub_key.zeroize();
for (_, mut value) in self.enc_keys.drain() {
value.zeroize();
}
}
}
impl<C: Ciphersuite> Encryption<C> {
pub(crate) fn new<R: RngCore + CryptoRng>(dst: &'static [u8], i: u16, rng: &mut R) -> Self {
let enc_key = Zeroizing::new(C::random_nonzero_F(rng));
Self {
dst,
i,
enc_pub_key: C::generator() * enc_key.deref(),
enc_key,
enc_keys: HashMap::new(),
}
}
pub(crate) fn registration<M: Message>(&self, msg: M) -> EncryptionKeyMessage<C, M> {
EncryptionKeyMessage { msg, enc_key: self.enc_pub_key }
}
pub(crate) fn register<M: Message>(
&mut self,
participant: u16,
msg: EncryptionKeyMessage<C, M>,
) -> M {
if self.enc_keys.contains_key(&participant) {
panic!("Re-registering encryption key for a participant");
}
self.enc_keys.insert(participant, msg.enc_key);
msg.msg
}
pub(crate) fn encrypt<R: RngCore + CryptoRng, E: Encryptable>(
&self,
rng: &mut R,
participant: u16,
msg: Zeroizing<E>,
) -> EncryptedMessage<C, E> {
encrypt(rng, self.dst, self.i, self.enc_keys[&participant], msg)
}
pub(crate) fn decrypt<R: RngCore + CryptoRng, I: Copy + Zeroize, E: Encryptable>(
&self,
rng: &mut R,
batch: &mut BatchVerifier<I, C::G>,
// Uses a distinct batch ID so if this batch verifier is reused, we know its the PoP aspect
// which failed, and therefore to use None for the blame
batch_id: I,
from: u16,
mut msg: EncryptedMessage<C, E>,
) -> (Zeroizing<E>, EncryptionKeyProof<C>) {
msg.pop.batch_verify(
rng,
batch,
batch_id,
msg.key,
pop_challenge::<C>(msg.pop.R, msg.key, from, msg.msg.deref().as_ref()),
);
let key = ecdh::<C>(&self.enc_key, msg.key);
cipher::<C>(self.dst, &key).apply_keystream(msg.msg.as_mut().as_mut());
(
msg.msg,
EncryptionKeyProof {
key,
dleq: DLEqProof::prove(
rng,
&mut encryption_key_transcript(),
&[C::generator(), msg.key],
&self.enc_key,
),
},
)
}
// Given a message, and the intended decryptor, and a proof for its key, decrypt the message.
// Returns None if the key was wrong.
pub(crate) fn decrypt_with_proof<E: Encryptable>(
&self,
from: u16,
decryptor: u16,
mut msg: EncryptedMessage<C, E>,
// There's no encryption key proof if the accusation is of an invalid signature
proof: Option<EncryptionKeyProof<C>>,
) -> Result<Zeroizing<E>, DecryptionError> {
if !msg
.pop
.verify(msg.key, pop_challenge::<C>(msg.pop.R, msg.key, from, msg.msg.deref().as_ref()))
{
Err(DecryptionError::InvalidSignature)?;
}
if let Some(proof) = proof {
// Verify this is the decryption key for this message
proof
.dleq
.verify(
&mut encryption_key_transcript(),
&[C::generator(), msg.key],
&[self.enc_keys[&decryptor], *proof.key],
)
.map_err(|_| DecryptionError::InvalidProof)?;
cipher::<C>(self.dst, &proof.key).apply_keystream(msg.msg.as_mut().as_mut());
Ok(msg.msg)
} else {
Err(DecryptionError::InvalidProof)
}
}
}

552
crypto/dkg/src/frost.rs Normal file
View File

@@ -0,0 +1,552 @@
use core::{
marker::PhantomData,
ops::Deref,
fmt::{Debug, Formatter},
};
use std::{
io::{self, Read, Write},
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use transcript::{Transcript, RecommendedTranscript};
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
};
use ciphersuite::Ciphersuite;
use multiexp::{multiexp_vartime, BatchVerifier};
use schnorr::SchnorrSignature;
use crate::{
DkgError, ThresholdParams, ThresholdCore, validate_map,
encryption::{
ReadWrite, EncryptionKeyMessage, EncryptedMessage, Encryption, EncryptionKeyProof,
DecryptionError,
},
};
type FrostError<C> = DkgError<EncryptionKeyProof<C>>;
#[allow(non_snake_case)]
fn challenge<C: Ciphersuite>(context: &str, l: u16, R: &[u8], Am: &[u8]) -> C::F {
let mut transcript = RecommendedTranscript::new(b"DKG FROST v0.2");
transcript.domain_separate(b"schnorr_proof_of_knowledge");
transcript.append_message(b"context", context.as_bytes());
transcript.append_message(b"participant", l.to_le_bytes());
transcript.append_message(b"nonce", R);
transcript.append_message(b"commitments", Am);
C::hash_to_F(b"DKG-FROST-proof_of_knowledge-0", &transcript.challenge(b"schnorr"))
}
/// The commitments message, intended to be broadcast to all other parties.
/// Every participant should only provide one set of commitments to all parties.
/// If any participant sends multiple sets of commitments, they are faulty and should be presumed
/// malicious.
/// As this library does not handle networking, it is also unable to detect if any participant is
/// so faulty. That responsibility lies with the caller.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct Commitments<C: Ciphersuite> {
commitments: Vec<C::G>,
cached_msg: Vec<u8>,
sig: SchnorrSignature<C>,
}
impl<C: Ciphersuite> ReadWrite for Commitments<C> {
fn read<R: Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
let mut commitments = Vec::with_capacity(params.t().into());
let mut cached_msg = vec![];
#[allow(non_snake_case)]
let mut read_G = || -> io::Result<C::G> {
let mut buf = <C::G as GroupEncoding>::Repr::default();
reader.read_exact(buf.as_mut())?;
let point = C::read_G(&mut buf.as_ref())?;
cached_msg.extend(buf.as_ref());
Ok(point)
};
for _ in 0 .. params.t() {
commitments.push(read_G()?);
}
Ok(Commitments { commitments, cached_msg, sig: SchnorrSignature::read(reader)? })
}
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&self.cached_msg)?;
self.sig.write(writer)
}
}
/// State machine to begin the key generation protocol.
pub struct KeyGenMachine<C: Ciphersuite> {
params: ThresholdParams,
context: String,
_curve: PhantomData<C>,
}
impl<C: Ciphersuite> KeyGenMachine<C> {
/// Creates a new machine to generate a key for the specified curve in the specified multisig.
// The context string should be unique among multisigs.
pub fn new(params: ThresholdParams, context: String) -> KeyGenMachine<C> {
KeyGenMachine { params, context, _curve: PhantomData }
}
/// Start generating a key according to the FROST DKG spec.
/// Returns a commitments message to be sent to all parties over an authenticated channel. If any
/// party submits multiple sets of commitments, they MUST be treated as malicious.
pub fn generate_coefficients<R: RngCore + CryptoRng>(
self,
rng: &mut R,
) -> (SecretShareMachine<C>, EncryptionKeyMessage<C, Commitments<C>>) {
let t = usize::from(self.params.t);
let mut coefficients = Vec::with_capacity(t);
let mut commitments = Vec::with_capacity(t);
let mut cached_msg = vec![];
for i in 0 .. t {
// Step 1: Generate t random values to form a polynomial with
coefficients.push(Zeroizing::new(C::random_nonzero_F(&mut *rng)));
// Step 3: Generate public commitments
commitments.push(C::generator() * coefficients[i].deref());
cached_msg.extend(commitments[i].to_bytes().as_ref());
}
// Step 2: Provide a proof of knowledge
let r = Zeroizing::new(C::random_nonzero_F(rng));
let nonce = C::generator() * r.deref();
let sig = SchnorrSignature::<C>::sign(
&coefficients[0],
// This could be deterministic as the PoK is a singleton never opened up to cooperative
// discussion
// There's no reason to spend the time and effort to make this deterministic besides a
// general obsession with canonicity and determinism though
r,
challenge::<C>(&self.context, self.params.i(), nonce.to_bytes().as_ref(), &cached_msg),
);
// Additionally create an encryption mechanism to protect the secret shares
let encryption = Encryption::new(b"FROST", self.params.i, rng);
// Step 4: Broadcast
let msg =
encryption.registration(Commitments { commitments: commitments.clone(), cached_msg, sig });
(
SecretShareMachine {
params: self.params,
context: self.context,
coefficients,
our_commitments: commitments,
encryption,
},
msg,
)
}
}
fn polynomial<F: PrimeField + Zeroize>(coefficients: &[Zeroizing<F>], l: u16) -> Zeroizing<F> {
let l = F::from(u64::from(l));
let mut share = Zeroizing::new(F::zero());
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
*share += coefficient.deref();
if idx != (coefficients.len() - 1) {
*share *= l;
}
}
share
}
/// The secret share message, to be sent to the party it's intended for over an authenticated
/// channel.
/// If any participant sends multiple secret shares to another participant, they are faulty.
// This should presumably be written as SecretShare(Zeroizing<F::Repr>).
// It's unfortunately not possible as F::Repr doesn't have Zeroize as a bound.
// The encryption system also explicitly uses Zeroizing<M> so it can ensure anything being
// encrypted is within Zeroizing. Accordingly, internally having Zeroizing would be redundant.
#[derive(Clone, PartialEq, Eq)]
pub struct SecretShare<F: PrimeField>(F::Repr);
impl<F: PrimeField> AsRef<[u8]> for SecretShare<F> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl<F: PrimeField> AsMut<[u8]> for SecretShare<F> {
fn as_mut(&mut self) -> &mut [u8] {
self.0.as_mut()
}
}
impl<F: PrimeField> Debug for SecretShare<F> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), core::fmt::Error> {
fmt.debug_struct("SecretShare").finish_non_exhaustive()
}
}
impl<F: PrimeField> Zeroize for SecretShare<F> {
fn zeroize(&mut self) {
self.0.as_mut().zeroize()
}
}
// Still manually implement ZeroizeOnDrop to ensure these don't stick around.
// We could replace Zeroizing<M> with a bound M: ZeroizeOnDrop.
// Doing so would potentially fail to highlight thr expected behavior with these and remove a layer
// of depth.
impl<F: PrimeField> Drop for SecretShare<F> {
fn drop(&mut self) {
self.zeroize();
}
}
impl<F: PrimeField> ZeroizeOnDrop for SecretShare<F> {}
impl<F: PrimeField> ReadWrite for SecretShare<F> {
fn read<R: Read>(reader: &mut R, _: ThresholdParams) -> io::Result<Self> {
let mut repr = F::Repr::default();
reader.read_exact(repr.as_mut())?;
Ok(SecretShare(repr))
}
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.0.as_ref())
}
}
/// Advancement of the key generation state machine.
#[derive(Zeroize)]
pub struct SecretShareMachine<C: Ciphersuite> {
params: ThresholdParams,
context: String,
coefficients: Vec<Zeroizing<C::F>>,
our_commitments: Vec<C::G>,
encryption: Encryption<C>,
}
impl<C: Ciphersuite> SecretShareMachine<C> {
/// Verify the data from the previous round (canonicity, PoKs, message authenticity)
#[allow(clippy::type_complexity)]
fn verify_r1<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
mut commitments: HashMap<u16, EncryptionKeyMessage<C, Commitments<C>>>,
) -> Result<HashMap<u16, Vec<C::G>>, FrostError<C>> {
validate_map(&commitments, &(1 ..= self.params.n()).collect::<Vec<_>>(), self.params.i())?;
let mut batch = BatchVerifier::<u16, C::G>::new(commitments.len());
let mut commitments = commitments
.drain()
.map(|(l, msg)| {
let mut msg = self.encryption.register(l, msg);
// Step 5: Validate each proof of knowledge
// This is solely the prep step for the latter batch verification
msg.sig.batch_verify(
rng,
&mut batch,
l,
msg.commitments[0],
challenge::<C>(&self.context, l, msg.sig.R.to_bytes().as_ref(), &msg.cached_msg),
);
(l, msg.commitments.drain(..).collect::<Vec<_>>())
})
.collect::<HashMap<_, _>>();
batch.verify_with_vartime_blame().map_err(FrostError::InvalidProofOfKnowledge)?;
commitments.insert(self.params.i, self.our_commitments.drain(..).collect());
Ok(commitments)
}
/// Continue generating a key.
/// Takes in everyone else's commitments. Returns a HashMap of encrypted secret shares to be sent
/// over authenticated channels to their relevant counterparties.
/// If any participant sends multiple secret shares to another participant, they are faulty.
#[allow(clippy::type_complexity)]
pub fn generate_secret_shares<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
commitments: HashMap<u16, EncryptionKeyMessage<C, Commitments<C>>>,
) -> Result<(KeyMachine<C>, HashMap<u16, EncryptedMessage<C, SecretShare<C::F>>>), FrostError<C>>
{
let commitments = self.verify_r1(&mut *rng, commitments)?;
// Step 1: Generate secret shares for all other parties
let mut res = HashMap::new();
for l in 1 ..= self.params.n() {
// Don't insert our own shares to the byte buffer which is meant to be sent around
// An app developer could accidentally send it. Best to keep this black boxed
if l == self.params.i() {
continue;
}
let mut share = polynomial(&self.coefficients, l);
let share_bytes = Zeroizing::new(SecretShare::<C::F>(share.to_repr()));
share.zeroize();
res.insert(l, self.encryption.encrypt(rng, l, share_bytes));
}
// Calculate our own share
let share = polynomial(&self.coefficients, self.params.i());
self.coefficients.zeroize();
Ok((
KeyMachine { params: self.params, secret: share, commitments, encryption: self.encryption },
res,
))
}
}
/// Advancement of the the secret share state machine protocol.
/// This machine will 'complete' the protocol, by a local perspective, and can be the last
/// interactive component. In order to be secure, the parties must confirm having successfully
/// completed the protocol (an effort out of scope to this library), yet this is modelled by one
/// more state transition.
pub struct KeyMachine<C: Ciphersuite> {
params: ThresholdParams,
secret: Zeroizing<C::F>,
commitments: HashMap<u16, Vec<C::G>>,
encryption: Encryption<C>,
}
impl<C: Ciphersuite> Zeroize for KeyMachine<C> {
fn zeroize(&mut self) {
self.params.zeroize();
self.secret.zeroize();
for (_, commitments) in self.commitments.iter_mut() {
commitments.zeroize();
}
self.encryption.zeroize();
}
}
// Calculate the exponent for a given participant and apply it to a series of commitments
// Initially used with the actual commitments to verify the secret share, later used with
// stripes to generate the verification shares
fn exponential<C: Ciphersuite>(i: u16, values: &[C::G]) -> Vec<(C::F, C::G)> {
let i = C::F::from(i.into());
let mut res = Vec::with_capacity(values.len());
(0 .. values.len()).fold(C::F::one(), |exp, l| {
res.push((exp, values[l]));
exp * i
});
res
}
fn share_verification_statements<C: Ciphersuite>(
target: u16,
commitments: &[C::G],
mut share: Zeroizing<C::F>,
) -> Vec<(C::F, C::G)> {
// This can be insecurely linearized from n * t to just n using the below sums for a given
// stripe. Doing so uses naive addition which is subject to malleability. The only way to
// ensure that malleability isn't present is to use this n * t algorithm, which runs
// per sender and not as an aggregate of all senders, which also enables blame
let mut values = exponential::<C>(target, commitments);
// Perform the share multiplication outside of the multiexp to minimize stack copying
// While the multiexp BatchVerifier does zeroize its flattened multiexp, and itself, it still
// converts whatever we give to an iterator and then builds a Vec internally, welcoming copies
let neg_share_pub = C::generator() * -*share;
share.zeroize();
values.push((C::F::one(), neg_share_pub));
values
}
#[derive(Clone, Copy, Hash, Debug, Zeroize)]
enum BatchId {
Decryption(u16),
Share(u16),
}
impl<C: Ciphersuite> KeyMachine<C> {
/// Calculate our share given the shares sent to us.
/// Returns a BlameMachine usable to determine if faults in the protocol occurred.
/// Will error on, and return a blame proof for, the first-observed case of faulty behavior.
pub fn calculate_share<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
mut shares: HashMap<u16, EncryptedMessage<C, SecretShare<C::F>>>,
) -> Result<BlameMachine<C>, FrostError<C>> {
validate_map(&shares, &(1 ..= self.params.n()).collect::<Vec<_>>(), self.params.i())?;
let mut batch = BatchVerifier::new(shares.len());
let mut blames = HashMap::new();
for (l, share_bytes) in shares.drain() {
let (mut share_bytes, blame) =
self.encryption.decrypt(rng, &mut batch, BatchId::Decryption(l), l, share_bytes);
let share =
Zeroizing::new(Option::<C::F>::from(C::F::from_repr(share_bytes.0)).ok_or_else(|| {
FrostError::InvalidShare { participant: l, blame: Some(blame.clone()) }
})?);
share_bytes.zeroize();
*self.secret += share.deref();
blames.insert(l, blame);
batch.queue(
rng,
BatchId::Share(l),
share_verification_statements::<C>(self.params.i(), &self.commitments[&l], share),
);
}
batch.verify_with_vartime_blame().map_err(|id| {
let (l, blame) = match id {
BatchId::Decryption(l) => (l, None),
BatchId::Share(l) => (l, Some(blames.remove(&l).unwrap())),
};
FrostError::InvalidShare { participant: l, blame }
})?;
// Stripe commitments per t and sum them in advance. Calculating verification shares relies on
// these sums so preprocessing them is a massive speedup
// If these weren't just sums, yet the tables used in multiexp, this would be further optimized
// As of right now, each multiexp will regenerate them
let mut stripes = Vec::with_capacity(usize::from(self.params.t()));
for t in 0 .. usize::from(self.params.t()) {
stripes.push(self.commitments.values().map(|commitments| commitments[t]).sum());
}
// Calculate each user's verification share
let mut verification_shares = HashMap::new();
for i in 1 ..= self.params.n() {
verification_shares.insert(
i,
if i == self.params.i() {
C::generator() * self.secret.deref()
} else {
multiexp_vartime(&exponential::<C>(i, &stripes))
},
);
}
let KeyMachine { commitments, encryption, params, secret } = self;
Ok(BlameMachine {
commitments,
encryption,
result: ThresholdCore {
params,
secret_share: secret,
group_key: stripes[0],
verification_shares,
},
})
}
}
pub struct BlameMachine<C: Ciphersuite> {
commitments: HashMap<u16, Vec<C::G>>,
encryption: Encryption<C>,
result: ThresholdCore<C>,
}
impl<C: Ciphersuite> Zeroize for BlameMachine<C> {
fn zeroize(&mut self) {
for (_, commitments) in self.commitments.iter_mut() {
commitments.zeroize();
}
self.encryption.zeroize();
self.result.zeroize();
}
}
impl<C: Ciphersuite> BlameMachine<C> {
/// Mark the protocol as having been successfully completed, returning the generated keys.
/// This should only be called after having confirmed, with all participants, successful
/// completion.
///
/// Confirming successful completion is not necessarily as simple as everyone reporting their
/// completion. Everyone must also receive everyone's report of completion, entering into the
/// territory of consensus protocols. This library does not handle that nor does it provide any
/// tooling to do so. This function is solely intended to force users to acknowledge they're
/// completing the protocol, not processing any blame.
pub fn complete(self) -> ThresholdCore<C> {
self.result
}
fn blame_internal(
&self,
sender: u16,
recipient: u16,
msg: EncryptedMessage<C, SecretShare<C::F>>,
proof: Option<EncryptionKeyProof<C>>,
) -> u16 {
let share_bytes = match self.encryption.decrypt_with_proof(sender, recipient, msg, proof) {
Ok(share_bytes) => share_bytes,
// If there's an invalid signature, the sender did not send a properly formed message
Err(DecryptionError::InvalidSignature) => return sender,
// Decryption will fail if the provided ECDH key wasn't correct for the given message
Err(DecryptionError::InvalidProof) => return recipient,
};
let share = match Option::<C::F>::from(C::F::from_repr(share_bytes.0)) {
Some(share) => share,
// If this isn't a valid scalar, the sender is faulty
None => return sender,
};
// If this isn't a valid share, the sender is faulty
if !bool::from(
multiexp_vartime(&share_verification_statements::<C>(
recipient,
&self.commitments[&sender],
Zeroizing::new(share),
))
.is_identity(),
) {
return sender;
}
// The share was canonical and valid
recipient
}
/// Given an accusation of fault, determine the faulty party (either the sender, who sent an
/// invalid secret share, or the receiver, who claimed a valid secret share was invalid). No
/// matter which, prevent completion of the machine, forcing an abort of the protocol.
///
/// The message should be a copy of the encrypted secret share from the accused sender to the
/// accusing recipient. This message must have been authenticated as actually having come from
/// the sender in question.
///
/// In order to enable detecting multiple faults, an `AdditionalBlameMachine` is returned, which
/// can be used to determine further blame. These machines will process the same blame statements
/// multiple times, always identifying blame. It is the caller's job to ensure they're unique in
/// order to prevent multiple instances of blame over a single incident.
pub fn blame(
self,
sender: u16,
recipient: u16,
msg: EncryptedMessage<C, SecretShare<C::F>>,
proof: Option<EncryptionKeyProof<C>>,
) -> (AdditionalBlameMachine<C>, u16) {
let faulty = self.blame_internal(sender, recipient, msg, proof);
(AdditionalBlameMachine(self), faulty)
}
}
#[derive(Zeroize)]
pub struct AdditionalBlameMachine<C: Ciphersuite>(BlameMachine<C>);
impl<C: Ciphersuite> AdditionalBlameMachine<C> {
/// Given an accusation of fault, determine the faulty party (either the sender, who sent an
/// invalid secret share, or the receiver, who claimed a valid secret share was invalid).
///
/// The message should be a copy of the encrypted secret share from the accused sender to the
/// accusing recipient. This message must have been authenticated as actually having come from
/// the sender in question.
///
/// This will process the same blame statement multiple times, always identifying blame. It is
/// the caller's job to ensure they're unique in order to prevent multiple instances of blame
/// over a single incident.
pub fn blame(
self,
sender: u16,
recipient: u16,
msg: EncryptedMessage<C, SecretShare<C::F>>,
proof: Option<EncryptionKeyProof<C>>,
) -> u16 {
self.0.blame_internal(sender, recipient, msg, proof)
}
}

427
crypto/dkg/src/lib.rs Normal file
View File

@@ -0,0 +1,427 @@
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
//! A collection of implementations of various distributed key generation protocols.
//! They all resolve into the provided Threshold types intended to enable their modularity.
//! Additional utilities around them, such as promotion from one generator to another, are also
//! provided.
use core::{
fmt::{Debug, Formatter},
ops::Deref,
};
use std::{io::Read, sync::Arc, collections::HashMap};
use thiserror::Error;
use zeroize::{Zeroize, Zeroizing};
use group::{
ff::{Field, PrimeField},
GroupEncoding,
};
use ciphersuite::Ciphersuite;
mod encryption;
/// The distributed key generation protocol described in the
/// [FROST paper](https://eprint.iacr.org/2020/852).
pub mod frost;
/// Promote keys between ciphersuites.
pub mod promote;
/// Tests for application-provided curves and algorithms.
#[cfg(any(test, feature = "tests"))]
pub mod tests;
/// Various errors possible during key generation/signing.
#[derive(Clone, PartialEq, Eq, Debug, Error)]
pub enum DkgError<B: Clone + PartialEq + Eq + Debug> {
#[error("a parameter was 0 (required {0}, participants {1})")]
ZeroParameter(u16, u16),
#[error("invalid amount of required participants (max {1}, got {0})")]
InvalidRequiredQuantity(u16, u16),
#[error("invalid participant index (0 < index <= {0}, yet index is {1})")]
InvalidParticipantIndex(u16, u16),
#[error("invalid signing set")]
InvalidSigningSet,
#[error("invalid participant quantity (expected {0}, got {1})")]
InvalidParticipantQuantity(usize, usize),
#[error("duplicated participant index ({0})")]
DuplicatedIndex(u16),
#[error("missing participant {0}")]
MissingParticipant(u16),
#[error("invalid proof of knowledge (participant {0})")]
InvalidProofOfKnowledge(u16),
#[error("invalid share (participant {participant}, blame {blame})")]
InvalidShare { participant: u16, blame: Option<B> },
#[error("internal error ({0})")]
InternalError(&'static str),
}
// Validate a map of values to have the expected included participants
pub(crate) fn validate_map<T, B: Clone + PartialEq + Eq + Debug>(
map: &HashMap<u16, T>,
included: &[u16],
ours: u16,
) -> Result<(), DkgError<B>> {
if (map.len() + 1) != included.len() {
Err(DkgError::InvalidParticipantQuantity(included.len(), map.len() + 1))?;
}
for included in included {
if *included == ours {
if map.contains_key(included) {
Err(DkgError::DuplicatedIndex(*included))?;
}
continue;
}
if !map.contains_key(included) {
Err(DkgError::MissingParticipant(*included))?;
}
}
Ok(())
}
/// Parameters for a multisig.
// These fields should not be made public as they should be static
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub struct ThresholdParams {
/// Participants needed to sign on behalf of the group.
t: u16,
/// Amount of participants.
n: u16,
/// Index of the participant being acted for.
i: u16,
}
impl ThresholdParams {
pub fn new(t: u16, n: u16, i: u16) -> Result<ThresholdParams, DkgError<()>> {
if (t == 0) || (n == 0) {
Err(DkgError::ZeroParameter(t, n))?;
}
// When t == n, this shouldn't be used (MuSig2 and other variants of MuSig exist for a reason),
// but it's not invalid to do so
if t > n {
Err(DkgError::InvalidRequiredQuantity(t, n))?;
}
if (i == 0) || (i > n) {
Err(DkgError::InvalidParticipantIndex(n, i))?;
}
Ok(ThresholdParams { t, n, i })
}
pub fn t(&self) -> u16 {
self.t
}
pub fn n(&self) -> u16 {
self.n
}
pub fn i(&self) -> u16 {
self.i
}
}
/// Calculate the lagrange coefficient for a signing set.
pub fn lagrange<F: PrimeField>(i: u16, included: &[u16]) -> F {
let mut num = F::one();
let mut denom = F::one();
for l in included {
if i == *l {
continue;
}
let share = F::from(u64::try_from(*l).unwrap());
num *= share;
denom *= share - F::from(u64::try_from(i).unwrap());
}
// Safe as this will only be 0 if we're part of the above loop
// (which we have an if case to avoid)
num * denom.invert().unwrap()
}
/// Keys and verification shares generated by a DKG.
/// Called core as they're expected to be wrapped into an Arc before usage in various operations.
#[derive(Clone, PartialEq, Eq)]
pub struct ThresholdCore<C: Ciphersuite> {
/// Threshold Parameters.
params: ThresholdParams,
/// Secret share key.
secret_share: Zeroizing<C::F>,
/// Group key.
group_key: C::G,
/// Verification shares.
verification_shares: HashMap<u16, C::G>,
}
impl<C: Ciphersuite> Debug for ThresholdCore<C> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), core::fmt::Error> {
fmt
.debug_struct("ThresholdCore")
.field("params", &self.params)
.field("group_key", &self.group_key)
.field("verification_shares", &self.verification_shares)
.finish_non_exhaustive()
}
}
impl<C: Ciphersuite> Zeroize for ThresholdCore<C> {
fn zeroize(&mut self) {
self.params.zeroize();
self.secret_share.zeroize();
self.group_key.zeroize();
for (_, share) in self.verification_shares.iter_mut() {
share.zeroize();
}
}
}
impl<C: Ciphersuite> ThresholdCore<C> {
pub(crate) fn new(
params: ThresholdParams,
secret_share: Zeroizing<C::F>,
verification_shares: HashMap<u16, C::G>,
) -> ThresholdCore<C> {
debug_assert!(validate_map::<_, ()>(
&verification_shares,
&(0 ..= params.n).collect::<Vec<_>>(),
0
)
.is_ok());
let t = (1 ..= params.t).collect::<Vec<_>>();
ThresholdCore {
params,
secret_share,
group_key: t.iter().map(|i| verification_shares[i] * lagrange::<C::F>(*i, &t)).sum(),
verification_shares,
}
}
pub fn params(&self) -> ThresholdParams {
self.params
}
pub fn secret_share(&self) -> &Zeroizing<C::F> {
&self.secret_share
}
pub fn group_key(&self) -> C::G {
self.group_key
}
pub(crate) fn verification_shares(&self) -> HashMap<u16, C::G> {
self.verification_shares.clone()
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
serialized.extend(u32::try_from(C::ID.len()).unwrap().to_be_bytes());
serialized.extend(C::ID);
serialized.extend(self.params.t.to_be_bytes());
serialized.extend(self.params.n.to_be_bytes());
serialized.extend(self.params.i.to_be_bytes());
serialized.extend(self.secret_share.to_repr().as_ref());
for l in 1 ..= self.params.n {
serialized.extend(self.verification_shares[&l].to_bytes().as_ref());
}
serialized
}
pub fn deserialize<R: Read>(reader: &mut R) -> Result<ThresholdCore<C>, DkgError<()>> {
{
let missing = DkgError::InternalError("ThresholdCore serialization is missing its curve");
let different = DkgError::InternalError("deserializing ThresholdCore for another curve");
let mut id_len = [0; 4];
reader.read_exact(&mut id_len).map_err(|_| missing.clone())?;
if u32::try_from(C::ID.len()).unwrap().to_be_bytes() != id_len {
Err(different.clone())?;
}
let mut id = vec![0; C::ID.len()];
reader.read_exact(&mut id).map_err(|_| missing)?;
if id != C::ID {
Err(different)?;
}
}
let (t, n, i) = {
let mut read_u16 = || {
let mut value = [0; 2];
reader
.read_exact(&mut value)
.map_err(|_| DkgError::InternalError("missing participant quantities"))?;
Ok(u16::from_be_bytes(value))
};
(read_u16()?, read_u16()?, read_u16()?)
};
let secret_share = Zeroizing::new(
C::read_F(reader).map_err(|_| DkgError::InternalError("invalid secret share"))?,
);
let mut verification_shares = HashMap::new();
for l in 1 ..= n {
verification_shares.insert(
l,
<C as Ciphersuite>::read_G(reader)
.map_err(|_| DkgError::InternalError("invalid verification share"))?,
);
}
Ok(ThresholdCore::new(
ThresholdParams::new(t, n, i).map_err(|_| DkgError::InternalError("invalid parameters"))?,
secret_share,
verification_shares,
))
}
}
/// Threshold keys usable for signing.
#[derive(Clone, Debug, Zeroize)]
pub struct ThresholdKeys<C: Ciphersuite> {
// Core keys.
// If this is the last reference, the underlying keys will be dropped. When that happens, the
// private key present within it will be zeroed out (as it's within Zeroizing).
#[zeroize(skip)]
core: Arc<ThresholdCore<C>>,
// Offset applied to these keys.
pub(crate) offset: Option<C::F>,
}
/// View of keys passed to algorithm implementations.
#[derive(Clone)]
pub struct ThresholdView<C: Ciphersuite> {
offset: C::F,
group_key: C::G,
included: Vec<u16>,
secret_share: Zeroizing<C::F>,
original_verification_shares: HashMap<u16, C::G>,
verification_shares: HashMap<u16, C::G>,
}
impl<C: Ciphersuite> Zeroize for ThresholdView<C> {
fn zeroize(&mut self) {
self.offset.zeroize();
self.group_key.zeroize();
self.included.zeroize();
self.secret_share.zeroize();
for (_, share) in self.original_verification_shares.iter_mut() {
share.zeroize();
}
for (_, share) in self.verification_shares.iter_mut() {
share.zeroize();
}
}
}
impl<C: Ciphersuite> ThresholdKeys<C> {
pub fn new(core: ThresholdCore<C>) -> ThresholdKeys<C> {
ThresholdKeys { core: Arc::new(core), offset: None }
}
/// Offset the keys by a given scalar to allow for account and privacy schemes.
/// This offset is ephemeral and will not be included when these keys are serialized.
/// Keys offset multiple times will form a new offset of their sum.
pub fn offset(&self, offset: C::F) -> ThresholdKeys<C> {
let mut res = self.clone();
// Carry any existing offset
// Enables schemes like Monero's subaddresses which have a per-subaddress offset and then a
// one-time-key offset
res.offset = Some(offset + res.offset.unwrap_or_else(C::F::zero));
res
}
/// Returns the current offset in-use for these keys.
pub fn current_offset(&self) -> Option<C::F> {
self.offset
}
pub fn params(&self) -> ThresholdParams {
self.core.params
}
pub fn secret_share(&self) -> &Zeroizing<C::F> {
&self.core.secret_share
}
/// Returns the group key with any offset applied.
pub fn group_key(&self) -> C::G {
self.core.group_key + (C::generator() * self.offset.unwrap_or_else(C::F::zero))
}
/// Returns all participants' verification shares without any offsetting.
pub(crate) fn verification_shares(&self) -> HashMap<u16, C::G> {
self.core.verification_shares()
}
pub fn serialize(&self) -> Vec<u8> {
self.core.serialize()
}
pub fn view(&self, included: &[u16]) -> Result<ThresholdView<C>, DkgError<()>> {
if (included.len() < self.params().t.into()) || (usize::from(self.params().n) < included.len())
{
Err(DkgError::InvalidSigningSet)?;
}
let offset_share = self.offset.unwrap_or_else(C::F::zero) *
C::F::from(included.len().try_into().unwrap()).invert().unwrap();
let offset_verification_share = C::generator() * offset_share;
Ok(ThresholdView {
offset: self.offset.unwrap_or_else(C::F::zero),
group_key: self.group_key(),
secret_share: Zeroizing::new(
(lagrange::<C::F>(self.params().i, included) * self.secret_share().deref()) + offset_share,
),
original_verification_shares: self.verification_shares(),
verification_shares: self
.verification_shares()
.iter()
.map(|(l, share)| {
(*l, (*share * lagrange::<C::F>(*l, included)) + offset_verification_share)
})
.collect(),
included: included.to_vec(),
})
}
}
impl<C: Ciphersuite> ThresholdView<C> {
pub fn offset(&self) -> C::F {
self.offset
}
pub fn group_key(&self) -> C::G {
self.group_key
}
pub fn included(&self) -> &[u16] {
&self.included
}
pub fn secret_share(&self) -> &Zeroizing<C::F> {
&self.secret_share
}
pub fn original_verification_share(&self, l: u16) -> C::G {
self.original_verification_shares[&l]
}
pub fn verification_share(&self, l: u16) -> C::G {
self.verification_shares[&l]
}
}

Some files were not shown because too many files have changed in this diff Show More