6 Commits

Author SHA1 Message Date
Luke Parker
d2e5d9184d Update CP proof to latest modular-frost
Verifies its multi-nonce functionality is intact.
2022-07-13 02:50:37 -04:00
Luke Parker
9b3985e120 Merge branch 'develop' into firo 2022-07-13 02:48:54 -04:00
Luke Parker
c3cc8d51b7 Update the Chaum Pedersen proof to verify the new multi-nonce FROST
Provides further health and reference to 
https://github.com/serai-dex/serai/issues/14.
2022-07-12 01:56:08 -04:00
Luke Parker
e3ff4f7af6 Merge branch 'develop' into firo 2022-07-12 01:29:37 -04:00
Luke Parker
a770e29b0c Remove rng_seed's additional entropy
It was never used as we derive entropy via the other fields in the 
transcript, and explicitly add fields directly as needed for entropy.

Also drops an unused crate and corrects a bug in FROST's Schnorr 
implementation which used the Group's generator, instead of the Curve's.

Also updates the Monero crate's description.
2022-05-31 02:12:38 -04:00
Luke Parker
6d9221d56c Implement Lelantus Spark's Chaum Pedersen proof with a FROST algorithm 2022-05-31 02:09:09 -04:00
603 changed files with 6575 additions and 121423 deletions

5
.gitattributes vendored
View File

@@ -1,5 +0,0 @@
# Auto detect text files and perform LF normalization
* text=auto
* text eol=lf
*.pdf binary

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2022-2023 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,47 +0,0 @@
name: bitcoin-regtest
description: Spawns a regtest Bitcoin daemon
inputs:
version:
description: "Version to download and run"
required: false
default: 24.0.1
runs:
using: "composite"
steps:
- name: Bitcoin Daemon Cache
id: cache-bitcoind
uses: actions/cache@704facf57e6136b1bc63b828d79edcd491f0ee84
with:
path: bitcoin.tar.gz
key: bitcoind-${{ runner.os }}-${{ runner.arch }}-${{ inputs.version }}
- name: Download the Bitcoin Daemon
if: steps.cache-bitcoind.outputs.cache-hit != 'true'
shell: bash
run: |
RUNNER_OS=linux
RUNNER_ARCH=x86_64
FILE=bitcoin-${{ inputs.version }}-$RUNNER_ARCH-$RUNNER_OS-gnu.tar.gz
wget https://bitcoincore.org/bin/bitcoin-core-${{ inputs.version }}/$FILE
mv $FILE bitcoin.tar.gz
- name: Extract the Bitcoin Daemon
shell: bash
run: |
tar xzvf bitcoin.tar.gz
cd bitcoin-${{ inputs.version }}
sudo mv bin/* /bin && sudo mv lib/* /lib
- name: Bitcoin Regtest Daemon
shell: bash
run: |
RPC_USER=serai
RPC_PASS=seraidex
bitcoind -txindex -regtest \
-rpcuser=$RPC_USER -rpcpassword=$RPC_PASS \
-rpcbind=127.0.0.1 -rpcbind=$(hostname) -rpcallowip=0.0.0.0/0 \
-daemon

View File

@@ -1,41 +0,0 @@
name: build-dependencies
description: Installs build dependencies for Serai
inputs:
github-token:
description: "GitHub token to install Protobuf with"
require: true
default:
runs:
using: "composite"
steps:
- name: Remove unused packages
shell: bash
run: |
sudo apt remove -y "*msbuild*" "*powershell*" "*nuget*" "*bazel*" "*ansible*" "*terraform*" "*heroku*" "*aws*" azure-cli
sudo apt remove -y "*nodejs*" "*npm*" "*yarn*" "*java*" "*kotlin*" "*golang*" "*swift*" "*julia*" "*fortran*" "*android*"
sudo apt remove -y "*apache2*" "*nginx*" "*firefox*" "*chromium*" "*chrome*" "*edge*"
sudo apt remove -y "*qemu*" "*sql*" "*texinfo*" "*imagemagick*"
sudo apt autoremove -y
sudo apt clean
docker system prune -a --volumes
- name: Install apt dependencies
shell: bash
run: sudo apt install -y ca-certificates
- name: Install Protobuf
uses: arduino/setup-protoc@a8b67ba40b37d35169e222f3bb352603327985b6
with:
repo-token: ${{ inputs.github-token }}
- name: Install solc
shell: bash
run: |
cargo install svm-rs
svm install 0.8.16
svm use 0.8.16
# - name: Cache Rust
# uses: Swatinem/rust-cache@a95ba195448af2da9b00fb742d14ffaaf3c21f43

View File

@@ -1,44 +0,0 @@
name: monero-wallet-rpc
description: Spawns a Monero Wallet-RPC.
inputs:
version:
description: "Version to download and run"
required: false
default: v0.18.2.0
runs:
using: "composite"
steps:
- name: Monero Wallet RPC Cache
id: cache-monero-wallet-rpc
uses: actions/cache@704facf57e6136b1bc63b828d79edcd491f0ee84
with:
path: monero-wallet-rpc
key: monero-wallet-rpc-${{ runner.os }}-${{ runner.arch }}-${{ inputs.version }}
- name: Download the Monero Wallet RPC
if: steps.cache-monero-wallet-rpc.outputs.cache-hit != 'true'
# Calculates OS/ARCH to demonstrate it, yet then locks to linux-x64 due
# to the contained folder not following the same naming scheme and
# requiring further expansion not worth doing right now
shell: bash
run: |
RUNNER_OS=${{ runner.os }}
RUNNER_ARCH=${{ runner.arch }}
RUNNER_OS=${RUNNER_OS,,}
RUNNER_ARCH=${RUNNER_ARCH,,}
RUNNER_OS=linux
RUNNER_ARCH=x64
FILE=monero-$RUNNER_OS-$RUNNER_ARCH-${{ inputs.version }}.tar.bz2
wget https://downloads.getmonero.org/cli/$FILE
tar -xvf $FILE
mv monero-x86_64-linux-gnu-${{ inputs.version }}/monero-wallet-rpc monero-wallet-rpc
- name: Monero Wallet RPC
shell: bash
run: ./monero-wallet-rpc --disable-rpc-login --rpc-bind-port 6061 --allow-mismatched-daemon-version --wallet-dir ./ --detach

View File

@@ -1,44 +0,0 @@
name: monero-regtest
description: Spawns a regtest Monero daemon
inputs:
version:
description: "Version to download and run"
required: false
default: v0.18.2.0
runs:
using: "composite"
steps:
- name: Monero Daemon Cache
id: cache-monerod
uses: actions/cache@704facf57e6136b1bc63b828d79edcd491f0ee84
with:
path: monerod
key: monerod-${{ runner.os }}-${{ runner.arch }}-${{ inputs.version }}
- name: Download the Monero Daemon
if: steps.cache-monerod.outputs.cache-hit != 'true'
# Calculates OS/ARCH to demonstrate it, yet then locks to linux-x64 due
# to the contained folder not following the same naming scheme and
# requiring further expansion not worth doing right now
shell: bash
run: |
RUNNER_OS=${{ runner.os }}
RUNNER_ARCH=${{ runner.arch }}
RUNNER_OS=${RUNNER_OS,,}
RUNNER_ARCH=${RUNNER_ARCH,,}
RUNNER_OS=linux
RUNNER_ARCH=x64
FILE=monero-$RUNNER_OS-$RUNNER_ARCH-${{ inputs.version }}.tar.bz2
wget https://downloads.getmonero.org/cli/$FILE
tar -xvf $FILE
mv monero-x86_64-linux-gnu-${{ inputs.version }}/monerod monerod
- name: Monero Regtest Daemon
shell: bash
run: ./monerod --regtest --offline --fixed-difficulty=1 --detach

View File

@@ -1,45 +0,0 @@
name: test-dependencies
description: Installs test dependencies for Serai
inputs:
github-token:
description: "GitHub token to install Protobuf with"
require: true
default:
monero-version:
description: "Monero version to download and run as a regtest node"
required: false
default: v0.18.2.0
bitcoin-version:
description: "Bitcoin version to download and run as a regtest node"
required: false
default: 24.0.1
runs:
using: "composite"
steps:
- name: Install Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ inputs.github-token }}
- name: Install Foundry
uses: foundry-rs/foundry-toolchain@cb603ca0abb544f301eaed59ac0baf579aa6aecf
with:
version: nightly-09fe3e041369a816365a020f715ad6f94dbce9f2
cache: false
- name: Run a Monero Regtest Node
uses: ./.github/actions/monero
with:
version: ${{ inputs.monero-version }}
- name: Run a Bitcoin Regtest Node
uses: ./.github/actions/bitcoin
with:
version: ${{ inputs.bitcoin-version }}
- name: Run a Monero Wallet-RPC
uses: ./.github/actions/monero-wallet-rpc

View File

@@ -1 +0,0 @@
nightly-2023-11-01

View File

@@ -1,37 +0,0 @@
name: coins/ Tests
on:
push:
branches:
- develop
paths:
- "common/**"
- "crypto/**"
- "coins/**"
pull_request:
paths:
- "common/**"
- "crypto/**"
- "coins/**"
workflow_dispatch:
jobs:
test-coins:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Test Dependencies
uses: ./.github/actions/test-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Run Tests
run: |
GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features \
-p bitcoin-serai \
-p ethereum-serai \
-p monero-generators \
-p monero-serai

View File

@@ -1,33 +0,0 @@
name: common/ Tests
on:
push:
branches:
- develop
paths:
- "common/**"
pull_request:
paths:
- "common/**"
workflow_dispatch:
jobs:
test-common:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Run Tests
run: |
GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features \
-p std-shims \
-p zalloc \
-p serai-db \
-p serai-env

View File

@@ -1,44 +0,0 @@
name: Coordinator Tests
on:
push:
branches:
- develop
paths:
- "common/**"
- "crypto/**"
- "coins/**"
- "message-queue/**"
- "orchestration/message-queue/**"
- "coordinator/**"
- "orchestration/coordinator/**"
- "tests/docker/**"
- "tests/coordinator/**"
pull_request:
paths:
- "common/**"
- "crypto/**"
- "coins/**"
- "message-queue/**"
- "orchestration/message-queue/**"
- "coordinator/**"
- "orchestration/coordinator/**"
- "tests/docker/**"
- "tests/coordinator/**"
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Install Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ inputs.github-token }}
- name: Run coordinator Docker tests
run: cd tests/coordinator && GITHUB_CI=true RUST_BACKTRACE=1 cargo test

View File

@@ -1,42 +0,0 @@
name: crypto/ Tests
on:
push:
branches:
- develop
paths:
- "common/**"
- "crypto/**"
pull_request:
paths:
- "common/**"
- "crypto/**"
workflow_dispatch:
jobs:
test-crypto:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Run Tests
run: |
GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features \
-p flexible-transcript \
-p ff-group-tests \
-p dalek-ff-group \
-p minimal-ed448 \
-p ciphersuite \
-p multiexp \
-p schnorr-signatures \
-p dleq \
-p dkg \
-p modular-frost \
-p frost-schnorrkel

View File

@@ -1,24 +0,0 @@
name: Daily Deny Check
on:
schedule:
- cron: "0 0 * * *"
jobs:
deny:
name: Run cargo deny
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Advisory Cache
uses: actions/cache@704facf57e6136b1bc63b828d79edcd491f0ee84
with:
path: ~/.cargo/advisory-db
key: rust-advisory-db
- name: Install cargo deny
run: cargo install --locked cargo-deny
- name: Run cargo deny
run: cargo deny -L error --all-features check

View File

@@ -1,24 +0,0 @@
name: Full Stack Tests
on:
push:
branches:
- develop
pull_request:
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Install Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ inputs.github-token }}
- name: Run Full Stack Docker tests
run: cd tests/full-stack && GITHUB_CI=true RUST_BACKTRACE=1 cargo test

View File

@@ -1,69 +0,0 @@
name: Lint
on:
push:
branches:
- develop
pull_request:
workflow_dispatch:
jobs:
clippy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Get nightly version to use
id: nightly
run: echo "version=$(cat .github/nightly-version)" >> $GITHUB_OUTPUT
- name: Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Install nightly rust
run: rustup toolchain install ${{ steps.nightly.outputs.version }} --profile minimal -t wasm32-unknown-unknown -c clippy
- name: Run Clippy
run: cargo +${{ steps.nightly.outputs.version }} clippy --all-features --all-targets -- -D warnings -A clippy::items_after_test_module
deny:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Advisory Cache
uses: actions/cache@704facf57e6136b1bc63b828d79edcd491f0ee84
with:
path: ~/.cargo/advisory-db
key: rust-advisory-db
- name: Install cargo deny
run: cargo install --locked cargo-deny
- name: Run cargo deny
run: cargo deny -L error --all-features check
fmt:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Get nightly version to use
id: nightly
run: echo "version=$(cat .github/nightly-version)" >> $GITHUB_OUTPUT
- name: Install nightly rust
run: rustup toolchain install ${{ steps.nightly.outputs.version }} --profile minimal -c rustfmt
- name: Run rustfmt
run: cargo +${{ steps.nightly.outputs.version }} fmt -- --check
dockerfiles:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Verify Dockerfiles are up to date
# Runs the file which generates them and checks the diff has no lines
run: cd orchestration && ./dockerfiles.sh && git diff | wc -l | grep -x "0"

View File

@@ -1,38 +0,0 @@
name: Message Queue Tests
on:
push:
branches:
- develop
paths:
- "common/**"
- "crypto/**"
- "message-queue/**"
- "orchestration/message-queue/**"
- "tests/docker/**"
- "tests/message-queue/**"
pull_request:
paths:
- "common/**"
- "crypto/**"
- "message-queue/**"
- "orchestration/message-queue/**"
- "tests/docker/**"
- "tests/message-queue/**"
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Install Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ inputs.github-token }}
- name: Run message-queue Docker tests
run: cd tests/message-queue && GITHUB_CI=true RUST_BACKTRACE=1 cargo test

View File

@@ -1,28 +0,0 @@
name: mini/ Tests
on:
push:
branches:
- develop
paths:
- "mini/**"
pull_request:
paths:
- "mini/**"
workflow_dispatch:
jobs:
test-common:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Run Tests
run: GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features -p mini-serai

View File

@@ -1,59 +0,0 @@
name: Monero Tests
on:
push:
branches:
- develop
paths:
- "coins/monero/**"
- "processor/**"
pull_request:
paths:
- "coins/monero/**"
- "processor/**"
workflow_dispatch:
jobs:
# Only run these once since they will be consistent regardless of any node
unit-tests:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Test Dependencies
uses: ./.github/actions/test-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Run Unit Tests Without Features
run: GITHUB_CI=true RUST_BACKTRACE=1 cargo test --package monero-serai --lib
# Doesn't run unit tests with features as the tests workflow will
integration-tests:
runs-on: ubuntu-latest
# Test against all supported protocol versions
strategy:
matrix:
version: [v0.17.3.2, v0.18.2.0]
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Test Dependencies
uses: ./.github/actions/test-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
monero-version: ${{ matrix.version }}
- name: Run Integration Tests Without Features
# Runs with the binaries feature so the binaries build
# https://github.com/rust-lang/cargo/issues/8396
run: GITHUB_CI=true RUST_BACKTRACE=1 cargo test --package monero-serai --features binaries --test '*'
- name: Run Integration Tests
# Don't run if the the tests workflow also will
if: ${{ matrix.version != 'v0.18.2.0' }}
run: GITHUB_CI=true RUST_BACKTRACE=1 cargo test --package monero-serai --all-features --test '*'

View File

@@ -1,53 +0,0 @@
name: Monthly Nightly Update
on:
schedule:
- cron: "0 0 1 * *"
jobs:
update:
name: Update nightly
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
with:
submodules: "recursive"
- name: Write nightly version
run: echo $(date +"nightly-%Y-%m"-01) > .github/nightly-version
- name: Create the commit
run: |
git config user.name "GitHub Actions"
git config user.email "<>"
git checkout -b $(date +"nightly-%Y-%m")
git add .github/nightly-version
git commit -m "Update nightly"
git push -u origin $(date +"nightly-%Y-%m")
- name: Pull Request
uses: actions/github-script@d7906e4ad0b1822421a7e6a35d5ca353c962f410
with:
script: |
const { repo, owner } = context.repo;
const result = await github.rest.pulls.create({
title: (new Date()).toLocaleString(
false,
{ month: "long", year: "numeric" }
) + " - Rust Nightly Update",
owner,
repo,
head: "nightly-" + (new Date()).toISOString().split("-").splice(0, 2).join("-"),
base: "develop",
body: "PR auto-generated by a GitHub workflow."
});
github.rest.issues.addLabels({
owner,
repo,
issue_number: result.data.number,
labels: ["improvement"]
});

View File

@@ -1,37 +0,0 @@
name: no-std build
on:
push:
branches:
- develop
paths:
- "common/**"
- "crypto/**"
- "coins/**"
- "tests/no-std/**"
pull_request:
paths:
- "common/**"
- "crypto/**"
- "coins/**"
- "tests/no-std/**"
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Install Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ inputs.github-token }}
- name: Install RISC-V Toolchain
run: sudo apt update && sudo apt install -y gcc-riscv64-unknown-elf gcc-multilib && rustup target add riscv32imac-unknown-none-elf
- name: Verify no-std builds
run: cd tests/no-std && CFLAGS=-I/usr/include cargo build --target riscv32imac-unknown-none-elf

View File

@@ -1,44 +0,0 @@
name: Processor Tests
on:
push:
branches:
- develop
paths:
- "common/**"
- "crypto/**"
- "coins/**"
- "message-queue/**"
- "orchestration/message-queue/**"
- "processor/**"
- "orchestration/processor/**"
- "tests/docker/**"
- "tests/processor/**"
pull_request:
paths:
- "common/**"
- "crypto/**"
- "coins/**"
- "message-queue/**"
- "orchestration/message-queue/**"
- "processor/**"
- "orchestration/processor/**"
- "tests/docker/**"
- "tests/processor/**"
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Install Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ inputs.github-token }}
- name: Run processor Docker tests
run: cd tests/processor && GITHUB_CI=true RUST_BACKTRACE=1 cargo test

View File

@@ -1,38 +0,0 @@
name: Reproducible Runtime
on:
push:
branches:
- develop
paths:
- "Cargo.lock"
- "common/**"
- "crypto/**"
- "substrate/**"
- "orchestration/runtime/**"
- "tests/reproducible-runtime/**"
pull_request:
paths:
- "Cargo.lock"
- "common/**"
- "crypto/**"
- "substrate/**"
- "orchestration/runtime/**"
- "tests/reproducible-runtime/**"
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Install Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ inputs.github-token }}
- name: Run Reproducible Runtime tests
run: cd tests/reproducible-runtime && GITHUB_CI=true RUST_BACKTRACE=1 cargo test

View File

@@ -1,86 +0,0 @@
name: Tests
on:
push:
branches:
- develop
paths:
- "common/**"
- "crypto/**"
- "coins/**"
- "message-queue/**"
- "processor/**"
- "coordinator/**"
- "substrate/**"
pull_request:
paths:
- "common/**"
- "crypto/**"
- "coins/**"
- "message-queue/**"
- "processor/**"
- "coordinator/**"
- "substrate/**"
workflow_dispatch:
jobs:
test-infra:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Run Tests
run: |
GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features \
-p serai-message-queue \
-p serai-processor-messages \
-p serai-processor \
-p tendermint-machine \
-p tributary-chain \
-p serai-coordinator \
-p serai-docker-tests
test-substrate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Run Tests
run: |
GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features \
-p serai-primitives \
-p serai-coins-primitives \
-p serai-coins-pallet \
-p serai-dex-pallet \
-p serai-validator-sets-primitives \
-p serai-validator-sets-pallet \
-p serai-in-instructions-primitives \
-p serai-in-instructions-pallet \
-p serai-signals-pallet \
-p serai-runtime \
-p serai-node
test-serai-client:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@3df4ab11eba7bda6032a0b82a6bb43b11571feac
- name: Build Dependencies
uses: ./.github/actions/build-dependencies
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
- name: Run Tests
run: GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features -p serai-client

3
.gitignore vendored
View File

@@ -1,3 +1,2 @@
target
.vscode
.test-logs
Cargo.lock

3
.gitmodules vendored Normal file
View File

@@ -0,0 +1,3 @@
[submodule "coins/monero/c/monero"]
path = coins/monero/c/monero
url = https://github.com/monero-project/monero

View File

@@ -1,17 +0,0 @@
edition = "2021"
tab_spaces = 2
max_width = 100
# Let the developer decide based on the 100 char line limit
use_small_heuristics = "Max"
error_on_line_overflow = true
error_on_unformatted = true
imports_granularity = "Crate"
reorder_imports = false
reorder_modules = false
unstable_features = true
spaces_around_ranges = true
binop_separator = "Back"

661
AGPL-3.0
View File

@@ -1,661 +0,0 @@
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.

View File

@@ -1,37 +0,0 @@
# Contributing
Contributions come in a variety of forms. Developing Serai, helping document it,
using its libraries in another project, using and testing it, and simply sharing
it are all valuable ways of contributing.
This document will specifically focus on contributions to this repository in the
form of code and documentation.
### Rules
- Stable native Rust, nightly wasm and tools.
- `cargo fmt` must be used.
- `cargo clippy` must pass, except for the ignored rules (`type_complexity` and
`dead_code`).
- The CI must pass.
- Only use uppercase variable names when relevant to cryptography.
- Use a two-space ident when possible.
- Put a space after comment markers.
- Don't use multiple newlines between sections of code.
- Have a newline before EOF.
### Guidelines
- Sort inputs as core, std, third party, and then Serai.
- Comment code reasonably.
- Include tests for new features.
- Sign commits.
### Submission
All submissions should be through GitHub. Contributions to a crate will be
licensed according to the crate's existing license, with the crate's copyright
holders (distinct from authors) having the right to re-license the crate via a
unanimous decision.

10750
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,95 +1,16 @@
[workspace]
resolver = "2"
members = [
"common/std-shims",
"common/zalloc",
"common/db",
"common/env",
"common/request",
members = [
"crypto/transcript",
"crypto/ff-group-tests",
"crypto/dalek-ff-group",
"crypto/ed448",
"crypto/ciphersuite",
"crypto/multiexp",
"crypto/schnorr",
"crypto/dleq",
"crypto/dkg",
"crypto/frost",
"crypto/schnorrkel",
"coins/bitcoin",
"coins/ethereum",
"coins/monero/generators",
"coins/monero",
"coins/firo",
"message-queue",
"processor/messages",
"processor",
"coordinator/tributary/tendermint",
"coordinator/tributary",
"coordinator",
"substrate/primitives",
"substrate/coins/primitives",
"substrate/coins/pallet",
"substrate/in-instructions/primitives",
"substrate/in-instructions/pallet",
"substrate/validator-sets/primitives",
"substrate/validator-sets/pallet",
"substrate/signals/pallet",
"substrate/runtime",
"substrate/node",
"substrate/client",
"mini",
"tests/no-std",
"tests/docker",
"tests/message-queue",
"tests/processor",
"tests/coordinator",
"tests/full-stack",
"tests/reproducible-runtime",
]
# Always compile Monero (and a variety of dependencies) with optimizations due
# to the extensive operations required for Bulletproofs
[profile.dev.package]
subtle = { opt-level = 3 }
curve25519-dalek = { opt-level = 3 }
ff = { opt-level = 3 }
group = { opt-level = 3 }
crypto-bigint = { opt-level = 3 }
dalek-ff-group = { opt-level = 3 }
minimal-ed448 = { opt-level = 3 }
multiexp = { opt-level = 3 }
monero-serai = { opt-level = 3 }
[profile.release]
panic = "unwind"
[patch.crates-io]
# https://github.com/rust-lang-nursery/lazy-static.rs/issues/201
lazy_static = { git = "https://github.com/rust-lang-nursery/lazy-static.rs", rev = "5735630d46572f1e5377c8f2ba0f79d18f53b10c" }
# subxt *can* pull these off crates.io yet there's no benefit to this
sp-core-hashing = { git = "https://github.com/serai-dex/substrate" }
sp-std = { git = "https://github.com/serai-dex/substrate" }

View File

@@ -1,8 +0,0 @@
Serai crates are licensed under one of two licenses, either MIT or AGPL-3.0,
depending on the crate in question. Each crate declares their license in their
`Cargo.toml` and includes a `LICENSE` file detailing its status. Additionally,
a full copy of the AGPL-3.0 License is included in the root of this repository
as a reference text. This copy should be provided with any distribution of a
crate licensed under the AGPL-3.0, as per its terms.
The GitHub actions (`.github/actions`) are licensed under the MIT license.

View File

@@ -1,63 +1,22 @@
# Serai
Serai is a new DEX, built from the ground up, initially planning on listing
Bitcoin, Ethereum, DAI, and Monero, offering a liquidity-pool-based trading
experience. Funds are stored in an economically secured threshold-multisig
Bitcoin, Ethereum, Monero, DAI, and USDC, offering a liquidity pool trading
experience. Funds are stored in an economically secured threshold multisig
wallet.
[Getting Started](docs/Getting%20Started.md)
### Layout
- `audits`: Audits for various parts of Serai.
- `docs` - Documentation on the Serai protocol.
- `docs`: Documentation on the Serai protocol.
- `common`: Crates containing utilities common to a variety of areas under
Serai, none neatly fitting under another category.
- `crypto`: A series of composable cryptographic libraries built around the
`ff`/`group` APIs, achieving a variety of tasks. These range from generic
infrastructure, to our IETF-compliant FROST implementation, to a DLEq proof as
needed for Bitcoin-Monero atomic swaps.
- `coins`: Various coin libraries intended for usage in Serai yet also by the
- `coins` - Various coin libraries intended for usage in Serai yet also by the
wider community. This means they will always support the functionality Serai
needs, yet won't disadvantage other use cases when possible.
- `message-queue`: An ordered message server so services can talk to each other,
even when the other is offline.
- `crypto` - A series of composable cryptographic libraries built around the
`ff`/`group` APIs achieving a variety of tasks. These range from generic
infrastructure, to our IETF-compliant FROST implementation, to a DLEq proof as
needed for Bitcoin-Monero atomic swaps.
- `processor`: A generic chain processor to process data for Serai and process
- `processor` - A generic chain processor to process data for Serai and process
events from Serai, executing transactions as expected and needed.
- `coordinator`: A service to manage processors and communicate over a P2P
network with other validators.
- `substrate`: Substrate crates used to instantiate the Serai network.
- `orchestration`: Dockerfiles and scripts to deploy a Serai node/test
environment.
- `tests`: Tests for various crates. Generally, `crate/src/tests` is used, or
`crate/tests`, yet any tests requiring crates' binaries are placed here.
### Security
Serai hosts a bug bounty program via
[Immunefi](https://immunefi.com/bounty/serai/). For in-scope critical
vulnerabilities, we will reward whitehats with up to $30,000.
Anything not in-scope should still be submitted through Immunefi, with rewards
issued at the discretion of the Immunefi program managers.
### Links
- [Website](https://serai.exchange/): https://serai.exchange/
- [Immunefi](https://immunefi.com/bounty/serai/): https://immunefi.com/bounty/serai/
- [Twitter](https://twitter.com/SeraiDEX): https://twitter.com/SeraiDEX
- [Mastodon](https://cryptodon.lol/@serai): https://cryptodon.lol/@serai
- [Discord](https://discord.gg/mpEUtJR3vz): https://discord.gg/mpEUtJR3vz
- [Matrix](https://matrix.to/#/#serai:matrix.org): https://matrix.to/#/#serai:matrix.org
- [Reddit](https://www.reddit.com/r/SeraiDEX/): https://www.reddit.com/r/SeraiDEX/
- [Telegram](https://t.me/SeraiDEX): https://t.me/SeraiDEX

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2023 Cypher Stack
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,6 +0,0 @@
# Cypher Stack /coins/bitcoin Audit, August 2023
This audit was over the /coins/bitcoin folder. It is encompassing up to commit
5121ca75199dff7bd34230880a1fdd793012068c.
Please see https://github.com/cypherstack/serai-btc-audit for provenance.

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2023 Cypher Stack
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,7 +0,0 @@
# Cypher Stack /crypto Audit, March 2023
This audit was over the /crypto folder, excluding the ed448 crate, the `Ed448`
ciphersuite in the ciphersuite crate, and the `dleq/experimental` feature. It is
encompassing up to commit 669d2dbffc1dafb82a09d9419ea182667115df06.
Please see https://github.com/cypherstack/serai-audit for provenance.

View File

@@ -1,61 +0,0 @@
[package]
name = "bitcoin-serai"
version = "0.3.0"
description = "A Bitcoin library for FROST-signing transactions"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/coins/bitcoin"
authors = ["Luke Parker <lukeparker5132@gmail.com>", "Vrx <vrx00@proton.me>"]
edition = "2021"
rust-version = "1.74"
[dependencies]
std-shims = { version = "0.1.1", path = "../../common/std-shims", default-features = false }
thiserror = { version = "1", default-features = false, optional = true }
zeroize = { version = "^1.5", default-features = false }
rand_core = { version = "0.6", default-features = false }
bitcoin = { version = "0.31", default-features = false, features = ["no-std"] }
k256 = { version = "^0.13.1", default-features = false, features = ["arithmetic", "bits"] }
transcript = { package = "flexible-transcript", path = "../../crypto/transcript", version = "0.3", default-features = false, features = ["recommended"], optional = true }
frost = { package = "modular-frost", path = "../../crypto/frost", version = "0.8", default-features = false, features = ["secp256k1"], optional = true }
hex = { version = "0.4", default-features = false, optional = true }
serde = { version = "1", default-features = false, features = ["derive"], optional = true }
serde_json = { version = "1", default-features = false, optional = true }
simple-request = { path = "../../common/request", version = "0.1", default-features = false, features = ["tls", "basic-auth"], optional = true }
[dev-dependencies]
secp256k1 = { version = "0.28", default-features = false, features = ["std"] }
frost = { package = "modular-frost", path = "../../crypto/frost", features = ["tests"] }
tokio = { version = "1", features = ["macros"] }
[features]
std = [
"std-shims/std",
"thiserror",
"zeroize/std",
"rand_core/std",
"bitcoin/std",
"bitcoin/serde",
"k256/std",
"transcript/std",
"frost",
"hex/std",
"serde/std",
"serde_json/std",
"simple-request",
]
hazmat = []
default = ["std"]

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2022-2023 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,4 +0,0 @@
# bitcoin-serai
An application of [modular-frost](https://docs.rs/modular-frost) to Bitcoin
transactions, enabling extremely-efficient multisigs.

View File

@@ -1,166 +0,0 @@
use k256::{
elliptic_curve::sec1::{Tag, ToEncodedPoint},
ProjectivePoint,
};
use bitcoin::key::XOnlyPublicKey;
/// Get the x coordinate of a non-infinity, even point. Panics on invalid input.
pub fn x(key: &ProjectivePoint) -> [u8; 32] {
let encoded = key.to_encoded_point(true);
assert_eq!(encoded.tag(), Tag::CompressedEvenY, "x coordinate of odd key");
(*encoded.x().expect("point at infinity")).into()
}
/// Convert a non-infinity even point to a XOnlyPublicKey. Panics on invalid input.
pub fn x_only(key: &ProjectivePoint) -> XOnlyPublicKey {
XOnlyPublicKey::from_slice(&x(key)).expect("x_only was passed a point which was infinity or odd")
}
/// Make a point even by adding the generator until it is even.
///
/// Returns the even point and the amount of additions required.
#[cfg(any(feature = "std", feature = "hazmat"))]
pub fn make_even(mut key: ProjectivePoint) -> (ProjectivePoint, u64) {
let mut c = 0;
while key.to_encoded_point(true).tag() == Tag::CompressedOddY {
key += ProjectivePoint::GENERATOR;
c += 1;
}
(key, c)
}
#[cfg(feature = "std")]
mod frost_crypto {
use core::fmt::Debug;
use std_shims::{vec::Vec, io};
use zeroize::Zeroizing;
use rand_core::{RngCore, CryptoRng};
use bitcoin::hashes::{HashEngine, Hash, sha256::Hash as Sha256};
use transcript::Transcript;
use k256::{elliptic_curve::ops::Reduce, U256, Scalar};
use frost::{
curve::{Ciphersuite, Secp256k1},
Participant, ThresholdKeys, ThresholdView, FrostError,
algorithm::{Hram as HramTrait, Algorithm, Schnorr as FrostSchnorr},
};
use super::*;
/// A BIP-340 compatible HRAm for use with the modular-frost Schnorr Algorithm.
///
/// If passed an odd nonce, it will have the generator added until it is even.
///
/// If the key is odd, this will panic.
#[derive(Clone, Copy, Debug)]
pub struct Hram;
#[allow(non_snake_case)]
impl HramTrait<Secp256k1> for Hram {
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
// Convert the nonce to be even
let (R, _) = make_even(*R);
const TAG_HASH: Sha256 = Sha256::const_hash(b"BIP0340/challenge");
let mut data = Sha256::engine();
data.input(TAG_HASH.as_ref());
data.input(TAG_HASH.as_ref());
data.input(&x(&R));
data.input(&x(A));
data.input(m);
Scalar::reduce(U256::from_be_slice(Sha256::from_engine(data).as_ref()))
}
}
/// BIP-340 Schnorr signature algorithm.
///
/// This must be used with a ThresholdKeys whose group key is even. If it is odd, this will panic.
#[derive(Clone)]
pub struct Schnorr<T: Sync + Clone + Debug + Transcript>(FrostSchnorr<Secp256k1, T, Hram>);
impl<T: Sync + Clone + Debug + Transcript> Schnorr<T> {
/// Construct a Schnorr algorithm continuing the specified transcript.
pub fn new(transcript: T) -> Schnorr<T> {
Schnorr(FrostSchnorr::new(transcript))
}
}
impl<T: Sync + Clone + Debug + Transcript> Algorithm<Secp256k1> for Schnorr<T> {
type Transcript = T;
type Addendum = ();
type Signature = [u8; 64];
fn transcript(&mut self) -> &mut Self::Transcript {
self.0.transcript()
}
fn nonces(&self) -> Vec<Vec<ProjectivePoint>> {
self.0.nonces()
}
fn preprocess_addendum<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
keys: &ThresholdKeys<Secp256k1>,
) {
self.0.preprocess_addendum(rng, keys)
}
fn read_addendum<R: io::Read>(&self, reader: &mut R) -> io::Result<Self::Addendum> {
self.0.read_addendum(reader)
}
fn process_addendum(
&mut self,
view: &ThresholdView<Secp256k1>,
i: Participant,
addendum: (),
) -> Result<(), FrostError> {
self.0.process_addendum(view, i, addendum)
}
fn sign_share(
&mut self,
params: &ThresholdView<Secp256k1>,
nonce_sums: &[Vec<<Secp256k1 as Ciphersuite>::G>],
nonces: Vec<Zeroizing<<Secp256k1 as Ciphersuite>::F>>,
msg: &[u8],
) -> <Secp256k1 as Ciphersuite>::F {
self.0.sign_share(params, nonce_sums, nonces, msg)
}
#[must_use]
fn verify(
&self,
group_key: ProjectivePoint,
nonces: &[Vec<ProjectivePoint>],
sum: Scalar,
) -> Option<Self::Signature> {
self.0.verify(group_key, nonces, sum).map(|mut sig| {
// Make the R of the final signature even
let offset;
(sig.R, offset) = make_even(sig.R);
// s = r + cx. Since we added to the r, add to s
sig.s += Scalar::from(offset);
// Convert to a Bitcoin signature by dropping the byte for the point's sign bit
sig.serialize()[1 ..].try_into().unwrap()
})
}
fn verify_share(
&self,
verification_share: ProjectivePoint,
nonces: &[Vec<ProjectivePoint>],
share: Scalar,
) -> Result<Vec<(Scalar, ProjectivePoint)>, ()> {
self.0.verify_share(verification_share, nonces, share)
}
}
}
#[cfg(feature = "std")]
pub use frost_crypto::*;

View File

@@ -1,24 +0,0 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(not(feature = "std"))]
extern crate alloc;
/// The bitcoin Rust library.
pub use bitcoin;
/// Cryptographic helpers.
#[cfg(feature = "hazmat")]
pub mod crypto;
#[cfg(not(feature = "hazmat"))]
pub(crate) mod crypto;
/// Wallet functionality to create transactions.
pub mod wallet;
/// A minimal asynchronous Bitcoin RPC client.
#[cfg(feature = "std")]
pub mod rpc;
#[cfg(test)]
mod tests;

View File

@@ -1,213 +0,0 @@
use core::fmt::Debug;
use std::collections::HashSet;
use thiserror::Error;
use serde::{Deserialize, de::DeserializeOwned};
use serde_json::json;
use simple_request::{hyper, Request, Client};
use bitcoin::{
hashes::{Hash, hex::FromHex},
consensus::encode,
Txid, Transaction, BlockHash, Block,
};
#[derive(Clone, PartialEq, Eq, Debug, Deserialize)]
pub struct Error {
code: isize,
message: String,
}
#[derive(Clone, Debug, Deserialize)]
#[serde(untagged)]
enum RpcResponse<T> {
Ok { result: T },
Err { error: Error },
}
/// A minimal asynchronous Bitcoin RPC client.
#[derive(Clone, Debug)]
pub struct Rpc {
client: Client,
url: String,
}
#[derive(Clone, PartialEq, Eq, Debug, Error)]
pub enum RpcError {
#[error("couldn't connect to node")]
ConnectionError,
#[error("request had an error: {0:?}")]
RequestError(Error),
#[error("node replied with invalid JSON")]
InvalidJson(serde_json::error::Category),
#[error("node sent an invalid response ({0})")]
InvalidResponse(&'static str),
#[error("node was missing expected methods")]
MissingMethods(HashSet<&'static str>),
}
impl Rpc {
/// Create a new connection to a Bitcoin RPC.
///
/// An RPC call is performed to ensure the node is reachable (and that an invalid URL wasn't
/// provided).
///
/// Additionally, a set of expected methods is checked to be offered by the Bitcoin RPC. If these
/// methods aren't provided, an error with the missing methods is returned. This ensures all RPC
/// routes explicitly provided by this library are at least possible.
///
/// Each individual RPC route may still fail at time-of-call, regardless of the arguments
/// provided to this library, if the RPC has an incompatible argument layout. That is not checked
/// at time of RPC creation.
pub async fn new(url: String) -> Result<Rpc, RpcError> {
let rpc = Rpc { client: Client::with_connection_pool(), url };
// Make an RPC request to verify the node is reachable and sane
let res: String = rpc.rpc_call("help", json!([])).await?;
// Verify all methods we expect are present
// If we had a more expanded RPC, due to differences in RPC versions, it wouldn't make sense to
// error if all methods weren't present
// We only provide a very minimal set of methods which have been largely consistent, hence why
// this is sane
let mut expected_methods = HashSet::from([
"help",
"getblockcount",
"getblockhash",
"getblockheader",
"getblock",
"sendrawtransaction",
"getrawtransaction",
]);
for line in res.split('\n') {
// This doesn't check if the arguments are as expected
// This is due to Bitcoin supporting a large amount of optional arguments, which
// occassionally change, with their own mechanism of text documentation, making matching off
// it a quite involved task
// Instead, once we've confirmed the methods are present, we assume our arguments are aligned
// Else we'll error at time of call
if expected_methods.remove(line.split(' ').next().unwrap_or("")) &&
expected_methods.is_empty()
{
break;
}
}
if !expected_methods.is_empty() {
Err(RpcError::MissingMethods(expected_methods))?;
};
Ok(rpc)
}
/// Perform an arbitrary RPC call.
pub async fn rpc_call<Response: DeserializeOwned + Debug>(
&self,
method: &str,
params: serde_json::Value,
) -> Result<Response, RpcError> {
let mut request = Request::from(
hyper::Request::post(&self.url)
.header("Content-Type", "application/json")
.body(
serde_json::to_vec(&json!({ "jsonrpc": "2.0", "method": method, "params": params }))
.unwrap()
.into(),
)
.unwrap(),
);
request.with_basic_auth();
let mut res = self
.client
.request(request)
.await
.map_err(|_| RpcError::ConnectionError)?
.body()
.await
.map_err(|_| RpcError::ConnectionError)?;
let res: RpcResponse<Response> =
serde_json::from_reader(&mut res).map_err(|e| RpcError::InvalidJson(e.classify()))?;
match res {
RpcResponse::Ok { result } => Ok(result),
RpcResponse::Err { error } => Err(RpcError::RequestError(error)),
}
}
/// Get the latest block's number.
///
/// The genesis block's 'number' is zero. They increment from there.
pub async fn get_latest_block_number(&self) -> Result<usize, RpcError> {
// getblockcount doesn't return the amount of blocks on the current chain, yet the "height"
// of the current chain. The "height" of the current chain is defined as the "height" of the
// tip block of the current chain. The "height" of a block is defined as the amount of blocks
// present when the block was created. Accordingly, the genesis block has height 0, and
// getblockcount will return 0 when it's only the only block, despite their being one block.
self.rpc_call("getblockcount", json!([])).await
}
/// Get the hash of a block by the block's number.
pub async fn get_block_hash(&self, number: usize) -> Result<[u8; 32], RpcError> {
let mut hash = *self
.rpc_call::<BlockHash>("getblockhash", json!([number]))
.await?
.as_raw_hash()
.as_byte_array();
// bitcoin stores the inner bytes in reverse order.
hash.reverse();
Ok(hash)
}
/// Get a block's number by its hash.
pub async fn get_block_number(&self, hash: &[u8; 32]) -> Result<usize, RpcError> {
#[derive(Deserialize, Debug)]
struct Number {
height: usize,
}
Ok(self.rpc_call::<Number>("getblockheader", json!([hex::encode(hash)])).await?.height)
}
/// Get a block by its hash.
pub async fn get_block(&self, hash: &[u8; 32]) -> Result<Block, RpcError> {
let hex = self.rpc_call::<String>("getblock", json!([hex::encode(hash), 0])).await?;
let bytes: Vec<u8> = FromHex::from_hex(&hex)
.map_err(|_| RpcError::InvalidResponse("node didn't use hex to encode the block"))?;
let block: Block = encode::deserialize(&bytes)
.map_err(|_| RpcError::InvalidResponse("node sent an improperly serialized block"))?;
let mut block_hash = *block.block_hash().as_raw_hash().as_byte_array();
block_hash.reverse();
if hash != &block_hash {
Err(RpcError::InvalidResponse("node replied with a different block"))?;
}
Ok(block)
}
/// Publish a transaction.
pub async fn send_raw_transaction(&self, tx: &Transaction) -> Result<Txid, RpcError> {
let txid = self.rpc_call("sendrawtransaction", json!([encode::serialize_hex(tx)])).await?;
if txid != tx.txid() {
Err(RpcError::InvalidResponse("returned TX ID inequals calculated TX ID"))?;
}
Ok(txid)
}
/// Get a transaction by its hash.
pub async fn get_transaction(&self, hash: &[u8; 32]) -> Result<Transaction, RpcError> {
let hex = self.rpc_call::<String>("getrawtransaction", json!([hex::encode(hash)])).await?;
let bytes: Vec<u8> = FromHex::from_hex(&hex)
.map_err(|_| RpcError::InvalidResponse("node didn't use hex to encode the transaction"))?;
let tx: Transaction = encode::deserialize(&bytes)
.map_err(|_| RpcError::InvalidResponse("node sent an improperly serialized transaction"))?;
let mut tx_hash = *tx.txid().as_raw_hash().as_byte_array();
tx_hash.reverse();
if hash != &tx_hash {
Err(RpcError::InvalidResponse("node replied with a different transaction"))?;
}
Ok(tx)
}
}

View File

@@ -1,46 +0,0 @@
use rand_core::OsRng;
use secp256k1::{Secp256k1 as BContext, Message, schnorr::Signature};
use k256::Scalar;
use transcript::{Transcript, RecommendedTranscript};
use frost::{
curve::Secp256k1,
Participant,
tests::{algorithm_machines, key_gen, sign},
};
use crate::{
bitcoin::hashes::{Hash as HashTrait, sha256::Hash},
crypto::{x_only, make_even, Schnorr},
};
#[test]
fn test_algorithm() {
let mut keys = key_gen::<_, Secp256k1>(&mut OsRng);
const MESSAGE: &[u8] = b"Hello, World!";
for (_, keys) in keys.iter_mut() {
let (_, offset) = make_even(keys.group_key());
*keys = keys.offset(Scalar::from(offset));
}
let algo =
Schnorr::<RecommendedTranscript>::new(RecommendedTranscript::new(b"bitcoin-serai sign test"));
let sig = sign(
&mut OsRng,
algo.clone(),
keys.clone(),
algorithm_machines(&mut OsRng, algo, &keys),
Hash::hash(MESSAGE).as_ref(),
);
BContext::new()
.verify_schnorr(
&Signature::from_slice(&sig)
.expect("couldn't convert produced signature to secp256k1::Signature"),
&Message::from(Hash::hash(MESSAGE)),
&x_only(&keys[&Participant::new(1).unwrap()].group_key()),
)
.unwrap()
}

View File

@@ -1 +0,0 @@
mod crypto;

View File

@@ -1,188 +0,0 @@
use std_shims::{
vec::Vec,
collections::HashMap,
io::{self, Write},
};
#[cfg(feature = "std")]
use std_shims::io::Read;
use k256::{
elliptic_curve::sec1::{Tag, ToEncodedPoint},
Scalar, ProjectivePoint,
};
#[cfg(feature = "std")]
use frost::{
curve::{Ciphersuite, Secp256k1},
ThresholdKeys,
};
use bitcoin::{
consensus::encode::serialize, key::TweakedPublicKey, address::Payload, OutPoint, ScriptBuf,
TxOut, Transaction, Block,
};
#[cfg(feature = "std")]
use bitcoin::consensus::encode::Decodable;
use crate::crypto::x_only;
#[cfg(feature = "std")]
use crate::crypto::make_even;
#[cfg(feature = "std")]
mod send;
#[cfg(feature = "std")]
pub use send::*;
/// Tweak keys to ensure they're usable with Bitcoin.
///
/// Taproot keys, which these keys are used as, must be even. This offsets the keys until they're
/// even.
#[cfg(feature = "std")]
pub fn tweak_keys(keys: &ThresholdKeys<Secp256k1>) -> ThresholdKeys<Secp256k1> {
let (_, offset) = make_even(keys.group_key());
keys.offset(Scalar::from(offset))
}
/// Return the Taproot address payload for a public key.
///
/// If the key is odd, this will return None.
pub fn address_payload(key: ProjectivePoint) -> Option<Payload> {
if key.to_encoded_point(true).tag() != Tag::CompressedEvenY {
return None;
}
Some(Payload::p2tr_tweaked(TweakedPublicKey::dangerous_assume_tweaked(x_only(&key))))
}
/// A spendable output.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct ReceivedOutput {
// The scalar offset to obtain the key usable to spend this output.
offset: Scalar,
// The output to spend.
output: TxOut,
// The TX ID and vout of the output to spend.
outpoint: OutPoint,
}
impl ReceivedOutput {
/// The offset for this output.
pub fn offset(&self) -> Scalar {
self.offset
}
/// The Bitcoin output for this output.
pub fn output(&self) -> &TxOut {
&self.output
}
/// The outpoint for this output.
pub fn outpoint(&self) -> &OutPoint {
&self.outpoint
}
/// The value of this output.
pub fn value(&self) -> u64 {
self.output.value.to_sat()
}
/// Read a ReceivedOutput from a generic satisfying Read.
#[cfg(feature = "std")]
pub fn read<R: Read>(r: &mut R) -> io::Result<ReceivedOutput> {
Ok(ReceivedOutput {
offset: Secp256k1::read_F(r)?,
output: TxOut::consensus_decode(r).map_err(|_| io::Error::other("invalid TxOut"))?,
outpoint: OutPoint::consensus_decode(r).map_err(|_| io::Error::other("invalid OutPoint"))?,
})
}
/// Write a ReceivedOutput to a generic satisfying Write.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
w.write_all(&self.offset.to_bytes())?;
w.write_all(&serialize(&self.output))?;
w.write_all(&serialize(&self.outpoint))
}
/// Serialize a ReceivedOutput to a `Vec<u8>`.
pub fn serialize(&self) -> Vec<u8> {
let mut res = Vec::new();
self.write(&mut res).unwrap();
res
}
}
/// A transaction scanner capable of being used with HDKD schemes.
#[derive(Clone, Debug)]
pub struct Scanner {
key: ProjectivePoint,
scripts: HashMap<ScriptBuf, Scalar>,
}
impl Scanner {
/// Construct a Scanner for a key.
///
/// Returns None if this key can't be scanned for.
pub fn new(key: ProjectivePoint) -> Option<Scanner> {
let mut scripts = HashMap::new();
scripts.insert(address_payload(key)?.script_pubkey(), Scalar::ZERO);
Some(Scanner { key, scripts })
}
/// Register an offset to scan for.
///
/// Due to Bitcoin's requirement that points are even, not every offset may be used.
/// If an offset isn't usable, it will be incremented until it is. If this offset is already
/// present, None is returned. Else, Some(offset) will be, with the used offset.
///
/// This means offsets are surjective, not bijective, and the order offsets are registered in
/// may determine the validity of future offsets.
pub fn register_offset(&mut self, mut offset: Scalar) -> Option<Scalar> {
// This loop will terminate as soon as an even point is found, with any point having a ~50%
// chance of being even
// That means this should terminate within a very small amount of iterations
loop {
match address_payload(self.key + (ProjectivePoint::GENERATOR * offset)) {
Some(address) => {
let script = address.script_pubkey();
if self.scripts.contains_key(&script) {
None?;
}
self.scripts.insert(script, offset);
return Some(offset);
}
None => offset += Scalar::ONE,
}
}
}
/// Scan a transaction.
pub fn scan_transaction(&self, tx: &Transaction) -> Vec<ReceivedOutput> {
let mut res = Vec::new();
for (vout, output) in tx.output.iter().enumerate() {
// If the vout index exceeds 2**32, stop scanning outputs
let Ok(vout) = u32::try_from(vout) else { break };
if let Some(offset) = self.scripts.get(&output.script_pubkey) {
res.push(ReceivedOutput {
offset: *offset,
output: output.clone(),
outpoint: OutPoint::new(tx.txid(), vout),
});
}
}
res
}
/// Scan a block.
///
/// This will also scan the coinbase transaction which is bound by maturity. If received outputs
/// must be immediately spendable, a post-processing pass is needed to remove those outputs.
/// Alternatively, scan_transaction can be called on `block.txdata[1 ..]`.
pub fn scan_block(&self, block: &Block) -> Vec<ReceivedOutput> {
let mut res = Vec::new();
for tx in &block.txdata {
res.extend(self.scan_transaction(tx));
}
res
}
}

View File

@@ -1,438 +0,0 @@
use std_shims::{
io::{self, Read},
collections::HashMap,
};
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use transcript::{Transcript, RecommendedTranscript};
use k256::{elliptic_curve::sec1::ToEncodedPoint, Scalar};
use frost::{curve::Secp256k1, Participant, ThresholdKeys, FrostError, sign::*};
use bitcoin::{
sighash::{TapSighashType, SighashCache, Prevouts},
absolute::LockTime,
script::{PushBytesBuf, ScriptBuf},
transaction::{Version, Transaction},
OutPoint, Sequence, Witness, TxIn, Amount, TxOut, Address,
};
use crate::{
crypto::Schnorr,
wallet::{ReceivedOutput, address_payload},
};
#[rustfmt::skip]
// https://github.com/bitcoin/bitcoin/blob/306ccd4927a2efe325c8d84be1bdb79edeb29b04/src/policy/policy.cpp#L26-L63
// As the above notes, a lower amount may not be considered dust if contained in a SegWit output
// This doesn't bother with delineation due to how marginal these values are, and because it isn't
// worth the complexity to implement differentation
pub const DUST: u64 = 546;
#[derive(Clone, PartialEq, Eq, Debug, Error)]
pub enum TransactionError {
#[error("no inputs were specified")]
NoInputs,
#[error("no outputs were created")]
NoOutputs,
#[error("a specified payment's amount was less than bitcoin's required minimum")]
DustPayment,
#[error("too much data was specified")]
TooMuchData,
#[error("fee was too low to pass the default minimum fee rate")]
TooLowFee,
#[error("not enough funds for these payments")]
NotEnoughFunds,
#[error("transaction was too large")]
TooLargeTransaction,
}
/// A signable transaction, clone-able across attempts.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct SignableTransaction {
tx: Transaction,
offsets: Vec<Scalar>,
prevouts: Vec<TxOut>,
needed_fee: u64,
}
impl SignableTransaction {
fn calculate_weight(inputs: usize, payments: &[(Address, u64)], change: Option<&Address>) -> u64 {
// Expand this a full transaction in order to use the bitcoin library's weight function
let mut tx = Transaction {
version: Version(2),
lock_time: LockTime::ZERO,
input: vec![
TxIn {
// This is a fixed size
// See https://developer.bitcoin.org/reference/transactions.html#raw-transaction-format
previous_output: OutPoint::default(),
// This is empty for a Taproot spend
script_sig: ScriptBuf::new(),
// This is fixed size, yet we do use Sequence::MAX
sequence: Sequence::MAX,
// Our witnesses contains a single 64-byte signature
witness: Witness::from_slice(&[vec![0; 64]])
};
inputs
],
output: payments
.iter()
// The payment is a fixed size so we don't have to use it here
// The script pub key is not of a fixed size and does have to be used here
.map(|payment| TxOut {
value: Amount::from_sat(payment.1),
script_pubkey: payment.0.script_pubkey(),
})
.collect(),
};
if let Some(change) = change {
// Use a 0 value since we're currently unsure what the change amount will be, and since
// the value is fixed size (so any value could be used here)
tx.output.push(TxOut { value: Amount::ZERO, script_pubkey: change.script_pubkey() });
}
u64::from(tx.weight())
}
/// Returns the fee necessary for this transaction to achieve the fee rate specified at
/// construction.
///
/// The actual fee this transaction will use is `sum(inputs) - sum(outputs)`.
pub fn needed_fee(&self) -> u64 {
self.needed_fee
}
/// Returns the fee this transaction will use.
pub fn fee(&self) -> u64 {
self.prevouts.iter().map(|prevout| prevout.value.to_sat()).sum::<u64>() -
self.tx.output.iter().map(|prevout| prevout.value.to_sat()).sum::<u64>()
}
/// Create a new SignableTransaction.
///
/// If a change address is specified, any leftover funds will be sent to it if the leftover funds
/// exceed the minimum output amount. If a change address isn't specified, all leftover funds
/// will become part of the paid fee.
///
/// If data is specified, an OP_RETURN output will be added with it.
pub fn new(
mut inputs: Vec<ReceivedOutput>,
payments: &[(Address, u64)],
change: Option<Address>,
data: Option<Vec<u8>>,
fee_per_weight: u64,
) -> Result<SignableTransaction, TransactionError> {
if inputs.is_empty() {
Err(TransactionError::NoInputs)?;
}
if payments.is_empty() && change.is_none() && data.is_none() {
Err(TransactionError::NoOutputs)?;
}
for (_, amount) in payments {
if *amount < DUST {
Err(TransactionError::DustPayment)?;
}
}
if data.as_ref().map(|data| data.len()).unwrap_or(0) > 80 {
Err(TransactionError::TooMuchData)?;
}
let input_sat = inputs.iter().map(|input| input.output.value.to_sat()).sum::<u64>();
let offsets = inputs.iter().map(|input| input.offset).collect();
let tx_ins = inputs
.iter()
.map(|input| TxIn {
previous_output: input.outpoint,
script_sig: ScriptBuf::new(),
sequence: Sequence::MAX,
witness: Witness::new(),
})
.collect::<Vec<_>>();
let payment_sat = payments.iter().map(|payment| payment.1).sum::<u64>();
let mut tx_outs = payments
.iter()
.map(|payment| TxOut {
value: Amount::from_sat(payment.1),
script_pubkey: payment.0.script_pubkey(),
})
.collect::<Vec<_>>();
// Add the OP_RETURN output
if let Some(data) = data {
tx_outs.push(TxOut {
value: Amount::ZERO,
script_pubkey: ScriptBuf::new_op_return(
PushBytesBuf::try_from(data)
.expect("data didn't fit into PushBytes depsite being checked"),
),
})
}
let mut weight = Self::calculate_weight(tx_ins.len(), payments, None);
let mut needed_fee = fee_per_weight * weight;
// "Virtual transaction size" is weight ceildiv 4 per
// https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
// https://github.com/bitcoin/bitcoin/blob/306ccd4927a2efe325c8d84be1bdb79edeb29b04/
// src/policy/policy.cpp#L295-L298
// implements this as expected
// Technically, it takes whatever's greater, the weight or the amount of signature operatons
// multiplied by DEFAULT_BYTES_PER_SIGOP (20)
// We only use 1 signature per input, and our inputs have a weight exceeding 20
// Accordingly, our inputs' weight will always be greater than the cost of the signature ops
let vsize = weight.div_ceil(4);
debug_assert_eq!(
u64::try_from(bitcoin::policy::get_virtual_tx_size(
weight.try_into().unwrap(),
tx_ins.len().try_into().unwrap()
))
.unwrap(),
vsize
);
// Technically, if there isn't change, this TX may still pay enough of a fee to pass the
// minimum fee. Such edge cases aren't worth programming when they go against intent, as the
// specified fee rate is too low to be valid
// bitcoin::policy::DEFAULT_MIN_RELAY_TX_FEE is in sats/kilo-vbyte
if needed_fee < ((u64::from(bitcoin::policy::DEFAULT_MIN_RELAY_TX_FEE) * vsize) / 1000) {
Err(TransactionError::TooLowFee)?;
}
if input_sat < (payment_sat + needed_fee) {
Err(TransactionError::NotEnoughFunds)?;
}
// If there's a change address, check if there's change to give it
if let Some(change) = change.as_ref() {
let weight_with_change = Self::calculate_weight(tx_ins.len(), payments, Some(change));
let fee_with_change = fee_per_weight * weight_with_change;
if let Some(value) = input_sat.checked_sub(payment_sat + fee_with_change) {
if value >= DUST {
tx_outs
.push(TxOut { value: Amount::from_sat(value), script_pubkey: change.script_pubkey() });
weight = weight_with_change;
needed_fee = fee_with_change;
}
}
}
if tx_outs.is_empty() {
Err(TransactionError::NoOutputs)?;
}
if weight > u64::from(bitcoin::policy::MAX_STANDARD_TX_WEIGHT) {
Err(TransactionError::TooLargeTransaction)?;
}
Ok(SignableTransaction {
tx: Transaction {
version: Version(2),
lock_time: LockTime::ZERO,
input: tx_ins,
output: tx_outs,
},
offsets,
prevouts: inputs.drain(..).map(|input| input.output).collect(),
needed_fee,
})
}
/// Returns the outputs this transaction will create.
pub fn outputs(&self) -> &[TxOut] {
&self.tx.output
}
/// Create a multisig machine for this transaction.
///
/// Returns None if the wrong keys are used.
pub fn multisig(
self,
keys: ThresholdKeys<Secp256k1>,
mut transcript: RecommendedTranscript,
) -> Option<TransactionMachine> {
transcript.domain_separate(b"bitcoin_transaction");
transcript.append_message(b"root_key", keys.group_key().to_encoded_point(true).as_bytes());
// Transcript the inputs and outputs
let tx = &self.tx;
for input in &tx.input {
transcript.append_message(b"input_hash", input.previous_output.txid);
transcript.append_message(b"input_output_index", input.previous_output.vout.to_le_bytes());
}
for payment in &tx.output {
transcript.append_message(b"output_script", payment.script_pubkey.as_bytes());
transcript.append_message(b"output_amount", payment.value.to_sat().to_le_bytes());
}
let mut sigs = vec![];
for i in 0 .. tx.input.len() {
let mut transcript = transcript.clone();
// This unwrap is safe since any transaction with this many inputs violates the maximum
// size allowed under standards, which this lib will error on creation of
transcript.append_message(b"signing_input", u32::try_from(i).unwrap().to_le_bytes());
let offset = keys.clone().offset(self.offsets[i]);
if address_payload(offset.group_key())?.script_pubkey() != self.prevouts[i].script_pubkey {
None?;
}
sigs.push(AlgorithmMachine::new(
Schnorr::new(transcript),
keys.clone().offset(self.offsets[i]),
));
}
Some(TransactionMachine { tx: self, sigs })
}
}
/// A FROST signing machine to produce a Bitcoin transaction.
///
/// This does not support caching its preprocess. When sign is called, the message must be empty.
/// This will panic if either `cache` is called or the message isn't empty.
pub struct TransactionMachine {
tx: SignableTransaction,
sigs: Vec<AlgorithmMachine<Secp256k1, Schnorr<RecommendedTranscript>>>,
}
impl PreprocessMachine for TransactionMachine {
type Preprocess = Vec<Preprocess<Secp256k1, ()>>;
type Signature = Transaction;
type SignMachine = TransactionSignMachine;
fn preprocess<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
) -> (Self::SignMachine, Self::Preprocess) {
let mut preprocesses = Vec::with_capacity(self.sigs.len());
let sigs = self
.sigs
.drain(..)
.map(|sig| {
let (sig, preprocess) = sig.preprocess(rng);
preprocesses.push(preprocess);
sig
})
.collect();
(TransactionSignMachine { tx: self.tx, sigs }, preprocesses)
}
}
pub struct TransactionSignMachine {
tx: SignableTransaction,
sigs: Vec<AlgorithmSignMachine<Secp256k1, Schnorr<RecommendedTranscript>>>,
}
impl SignMachine<Transaction> for TransactionSignMachine {
type Params = ();
type Keys = ThresholdKeys<Secp256k1>;
type Preprocess = Vec<Preprocess<Secp256k1, ()>>;
type SignatureShare = Vec<SignatureShare<Secp256k1>>;
type SignatureMachine = TransactionSignatureMachine;
fn cache(self) -> CachedPreprocess {
unimplemented!(
"Bitcoin transactions don't support caching their preprocesses due to {}",
"being already bound to a specific transaction"
);
}
fn from_cache(
_: (),
_: ThresholdKeys<Secp256k1>,
_: CachedPreprocess,
) -> Result<Self, FrostError> {
unimplemented!(
"Bitcoin transactions don't support caching their preprocesses due to {}",
"being already bound to a specific transaction"
);
}
fn read_preprocess<R: Read>(&self, reader: &mut R) -> io::Result<Self::Preprocess> {
self.sigs.iter().map(|sig| sig.read_preprocess(reader)).collect()
}
fn sign(
mut self,
commitments: HashMap<Participant, Self::Preprocess>,
msg: &[u8],
) -> Result<(TransactionSignatureMachine, Self::SignatureShare), FrostError> {
if !msg.is_empty() {
panic!("message was passed to the TransactionMachine when it generates its own");
}
let commitments = (0 .. self.sigs.len())
.map(|c| {
commitments
.iter()
.map(|(l, commitments)| (*l, commitments[c].clone()))
.collect::<HashMap<_, _>>()
})
.collect::<Vec<_>>();
let mut cache = SighashCache::new(&self.tx.tx);
// Sign committing to all inputs
let prevouts = Prevouts::All(&self.tx.prevouts);
let mut shares = Vec::with_capacity(self.sigs.len());
let sigs = self
.sigs
.drain(..)
.enumerate()
.map(|(i, sig)| {
let (sig, share) = sig.sign(
commitments[i].clone(),
cache
.taproot_key_spend_signature_hash(i, &prevouts, TapSighashType::Default)
// This should never happen since the inputs align with the TX the cache was
// constructed with, and because i is always < prevouts.len()
.expect("taproot_key_spend_signature_hash failed to return a hash")
.as_ref(),
)?;
shares.push(share);
Ok(sig)
})
.collect::<Result<_, _>>()?;
Ok((TransactionSignatureMachine { tx: self.tx.tx, sigs }, shares))
}
}
pub struct TransactionSignatureMachine {
tx: Transaction,
sigs: Vec<AlgorithmSignatureMachine<Secp256k1, Schnorr<RecommendedTranscript>>>,
}
impl SignatureMachine<Transaction> for TransactionSignatureMachine {
type SignatureShare = Vec<SignatureShare<Secp256k1>>;
fn read_share<R: Read>(&self, reader: &mut R) -> io::Result<Self::SignatureShare> {
self.sigs.iter().map(|sig| sig.read_share(reader)).collect()
}
fn complete(
mut self,
mut shares: HashMap<Participant, Self::SignatureShare>,
) -> Result<Transaction, FrostError> {
for (input, schnorr) in self.tx.input.iter_mut().zip(self.sigs.drain(..)) {
let sig = schnorr.complete(
shares.iter_mut().map(|(l, shares)| (*l, shares.remove(0))).collect::<HashMap<_, _>>(),
)?;
let mut witness = Witness::new();
witness.push(sig);
input.witness = witness;
}
Ok(self.tx)
}
}

View File

@@ -1,25 +0,0 @@
use bitcoin_serai::{bitcoin::hashes::Hash as HashTrait, rpc::RpcError};
mod runner;
use runner::rpc;
async_sequential! {
async fn test_rpc() {
let rpc = rpc().await;
// Test get_latest_block_number and get_block_hash by round tripping them
let latest = rpc.get_latest_block_number().await.unwrap();
let hash = rpc.get_block_hash(latest).await.unwrap();
assert_eq!(rpc.get_block_number(&hash).await.unwrap(), latest);
// Test this actually is the latest block number by checking asking for the next block's errors
assert!(matches!(rpc.get_block_hash(latest + 1).await, Err(RpcError::RequestError(_))));
// Test get_block by checking the received block's hash matches the request
let block = rpc.get_block(&hash).await.unwrap();
// Hashes are stored in reverse. It's bs from Satoshi
let mut block_hash = *block.block_hash().as_raw_hash().as_byte_array();
block_hash.reverse();
assert_eq!(hash, block_hash);
}
}

View File

@@ -1,48 +0,0 @@
use std::sync::OnceLock;
use bitcoin_serai::rpc::Rpc;
use tokio::sync::Mutex;
static SEQUENTIAL_CELL: OnceLock<Mutex<()>> = OnceLock::new();
#[allow(non_snake_case)]
pub fn SEQUENTIAL() -> &'static Mutex<()> {
SEQUENTIAL_CELL.get_or_init(|| Mutex::new(()))
}
#[allow(dead_code)]
pub(crate) async fn rpc() -> Rpc {
let rpc = Rpc::new("http://serai:seraidex@127.0.0.1:18443".to_string()).await.unwrap();
// If this node has already been interacted with, clear its chain
if rpc.get_latest_block_number().await.unwrap() > 0 {
rpc
.rpc_call(
"invalidateblock",
serde_json::json!([hex::encode(rpc.get_block_hash(1).await.unwrap())]),
)
.await
.unwrap()
}
rpc
}
#[macro_export]
macro_rules! async_sequential {
($(async fn $name: ident() $body: block)*) => {
$(
#[tokio::test]
async fn $name() {
let guard = runner::SEQUENTIAL().lock().await;
let local = tokio::task::LocalSet::new();
local.run_until(async move {
if let Err(err) = tokio::task::spawn_local(async move { $body }).await {
drop(guard);
Err(err).unwrap()
}
}).await;
}
)*
}
}

View File

@@ -1,363 +0,0 @@
use std::collections::HashMap;
use rand_core::{RngCore, OsRng};
use transcript::{Transcript, RecommendedTranscript};
use k256::{
elliptic_curve::{
group::{ff::Field, Group},
sec1::{Tag, ToEncodedPoint},
},
Scalar, ProjectivePoint,
};
use frost::{
curve::Secp256k1,
Participant, ThresholdKeys,
tests::{THRESHOLD, key_gen, sign_without_caching},
};
use bitcoin_serai::{
bitcoin::{
hashes::Hash as HashTrait,
blockdata::opcodes::all::OP_RETURN,
script::{PushBytesBuf, Instruction, Instructions, Script},
address::NetworkChecked,
OutPoint, Amount, TxOut, Transaction, Network, Address,
},
wallet::{
tweak_keys, address_payload, ReceivedOutput, Scanner, TransactionError, SignableTransaction,
},
rpc::Rpc,
};
mod runner;
use runner::rpc;
const FEE: u64 = 20;
fn is_even(key: ProjectivePoint) -> bool {
key.to_encoded_point(true).tag() == Tag::CompressedEvenY
}
async fn send_and_get_output(rpc: &Rpc, scanner: &Scanner, key: ProjectivePoint) -> ReceivedOutput {
let block_number = rpc.get_latest_block_number().await.unwrap() + 1;
rpc
.rpc_call::<Vec<String>>(
"generatetoaddress",
serde_json::json!([
1,
Address::<NetworkChecked>::new(Network::Regtest, address_payload(key).unwrap())
]),
)
.await
.unwrap();
// Mine until maturity
rpc
.rpc_call::<Vec<String>>(
"generatetoaddress",
serde_json::json!([100, Address::p2sh(Script::new(), Network::Regtest).unwrap()]),
)
.await
.unwrap();
let block = rpc.get_block(&rpc.get_block_hash(block_number).await.unwrap()).await.unwrap();
let mut outputs = scanner.scan_block(&block);
assert_eq!(outputs, scanner.scan_transaction(&block.txdata[0]));
assert_eq!(outputs.len(), 1);
assert_eq!(outputs[0].outpoint(), &OutPoint::new(block.txdata[0].txid(), 0));
assert_eq!(outputs[0].value(), block.txdata[0].output[0].value.to_sat());
assert_eq!(
ReceivedOutput::read::<&[u8]>(&mut outputs[0].serialize().as_ref()).unwrap(),
outputs[0]
);
outputs.swap_remove(0)
}
fn keys() -> (HashMap<Participant, ThresholdKeys<Secp256k1>>, ProjectivePoint) {
let mut keys = key_gen(&mut OsRng);
for (_, keys) in keys.iter_mut() {
*keys = tweak_keys(keys);
}
let key = keys.values().next().unwrap().group_key();
(keys, key)
}
fn sign(
keys: &HashMap<Participant, ThresholdKeys<Secp256k1>>,
tx: SignableTransaction,
) -> Transaction {
let mut machines = HashMap::new();
for i in (1 ..= THRESHOLD).map(|i| Participant::new(i).unwrap()) {
machines.insert(
i,
tx.clone()
.multisig(keys[&i].clone(), RecommendedTranscript::new(b"bitcoin-serai Test Transaction"))
.unwrap(),
);
}
sign_without_caching(&mut OsRng, machines, &[])
}
#[test]
fn test_tweak_keys() {
let mut even = false;
let mut odd = false;
// Generate keys until we get an even set and an odd set
while !(even && odd) {
let mut keys = key_gen(&mut OsRng).drain().next().unwrap().1;
if is_even(keys.group_key()) {
// Tweaking should do nothing
assert_eq!(tweak_keys(&keys).group_key(), keys.group_key());
even = true;
} else {
let tweaked = tweak_keys(&keys).group_key();
assert_ne!(tweaked, keys.group_key());
// Tweaking should produce an even key
assert!(is_even(tweaked));
// Verify it uses the smallest possible offset
while keys.group_key().to_encoded_point(true).tag() == Tag::CompressedOddY {
keys = keys.offset(Scalar::ONE);
}
assert_eq!(tweaked, keys.group_key());
odd = true;
}
}
}
async_sequential! {
async fn test_scanner() {
// Test Scanners are creatable for even keys.
for _ in 0 .. 128 {
let key = ProjectivePoint::random(&mut OsRng);
assert_eq!(Scanner::new(key).is_some(), is_even(key));
}
let mut key = ProjectivePoint::random(&mut OsRng);
while !is_even(key) {
key += ProjectivePoint::GENERATOR;
}
{
let mut scanner = Scanner::new(key).unwrap();
for _ in 0 .. 128 {
let mut offset = Scalar::random(&mut OsRng);
let registered = scanner.register_offset(offset).unwrap();
// Registering this again should return None
assert!(scanner.register_offset(offset).is_none());
// We can only register offsets resulting in even keys
// Make this even
while !is_even(key + (ProjectivePoint::GENERATOR * offset)) {
offset += Scalar::ONE;
}
// Ensure it matches the registered offset
assert_eq!(registered, offset);
// Assert registering this again fails
assert!(scanner.register_offset(offset).is_none());
}
}
let rpc = rpc().await;
let mut scanner = Scanner::new(key).unwrap();
assert_eq!(send_and_get_output(&rpc, &scanner, key).await.offset(), Scalar::ZERO);
// Register an offset and test receiving to it
let offset = scanner.register_offset(Scalar::random(&mut OsRng)).unwrap();
assert_eq!(
send_and_get_output(&rpc, &scanner, key + (ProjectivePoint::GENERATOR * offset))
.await
.offset(),
offset
);
}
async fn test_transaction_errors() {
let (_, key) = keys();
let rpc = rpc().await;
let scanner = Scanner::new(key).unwrap();
let output = send_and_get_output(&rpc, &scanner, key).await;
assert_eq!(output.offset(), Scalar::ZERO);
let inputs = vec![output];
let addr = || Address::<NetworkChecked>::new(Network::Regtest, address_payload(key).unwrap());
let payments = vec![(addr(), 1000)];
assert!(SignableTransaction::new(inputs.clone(), &payments, None, None, FEE).is_ok());
assert_eq!(
SignableTransaction::new(vec![], &payments, None, None, FEE),
Err(TransactionError::NoInputs)
);
// No change
assert!(SignableTransaction::new(inputs.clone(), &[(addr(), 1000)], None, None, FEE).is_ok());
// Consolidation TX
assert!(SignableTransaction::new(inputs.clone(), &[], Some(addr()), None, FEE).is_ok());
// Data
assert!(SignableTransaction::new(inputs.clone(), &[], None, Some(vec![]), FEE).is_ok());
// No outputs
assert_eq!(
SignableTransaction::new(inputs.clone(), &[], None, None, FEE),
Err(TransactionError::NoOutputs),
);
assert_eq!(
SignableTransaction::new(inputs.clone(), &[(addr(), 1)], None, None, FEE),
Err(TransactionError::DustPayment),
);
assert!(
SignableTransaction::new(inputs.clone(), &payments, None, Some(vec![0; 80]), FEE).is_ok()
);
assert_eq!(
SignableTransaction::new(inputs.clone(), &payments, None, Some(vec![0; 81]), FEE),
Err(TransactionError::TooMuchData),
);
assert_eq!(
SignableTransaction::new(inputs.clone(), &[], Some(addr()), None, 0),
Err(TransactionError::TooLowFee),
);
assert_eq!(
SignableTransaction::new(inputs.clone(), &[(addr(), inputs[0].value() * 2)], None, None, FEE),
Err(TransactionError::NotEnoughFunds),
);
assert_eq!(
SignableTransaction::new(inputs, &vec![(addr(), 1000); 10000], None, None, FEE),
Err(TransactionError::TooLargeTransaction),
);
}
async fn test_send() {
let (keys, key) = keys();
let rpc = rpc().await;
let mut scanner = Scanner::new(key).unwrap();
// Get inputs, one not offset and one offset
let output = send_and_get_output(&rpc, &scanner, key).await;
assert_eq!(output.offset(), Scalar::ZERO);
let offset = scanner.register_offset(Scalar::random(&mut OsRng)).unwrap();
let offset_key = key + (ProjectivePoint::GENERATOR * offset);
let offset_output = send_and_get_output(&rpc, &scanner, offset_key).await;
assert_eq!(offset_output.offset(), offset);
// Declare payments, change, fee
let payments = [
(Address::<NetworkChecked>::new(Network::Regtest, address_payload(key).unwrap()), 1005),
(Address::<NetworkChecked>::new(Network::Regtest, address_payload(offset_key).unwrap()), 1007)
];
let change_offset = scanner.register_offset(Scalar::random(&mut OsRng)).unwrap();
let change_key = key + (ProjectivePoint::GENERATOR * change_offset);
let change_addr =
Address::<NetworkChecked>::new(Network::Regtest, address_payload(change_key).unwrap());
// Create and sign the TX
let tx = SignableTransaction::new(
vec![output.clone(), offset_output.clone()],
&payments,
Some(change_addr.clone()),
None,
FEE
).unwrap();
let needed_fee = tx.needed_fee();
let tx = sign(&keys, tx);
assert_eq!(tx.output.len(), 3);
// Ensure we can scan it
let outputs = scanner.scan_transaction(&tx);
for (o, output) in outputs.iter().enumerate() {
assert_eq!(output.outpoint(), &OutPoint::new(tx.txid(), u32::try_from(o).unwrap()));
assert_eq!(&ReceivedOutput::read::<&[u8]>(&mut output.serialize().as_ref()).unwrap(), output);
}
assert_eq!(outputs[0].offset(), Scalar::ZERO);
assert_eq!(outputs[1].offset(), offset);
assert_eq!(outputs[2].offset(), change_offset);
// Make sure the payments were properly created
for ((output, scanned), payment) in tx.output.iter().zip(outputs.iter()).zip(payments.iter()) {
assert_eq!(
output,
&TxOut { script_pubkey: payment.0.script_pubkey(), value: Amount::from_sat(payment.1) },
);
assert_eq!(scanned.value(), payment.1 );
}
// Make sure the change is correct
assert_eq!(needed_fee, u64::from(tx.weight()) * FEE);
let input_value = output.value() + offset_output.value();
let output_value = tx.output.iter().map(|output| output.value.to_sat()).sum::<u64>();
assert_eq!(input_value - output_value, needed_fee);
let change_amount =
input_value - payments.iter().map(|payment| payment.1).sum::<u64>() - needed_fee;
assert_eq!(
tx.output[2],
TxOut { script_pubkey: change_addr.script_pubkey(), value: Amount::from_sat(change_amount) },
);
// This also tests send_raw_transaction and get_transaction, which the RPC test can't
// effectively test
rpc.send_raw_transaction(&tx).await.unwrap();
let mut hash = *tx.txid().as_raw_hash().as_byte_array();
hash.reverse();
assert_eq!(tx, rpc.get_transaction(&hash).await.unwrap());
}
async fn test_data() {
let (keys, key) = keys();
let rpc = rpc().await;
let scanner = Scanner::new(key).unwrap();
let output = send_and_get_output(&rpc, &scanner, key).await;
assert_eq!(output.offset(), Scalar::ZERO);
let data_len = 60 + usize::try_from(OsRng.next_u64() % 21).unwrap();
let mut data = vec![0; data_len];
OsRng.fill_bytes(&mut data);
let tx = sign(
&keys,
SignableTransaction::new(
vec![output],
&[],
Some(Address::<NetworkChecked>::new(Network::Regtest, address_payload(key).unwrap())),
Some(data.clone()),
FEE
).unwrap()
);
assert!(tx.output[0].script_pubkey.is_op_return());
let check = |mut instructions: Instructions| {
assert_eq!(instructions.next().unwrap().unwrap(), Instruction::Op(OP_RETURN));
assert_eq!(
instructions.next().unwrap().unwrap(),
Instruction::PushBytes(&PushBytesBuf::try_from(data.clone()).unwrap()),
);
assert!(instructions.next().is_none());
};
check(tx.output[0].script_pubkey.instructions());
check(tx.output[0].script_pubkey.instructions_minimal());
}
}

View File

@@ -1,3 +0,0 @@
# solidity build outputs
cache
artifacts

View File

@@ -1,39 +0,0 @@
[package]
name = "ethereum-serai"
version = "0.1.0"
description = "An Ethereum library supporting Schnorr signing and on-chain verification"
license = "AGPL-3.0-only"
repository = "https://github.com/serai-dex/serai/tree/develop/coins/ethereum"
authors = ["Luke Parker <lukeparker5132@gmail.com>", "Elizabeth Binks <elizabethjbinks@gmail.com>"]
edition = "2021"
publish = false
rust-version = "1.74"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
thiserror = { version = "1", default-features = false }
eyre = { version = "0.6", default-features = false }
sha3 = { version = "0.10", default-features = false, features = ["std"] }
group = { version = "0.13", default-features = false }
k256 = { version = "^0.13.1", default-features = false, features = ["std", "ecdsa"] }
frost = { package = "modular-frost", path = "../../crypto/frost", features = ["secp256k1", "tests"] }
ethers-core = { version = "2", default-features = false }
ethers-providers = { version = "2", default-features = false }
ethers-contract = { version = "2", default-features = false, features = ["abigen", "providers"] }
[dev-dependencies]
rand_core = { version = "0.6", default-features = false, features = ["std"] }
hex = { version = "0.4", default-features = false, features = ["std"] }
serde = { version = "1", default-features = false, features = ["std"] }
serde_json = { version = "1", default-features = false, features = ["std"] }
sha2 = { version = "0.10", default-features = false, features = ["std"] }
tokio = { version = "1", features = ["macros"] }

View File

@@ -1,15 +0,0 @@
AGPL-3.0-only license
Copyright (c) 2022-2023 Luke Parker
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License Version 3 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

View File

@@ -1,9 +0,0 @@
# Ethereum
This package contains Ethereum-related functionality, specifically deploying and
interacting with Serai contracts.
### Dependencies
- solc
- [Foundry](https://github.com/foundry-rs/foundry)

View File

@@ -1,15 +0,0 @@
fn main() {
println!("cargo:rerun-if-changed=contracts");
println!("cargo:rerun-if-changed=artifacts");
#[rustfmt::skip]
let args = [
"--base-path", ".",
"-o", "./artifacts", "--overwrite",
"--bin", "--abi",
"--optimize",
"./contracts/Schnorr.sol"
];
assert!(std::process::Command::new("solc").args(args).status().unwrap().success());
}

View File

@@ -1,36 +0,0 @@
//SPDX-License-Identifier: AGPLv3
pragma solidity ^0.8.0;
// see https://github.com/noot/schnorr-verify for implementation details
contract Schnorr {
// secp256k1 group order
uint256 constant public Q =
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141;
// parity := public key y-coord parity (27 or 28)
// px := public key x-coord
// message := 32-byte message
// s := schnorr signature
// e := schnorr signature challenge
function verify(
uint8 parity,
bytes32 px,
bytes32 message,
bytes32 s,
bytes32 e
) public view returns (bool) {
// ecrecover = (m, v, r, s);
bytes32 sp = bytes32(Q - mulmod(uint256(s), uint256(px), Q));
bytes32 ep = bytes32(Q - mulmod(uint256(e), uint256(px), Q));
require(sp != 0);
// the ecrecover precompile implementation checks that the `r` and `s`
// inputs are non-zero (in this case, `px` and `ep`), thus we don't need to
// check if they're zero.will make me
address R = ecrecover(sp, parity, px, ep);
require(R != address(0), "ecrecover failed");
return e == keccak256(
abi.encodePacked(R, uint8(parity), px, block.chainid, message)
);
}
}

View File

@@ -1,36 +0,0 @@
use thiserror::Error;
use eyre::{eyre, Result};
use ethers_providers::{Provider, Http};
use ethers_contract::abigen;
use crate::crypto::ProcessedSignature;
#[derive(Error, Debug)]
pub enum EthereumError {
#[error("failed to verify Schnorr signature")]
VerificationError,
}
abigen!(Schnorr, "./artifacts/Schnorr.abi");
pub async fn call_verify(
contract: &Schnorr<Provider<Http>>,
params: &ProcessedSignature,
) -> Result<()> {
if contract
.verify(
params.parity + 27,
params.px.to_bytes().into(),
params.message,
params.s.to_bytes().into(),
params.e.to_bytes().into(),
)
.call()
.await?
{
Ok(())
} else {
Err(eyre!(EthereumError::VerificationError))
}
}

View File

@@ -1,107 +0,0 @@
use sha3::{Digest, Keccak256};
use group::Group;
use k256::{
elliptic_curve::{
bigint::ArrayEncoding, ops::Reduce, point::DecompressPoint, sec1::ToEncodedPoint,
},
AffinePoint, ProjectivePoint, Scalar, U256,
};
use frost::{algorithm::Hram, curve::Secp256k1};
pub fn keccak256(data: &[u8]) -> [u8; 32] {
Keccak256::digest(data).into()
}
pub fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar::reduce(U256::from_be_slice(&keccak256(data)))
}
pub fn address(point: &ProjectivePoint) -> [u8; 20] {
let encoded_point = point.to_encoded_point(false);
keccak256(&encoded_point.as_ref()[1 .. 65])[12 .. 32].try_into().unwrap()
}
pub fn ecrecover(message: Scalar, v: u8, r: Scalar, s: Scalar) -> Option<[u8; 20]> {
if r.is_zero().into() || s.is_zero().into() {
return None;
}
#[allow(non_snake_case)]
let R = AffinePoint::decompress(&r.to_bytes(), v.into());
#[allow(non_snake_case)]
if let Some(R) = Option::<AffinePoint>::from(R) {
#[allow(non_snake_case)]
let R = ProjectivePoint::from(R);
let r = r.invert().unwrap();
let u1 = ProjectivePoint::GENERATOR * (-message * r);
let u2 = R * (s * r);
let key: ProjectivePoint = u1 + u2;
if !bool::from(key.is_identity()) {
return Some(address(&key));
}
}
None
}
#[derive(Clone, Default)]
pub struct EthereumHram {}
impl Hram<Secp256k1> for EthereumHram {
#[allow(non_snake_case)]
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
let a_encoded_point = A.to_encoded_point(true);
let mut a_encoded = a_encoded_point.as_ref().to_owned();
a_encoded[0] += 25; // Ethereum uses 27/28 for point parity
let mut data = address(R).to_vec();
data.append(&mut a_encoded);
data.append(&mut m.to_vec());
Scalar::reduce(U256::from_be_slice(&keccak256(&data)))
}
}
pub struct ProcessedSignature {
pub s: Scalar,
pub px: Scalar,
pub parity: u8,
pub message: [u8; 32],
pub e: Scalar,
}
#[allow(non_snake_case)]
pub fn preprocess_signature_for_ecrecover(
m: [u8; 32],
R: &ProjectivePoint,
s: Scalar,
A: &ProjectivePoint,
chain_id: U256,
) -> (Scalar, Scalar) {
let processed_sig = process_signature_for_contract(m, R, s, A, chain_id);
let sr = processed_sig.s.mul(&processed_sig.px).negate();
let er = processed_sig.e.mul(&processed_sig.px).negate();
(sr, er)
}
#[allow(non_snake_case)]
pub fn process_signature_for_contract(
m: [u8; 32],
R: &ProjectivePoint,
s: Scalar,
A: &ProjectivePoint,
chain_id: U256,
) -> ProcessedSignature {
let encoded_pk = A.to_encoded_point(true);
let px = &encoded_pk.as_ref()[1 .. 33];
let px_scalar = Scalar::reduce(U256::from_be_slice(px));
let e = EthereumHram::hram(R, A, &[chain_id.to_be_byte_array().as_slice(), &m].concat());
ProcessedSignature {
s,
px: px_scalar,
parity: &encoded_pk.as_ref()[0] - 2,
#[allow(non_snake_case)]
message: m,
e,
}
}

View File

@@ -1,2 +0,0 @@
pub mod contract;
pub mod crypto;

View File

@@ -1,128 +0,0 @@
use std::{convert::TryFrom, sync::Arc, time::Duration, fs::File};
use rand_core::OsRng;
use ::k256::{
elliptic_curve::{bigint::ArrayEncoding, PrimeField},
U256,
};
use ethers_core::{
types::Signature,
abi::Abi,
utils::{keccak256, Anvil, AnvilInstance},
};
use ethers_contract::ContractFactory;
use ethers_providers::{Middleware, Provider, Http};
use frost::{
curve::Secp256k1,
Participant,
algorithm::IetfSchnorr,
tests::{key_gen, algorithm_machines, sign},
};
use ethereum_serai::{
crypto,
contract::{Schnorr, call_verify},
};
// TODO: Replace with a contract deployment from an unknown account, so the environment solely has
// to fund the deployer, not create/pass a wallet
pub async fn deploy_schnorr_verifier_contract(
chain_id: u32,
client: Arc<Provider<Http>>,
wallet: &k256::ecdsa::SigningKey,
) -> eyre::Result<Schnorr<Provider<Http>>> {
let abi: Abi = serde_json::from_reader(File::open("./artifacts/Schnorr.abi").unwrap()).unwrap();
let hex_bin_buf = std::fs::read_to_string("./artifacts/Schnorr.bin").unwrap();
let hex_bin =
if let Some(stripped) = hex_bin_buf.strip_prefix("0x") { stripped } else { &hex_bin_buf };
let bin = hex::decode(hex_bin).unwrap();
let factory = ContractFactory::new(abi, bin.into(), client.clone());
let mut deployment_tx = factory.deploy(())?.tx;
deployment_tx.set_chain_id(chain_id);
deployment_tx.set_gas(500_000);
let (max_fee_per_gas, max_priority_fee_per_gas) = client.estimate_eip1559_fees(None).await?;
deployment_tx.as_eip1559_mut().unwrap().max_fee_per_gas = Some(max_fee_per_gas);
deployment_tx.as_eip1559_mut().unwrap().max_priority_fee_per_gas = Some(max_priority_fee_per_gas);
let sig_hash = deployment_tx.sighash();
let (sig, rid) = wallet.sign_prehash_recoverable(sig_hash.as_ref()).unwrap();
// EIP-155 v
let mut v = u64::from(rid.to_byte());
assert!((v == 0) || (v == 1));
v += u64::from((chain_id * 2) + 35);
let r = sig.r().to_repr();
let r_ref: &[u8] = r.as_ref();
let s = sig.s().to_repr();
let s_ref: &[u8] = s.as_ref();
let deployment_tx = deployment_tx.rlp_signed(&Signature { r: r_ref.into(), s: s_ref.into(), v });
let pending_tx = client.send_raw_transaction(deployment_tx).await?;
let mut receipt;
while {
receipt = client.get_transaction_receipt(pending_tx.tx_hash()).await?;
receipt.is_none()
} {
tokio::time::sleep(Duration::from_secs(6)).await;
}
let receipt = receipt.unwrap();
assert!(receipt.status == Some(1.into()));
let contract = Schnorr::new(receipt.contract_address.unwrap(), client.clone());
Ok(contract)
}
async fn deploy_test_contract() -> (u32, AnvilInstance, Schnorr<Provider<Http>>) {
let anvil = Anvil::new().spawn();
let provider =
Provider::<Http>::try_from(anvil.endpoint()).unwrap().interval(Duration::from_millis(10u64));
let chain_id = provider.get_chainid().await.unwrap().as_u32();
let wallet = anvil.keys()[0].clone().into();
let client = Arc::new(provider);
(chain_id, anvil, deploy_schnorr_verifier_contract(chain_id, client, &wallet).await.unwrap())
}
#[tokio::test]
async fn test_deploy_contract() {
deploy_test_contract().await;
}
#[tokio::test]
async fn test_ecrecover_hack() {
let (chain_id, _anvil, contract) = deploy_test_contract().await;
let chain_id = U256::from(chain_id);
let keys = key_gen::<_, Secp256k1>(&mut OsRng);
let group_key = keys[&Participant::new(1).unwrap()].group_key();
const MESSAGE: &[u8] = b"Hello, World!";
let hashed_message = keccak256(MESSAGE);
let full_message = &[chain_id.to_be_byte_array().as_slice(), &hashed_message].concat();
let algo = IetfSchnorr::<Secp256k1, crypto::EthereumHram>::ietf();
let sig = sign(
&mut OsRng,
algo.clone(),
keys.clone(),
algorithm_machines(&mut OsRng, algo, &keys),
full_message,
);
let mut processed_sig =
crypto::process_signature_for_contract(hashed_message, &sig.R, sig.s, &group_key, chain_id);
call_verify(&contract, &processed_sig).await.unwrap();
// test invalid signature fails
processed_sig.message[0] = 0;
assert!(call_verify(&contract, &processed_sig).await.is_err());
}

View File

@@ -1,92 +0,0 @@
use k256::{
elliptic_curve::{bigint::ArrayEncoding, ops::Reduce, sec1::ToEncodedPoint},
ProjectivePoint, Scalar, U256,
};
use frost::{curve::Secp256k1, Participant};
use ethereum_serai::crypto::*;
#[test]
fn test_ecrecover() {
use rand_core::OsRng;
use sha2::Sha256;
use sha3::{Digest, Keccak256};
use k256::ecdsa::{hazmat::SignPrimitive, signature::DigestVerifier, SigningKey, VerifyingKey};
let private = SigningKey::random(&mut OsRng);
let public = VerifyingKey::from(&private);
const MESSAGE: &[u8] = b"Hello, World!";
let (sig, recovery_id) = private
.as_nonzero_scalar()
.try_sign_prehashed_rfc6979::<Sha256>(&Keccak256::digest(MESSAGE), b"")
.unwrap();
#[allow(clippy::unit_cmp)] // Intended to assert this wasn't changed to Result<bool>
{
assert_eq!(public.verify_digest(Keccak256::new_with_prefix(MESSAGE), &sig).unwrap(), ());
}
assert_eq!(
ecrecover(hash_to_scalar(MESSAGE), recovery_id.unwrap().is_y_odd().into(), *sig.r(), *sig.s())
.unwrap(),
address(&ProjectivePoint::from(public.as_affine()))
);
}
#[test]
fn test_signing() {
use frost::{
algorithm::IetfSchnorr,
tests::{algorithm_machines, key_gen, sign},
};
use rand_core::OsRng;
let keys = key_gen::<_, Secp256k1>(&mut OsRng);
let _group_key = keys[&Participant::new(1).unwrap()].group_key();
const MESSAGE: &[u8] = b"Hello, World!";
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let _sig = sign(
&mut OsRng,
algo,
keys.clone(),
algorithm_machines(&mut OsRng, IetfSchnorr::<Secp256k1, EthereumHram>::ietf(), &keys),
MESSAGE,
);
}
#[test]
fn test_ecrecover_hack() {
use frost::{
algorithm::IetfSchnorr,
tests::{algorithm_machines, key_gen, sign},
};
use rand_core::OsRng;
let keys = key_gen::<_, Secp256k1>(&mut OsRng);
let group_key = keys[&Participant::new(1).unwrap()].group_key();
let group_key_encoded = group_key.to_encoded_point(true);
let group_key_compressed = group_key_encoded.as_ref();
let group_key_x = Scalar::reduce(U256::from_be_slice(&group_key_compressed[1 .. 33]));
const MESSAGE: &[u8] = b"Hello, World!";
let hashed_message = keccak256(MESSAGE);
let chain_id = U256::ONE;
let full_message = &[chain_id.to_be_byte_array().as_slice(), &hashed_message].concat();
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let sig = sign(
&mut OsRng,
algo.clone(),
keys.clone(),
algorithm_machines(&mut OsRng, algo, &keys),
full_message,
);
let (sr, er) =
preprocess_signature_for_ecrecover(hashed_message, &sig.R, sig.s, &group_key, chain_id);
let q = ecrecover(sr, group_key_compressed[0] - 2, group_key_x, er).unwrap();
assert_eq!(q, address(&sig.R));
}

View File

@@ -1,2 +0,0 @@
mod contract;
mod crypto;

30
coins/firo/Cargo.toml Normal file
View File

@@ -0,0 +1,30 @@
[package]
name = "firo"
version = "0.1.0"
description = "A modern Firo wallet library"
license = "MIT"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
edition = "2021"
[dependencies]
lazy_static = "1"
thiserror = "1"
rand_core = "0.6"
rand_chacha = { version = "0.3", optional = true }
sha2 = "0.10"
ff = "0.12"
group = "0.12"
k256 = { version = "0.11", features = ["arithmetic"] }
blake2 = { version = "0.10", optional = true }
transcript = { path = "../../crypto/transcript", package = "flexible-transcript", features = ["recommended"], optional = true }
frost = { path = "../../crypto/frost", package = "modular-frost", features = ["secp256k1"], optional = true }
[dev-dependencies]
rand = "0.8"
[features]
multisig = ["blake2", "transcript", "frost", "rand_chacha"]

4
coins/firo/src/lib.rs Normal file
View File

@@ -0,0 +1,4 @@
pub mod spark;
#[cfg(test)]
mod tests;

View File

@@ -0,0 +1,183 @@
#![allow(non_snake_case)]
use rand_core::{RngCore, CryptoRng};
use sha2::{Digest, Sha512};
use ff::Field;
use group::{Group, GroupEncoding};
use k256::{
elliptic_curve::{bigint::{ArrayEncoding, U512}, ops::Reduce},
Scalar, ProjectivePoint
};
use crate::spark::{F, G, H, U, GENERATORS_TRANSCRIPT};
#[cfg(feature = "frost")]
mod multisig;
#[cfg(feature = "frost")]
pub use multisig::ChaumMultisig;
#[derive(Clone, Debug)]
pub struct ChaumStatement {
context: Vec<u8>,
S_T: Vec<(ProjectivePoint, ProjectivePoint)>,
}
impl ChaumStatement {
pub fn new(context: Vec<u8>, S_T: Vec<(ProjectivePoint, ProjectivePoint)>) -> ChaumStatement {
ChaumStatement { context, S_T }
}
fn transcript(&self) -> Vec<u8> {
let mut transcript = self.context.clone();
for S_T in &self.S_T {
transcript.extend(S_T.0.to_bytes());
transcript.extend(S_T.1.to_bytes());
}
transcript
}
}
#[derive(Clone, Debug)]
pub struct ChaumWitness {
statement: ChaumStatement,
xz: Vec<(Scalar, Scalar)>
}
impl ChaumWitness {
pub fn new(statement: ChaumStatement, xz: Vec<(Scalar, Scalar)>) -> ChaumWitness {
assert!(statement.S_T.len() != 0);
assert_eq!(statement.S_T.len(), xz.len());
ChaumWitness { statement, xz }
}
}
#[derive(Clone, PartialEq, Debug)]
pub(crate) struct ChaumCommitments {
A1: ProjectivePoint,
A2: Vec<ProjectivePoint>
}
impl ChaumCommitments {
fn transcript(&self) -> Vec<u8> {
let mut transcript = Vec::with_capacity((self.A2.len() + 1) * 33);
transcript.extend(self.A1.to_bytes());
for A in &self.A2 {
transcript.extend(A.to_bytes());
}
transcript
}
}
#[derive(Clone, PartialEq, Debug)]
pub struct ChaumProof {
commitments: ChaumCommitments,
t1: Vec<Scalar>,
t2: Scalar,
t3: Scalar
}
impl ChaumProof {
fn r_t_commitments<R: RngCore + CryptoRng>(
rng: &mut R,
witness: &ChaumWitness
) -> (Vec<Scalar>, Scalar, ChaumCommitments) {
let len = witness.xz.len();
let mut rs = Vec::with_capacity(len);
let mut r_sum = Scalar::zero();
let mut commitments = ChaumCommitments {
A1: ProjectivePoint::IDENTITY,
A2: Vec::with_capacity(len)
};
for (_, T) in &witness.statement.S_T {
let r = Scalar::random(&mut *rng);
r_sum += r;
commitments.A2.push(T * &r);
rs.push(r);
}
let t = Scalar::random(&mut *rng);
commitments.A1 = (*F * r_sum) + (*H * t);
(rs, t, commitments)
}
fn t_prove(
witness: &ChaumWitness,
rs: &[Scalar],
mut t3: Scalar,
commitments: ChaumCommitments,
nonces: &[Scalar],
y: &Scalar
) -> (Scalar, ChaumProof) {
let challenge = ChaumProof::challenge(&witness.statement, &commitments);
let mut t1 = Vec::with_capacity(rs.len());
let mut t2 = Scalar::zero();
let mut accum = challenge;
for (i, (x, z)) in witness.xz.iter().enumerate() {
t1.push(rs[i] + (accum * x));
t2 += nonces[i] + (accum * y);
t3 += accum * z;
accum *= challenge;
}
(challenge, ChaumProof { commitments, t1, t2, t3 })
}
fn challenge(statement: &ChaumStatement, commitments: &ChaumCommitments) -> Scalar {
let mut transcript = b"Chaum".to_vec();
transcript.extend(&*GENERATORS_TRANSCRIPT);
transcript.extend(&statement.transcript());
transcript.extend(&commitments.transcript());
Scalar::from_uint_reduced(U512::from_be_byte_array(Sha512::digest(transcript)))
}
pub fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
witness: &ChaumWitness,
y: &Scalar
) -> ChaumProof {
let len = witness.xz.len();
let (rs, t3, mut commitments) = Self::r_t_commitments(rng, witness);
let mut s_sum = Scalar::zero();
let mut ss = Vec::with_capacity(len);
for i in 0 .. len {
let s = Scalar::random(&mut *rng);
s_sum += s;
commitments.A2[i] += *G * s;
ss.push(s);
}
commitments.A1 += *G * s_sum;
let (_, proof) = Self::t_prove(&witness, &rs, t3, commitments, &ss, y);
proof
}
pub fn verify(&self, statement: &ChaumStatement) -> bool {
let len = statement.S_T.len();
assert_eq!(len, self.commitments.A2.len());
assert_eq!(len, self.t1.len());
let challenge = Self::challenge(&statement, &self.commitments);
let mut one = self.commitments.A1 - ((*G * self.t2) + (*H * self.t3));
let mut two = -(*G * self.t2);
let mut accum = challenge;
for i in 0 .. len {
one += statement.S_T[i].0 * accum;
one -= *F * self.t1[i];
two += self.commitments.A2[i] + (*U * accum);
two -= statement.S_T[i].1 * self.t1[i];
accum *= challenge;
}
one.is_identity().into() && two.is_identity().into()
}
}

View File

@@ -0,0 +1,132 @@
use std::io::Read;
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha12Rng;
use ff::Field;
use k256::{Scalar, ProjectivePoint};
use transcript::{Transcript, RecommendedTranscript};
use frost::{curve::Secp256k1, FrostError, FrostView, algorithm::Algorithm};
use crate::spark::{G, GENERATORS_TRANSCRIPT, chaum::{ChaumWitness, ChaumProof}};
#[derive(Clone)]
pub struct ChaumMultisig {
transcript: RecommendedTranscript,
len: usize,
witness: ChaumWitness,
challenge: Scalar,
proof: Option<ChaumProof>
}
impl ChaumMultisig {
pub fn new(mut transcript: RecommendedTranscript, witness: ChaumWitness) -> ChaumMultisig {
transcript.domain_separate(b"Chaum");
transcript.append_message(b"generators", &*GENERATORS_TRANSCRIPT);
transcript.append_message(b"statement", &witness.statement.transcript());
for (x, z) in &witness.xz {
transcript.append_message(b"x", &x.to_bytes());
transcript.append_message(b"z", &z.to_bytes());
}
let len = witness.xz.len();
ChaumMultisig {
transcript,
len,
witness,
challenge: Scalar::zero(),
proof: None
}
}
}
impl Algorithm<Secp256k1> for ChaumMultisig {
type Transcript = RecommendedTranscript;
type Signature = ChaumProof;
fn transcript(&mut self) -> &mut Self::Transcript {
&mut self.transcript
}
fn nonces(&self) -> Vec<Vec<ProjectivePoint>> {
vec![vec![*G]; self.len]
}
fn preprocess_addendum<R: RngCore + CryptoRng>(
&mut self,
_: &mut R,
_: &FrostView<Secp256k1>
) -> Vec<u8> {
vec![]
}
fn process_addendum<Re: Read>(
&mut self,
_: &FrostView<Secp256k1>,
_: u16,
_: &mut Re
) -> Result<(), FrostError> {
Ok(())
}
fn sign_share(
&mut self,
view: &FrostView<Secp256k1>,
nonce_sums: &[Vec<ProjectivePoint>],
nonces: &[Scalar],
_: &[u8]
) -> Scalar {
let (rs, t3, mut commitments) = ChaumProof::r_t_commitments(
&mut ChaCha12Rng::from_seed(self.transcript.rng_seed(b"r_t")),
&self.witness
);
for i in 0 .. self.len {
commitments.A2[i] += nonce_sums[i][0];
}
commitments.A1 += nonce_sums.iter().map(|sum| sum[0]).sum::<ProjectivePoint>();
let (challenge, proof) = ChaumProof::t_prove(
&self.witness,
&rs,
t3,
commitments,
nonces,
&view.secret_share()
);
self.challenge = challenge;
let t2 = proof.t2;
self.proof = Some(proof);
t2
}
fn verify(
&self,
_: ProjectivePoint,
_: &[Vec<ProjectivePoint>],
sum: Scalar
) -> Option<Self::Signature> {
let mut proof = self.proof.clone().unwrap();
proof.t2 = sum;
Some(proof).filter(|proof| proof.verify(&self.witness.statement))
}
fn verify_share(
&self,
_: u16,
verification_share: ProjectivePoint,
nonces: &[Vec<ProjectivePoint>],
share: Scalar
) -> bool {
let mut t2 = ProjectivePoint::IDENTITY;
let mut accum = self.challenge;
for i in 0 .. self.len {
t2 += nonces[i][0] + (verification_share * accum);
accum *= self.challenge;
}
(*G * share) == t2
}
}

View File

@@ -0,0 +1,42 @@
use lazy_static::lazy_static;
use sha2::{Digest, Sha256};
use group::GroupEncoding;
use k256::{ProjectivePoint, CompressedPoint};
pub mod chaum;
// Extremely basic hash to curve, which should not be used, yet which offers the needed generators
fn generator(letter: u8) -> ProjectivePoint {
if letter == b'G' {
return ProjectivePoint::GENERATOR;
}
let mut point = [2; 33];
let mut g = b"Generator ".to_vec();
let mut res;
while {
g.push(letter);
point[1..].copy_from_slice(&Sha256::digest(&g));
res = ProjectivePoint::from_bytes(&CompressedPoint::from(point));
res.is_none().into()
} {}
res.unwrap()
}
lazy_static! {
pub static ref F: ProjectivePoint = generator(b'F');
pub static ref G: ProjectivePoint = generator(b'G');
pub static ref H: ProjectivePoint = generator(b'H');
pub static ref U: ProjectivePoint = generator(b'U');
pub static ref GENERATORS_TRANSCRIPT: Vec<u8> = {
let mut transcript = Vec::with_capacity(4 * 33);
transcript.extend(&F.to_bytes());
transcript.extend(&G.to_bytes());
transcript.extend(&H.to_bytes());
transcript.extend(&U.to_bytes());
transcript
};
}

View File

@@ -0,0 +1,72 @@
use rand::rngs::OsRng;
use ff::Field;
use k256::Scalar;
#[cfg(feature = "multisig")]
use transcript::{Transcript, RecommendedTranscript};
#[cfg(feature = "multisig")]
use frost::{curve::Secp256k1, tests::{key_gen, algorithm_machines, sign}};
use crate::spark::{F, G, H, U, chaum::*};
#[test]
fn chaum() {
#[allow(non_snake_case)]
let mut S_T = vec![];
let mut xz = vec![];
let y = Scalar::random(&mut OsRng);
for _ in 0 .. 2 {
let x = Scalar::random(&mut OsRng);
let z = Scalar::random(&mut OsRng);
S_T.push((
(*F * x) + (*G * y) + (*H * z),
// U = (x * T) + (y * G)
// T = (U - (y * G)) * x^-1
(*U - (*G * y)) * x.invert().unwrap()
));
xz.push((x, z));
}
let statement = ChaumStatement::new(b"Hello, World!".to_vec(), S_T);
let witness = ChaumWitness::new(statement.clone(), xz);
assert!(ChaumProof::prove(&mut OsRng, &witness, &y).verify(&statement));
}
#[cfg(feature = "multisig")]
#[test]
fn chaum_multisig() {
let keys = key_gen::<_, Secp256k1>(&mut OsRng);
#[allow(non_snake_case)]
let mut S_T = vec![];
let mut xz = vec![];
for _ in 0 .. 5 {
let x = Scalar::random(&mut OsRng);
let z = Scalar::random(&mut OsRng);
S_T.push((
(*F * x) + keys[&1].group_key() + (*H * z),
(*U - keys[&1].group_key()) * x.invert().unwrap()
));
xz.push((x, z));
}
let statement = ChaumStatement::new(b"Hello, Multisig World!".to_vec(), S_T);
let witness = ChaumWitness::new(statement.clone(), xz);
assert!(
sign(
&mut OsRng,
algorithm_machines(
&mut OsRng,
ChaumMultisig::new(RecommendedTranscript::new(b"Firo Serai Chaum Test"), witness),
&keys
),
&[]
).verify(&statement)
);
}

1
coins/monero/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
c/.build

View File

@@ -1,110 +1,52 @@
[package]
name = "monero-serai"
version = "0.1.4-alpha"
description = "A modern Monero transaction library"
version = "0.1.0"
description = "A modern Monero wallet library"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/coins/monero"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
edition = "2021"
rust-version = "1.74"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
std-shims = { path = "../../common/std-shims", version = "^0.1.1", default-features = false }
async-trait = { version = "0.1", default-features = false }
thiserror = { version = "1", default-features = false, optional = true }
zeroize = { version = "^1.5", default-features = false, features = ["zeroize_derive"] }
subtle = { version = "^2.4", default-features = false }
rand_core = { version = "0.6", default-features = false }
# Used to send transactions
rand = { version = "0.8", default-features = false }
rand_chacha = { version = "0.3", default-features = false }
# Used to select decoys
rand_distr = { version = "0.4", default-features = false }
sha3 = { version = "0.10", default-features = false }
pbkdf2 = { version = "0.12", features = ["simple"], default-features = false }
curve25519-dalek = { version = "4", default-features = false, features = ["alloc", "zeroize", "precomputed-tables"] }
# Used for the hash to curve, along with the more complicated proofs
group = { version = "0.13", default-features = false }
dalek-ff-group = { path = "../../crypto/dalek-ff-group", version = "0.4", default-features = false }
multiexp = { path = "../../crypto/multiexp", version = "0.4", default-features = false, features = ["batch"] }
# Needed for multisig
transcript = { package = "flexible-transcript", path = "../../crypto/transcript", version = "0.3", default-features = false, features = ["recommended"], optional = true }
dleq = { path = "../../crypto/dleq", version = "0.4", default-features = false, features = ["serialize"], optional = true }
frost = { package = "modular-frost", path = "../../crypto/frost", version = "0.8", default-features = false, features = ["ed25519"], optional = true }
monero-generators = { path = "generators", version = "0.4", default-features = false }
futures = { version = "0.3", default-features = false, features = ["alloc"], optional = true }
hex-literal = "0.4"
hex = { version = "0.4", default-features = false, features = ["alloc"] }
serde = { version = "1", default-features = false, features = ["derive", "alloc"] }
serde_json = { version = "1", default-features = false, features = ["alloc"] }
base58-monero = { version = "2", default-features = false, features = ["check"] }
# Used for the provided HTTP RPC
digest_auth = { version = "0.3", default-features = false, optional = true }
simple-request = { path = "../../common/request", version = "0.1", default-features = false, features = ["tls"], optional = true }
tokio = { version = "1", default-features = false, optional = true }
[build-dependencies]
dalek-ff-group = { path = "../../crypto/dalek-ff-group", version = "0.4", default-features = false }
monero-generators = { path = "generators", version = "0.4", default-features = false }
cc = "1.0"
[dev-dependencies]
tokio = { version = "1", features = ["sync", "macros"] }
[dependencies]
hex-literal = "0.3"
lazy_static = "1"
thiserror = "1"
frost = { package = "modular-frost", path = "../../crypto/frost", features = ["tests"] }
rand_core = "0.6"
rand_chacha = { version = "0.3", optional = true }
rand = "0.8"
rand_distr = "0.4"
subtle = "2.4"
tiny-keccak = { version = "2", features = ["keccak"] }
blake2 = { version = "0.10", optional = true }
curve25519-dalek = { version = "3", features = ["std"] }
group = { version = "0.12" }
dalek-ff-group = { path = "../../crypto/dalek-ff-group" }
transcript = { package = "flexible-transcript", path = "../../crypto/transcript", features = ["recommended"], optional = true }
frost = { package = "modular-frost", path = "../../crypto/frost", features = ["ed25519"], optional = true }
dleq = { package = "dleq-serai", path = "../../crypto/dleq", features = ["serialize"], optional = true }
hex = "0.4"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
base58-monero = "1"
monero-epee-bin-serde = "1.0"
monero = "0.16"
reqwest = { version = "0.11", features = ["json"] }
[features]
std = [
"std-shims/std",
"thiserror",
"zeroize/std",
"subtle/std",
"rand_core/std",
"rand/std",
"rand_chacha/std",
"rand_distr/std",
"sha3/std",
"pbkdf2/std",
"multiexp/std",
"transcript/std",
"dleq/std",
"monero-generators/std",
"futures?/std",
"hex/std",
"serde/std",
"serde_json/std",
"base58-monero/std",
]
cache-distribution = ["futures"]
http-rpc = ["digest_auth", "simple-request", "tokio"]
multisig = ["transcript", "frost", "dleq", "std"]
binaries = ["tokio/rt-multi-thread", "tokio/macros", "http-rpc"]
experimental = []
multisig = ["rand_chacha", "blake2", "transcript", "frost", "dleq"]
default = ["std", "http-rpc"]
[dev-dependencies]
sha2 = "0.10"
tokio = { version = "1", features = ["full"] }

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2022-2023 Luke Parker
Copyright (c) 2022 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -4,46 +4,4 @@ A modern Monero transaction library intended for usage in wallets. It prides
itself on accuracy, correctness, and removing common pit falls developers may
face.
monero-serai also offers the following features:
- Featured Addresses
- A FROST-based multisig orders of magnitude more performant than Monero's
### Purpose and support
monero-serai was written for Serai, a decentralized exchange aiming to support
Monero. Despite this, monero-serai is intended to be a widely usable library,
accurate to Monero. monero-serai guarantees the functionality needed for Serai,
yet will not deprive functionality from other users.
Various legacy transaction formats are not currently implemented, yet we are
willing to add support for them. There aren't active development efforts around
them however.
### Caveats
This library DOES attempt to do the following:
- Create on-chain transactions identical to how wallet2 would (unless told not
to)
- Not be detectable as monero-serai when scanning outputs
- Not reveal spent outputs to the connected RPC node
This library DOES NOT attempt to do the following:
- Have identical RPC behavior when creating transactions
- Be a wallet
This means that monero-serai shouldn't be fingerprintable on-chain. It also
shouldn't be fingerprintable if a targeted attack occurs to detect if the
receiving wallet is monero-serai or wallet2. It also should be generally safe
for usage with remote nodes.
It won't hide from remote nodes it's monero-serai however, potentially
allowing a remote node to profile you. The implications of this are left to the
user to consider.
It also won't act as a wallet, just as a transaction library. wallet2 has
several *non-transaction-level* policies, such as always attempting to use two
inputs to create transactions. These are considered out of scope to
monero-serai.
Threshold multisignature support is available via the `multisig` feature.

View File

@@ -1,67 +1,72 @@
use std::{
io::Write,
env,
path::Path,
fs::{File, remove_file},
};
use dalek_ff_group::EdwardsPoint;
use monero_generators::bulletproofs_generators;
fn serialize(generators_string: &mut String, points: &[EdwardsPoint]) {
for generator in points {
generators_string.extend(
format!(
"
dalek_ff_group::EdwardsPoint(
curve25519_dalek::edwards::CompressedEdwardsY({:?}).decompress().unwrap()
),
",
generator.compress().to_bytes()
)
.chars(),
);
}
}
fn generators(prefix: &'static str, path: &str) {
let generators = bulletproofs_generators(prefix.as_bytes());
#[allow(non_snake_case)]
let mut G_str = "".to_string();
serialize(&mut G_str, &generators.G);
#[allow(non_snake_case)]
let mut H_str = "".to_string();
serialize(&mut H_str, &generators.H);
let path = Path::new(&env::var("OUT_DIR").unwrap()).join(path);
let _ = remove_file(&path);
File::create(&path)
.unwrap()
.write_all(
format!(
"
pub(crate) static GENERATORS_CELL: OnceLock<Generators> = OnceLock::new();
pub fn GENERATORS() -> &'static Generators {{
GENERATORS_CELL.get_or_init(|| Generators {{
G: vec![
{G_str}
],
H: vec![
{H_str}
],
}})
}}
",
)
.as_bytes(),
)
.unwrap();
}
use std::{env, path::Path, process::Command};
fn main() {
println!("cargo:rerun-if-changed=build.rs");
if !Command::new("git").args(&["submodule", "update", "--init", "--recursive"]).status().unwrap().success() {
panic!("git failed to init submodules");
}
generators("bulletproof", "generators.rs");
generators("bulletproof_plus", "generators_plus.rs");
if !Command ::new("mkdir").args(&["-p", ".build"])
.current_dir(&Path::new("c")).status().unwrap().success() {
panic!("failed to create a directory to track build progress");
}
let out_dir = &env::var("OUT_DIR").unwrap();
// Use a file to signal if Monero was already built, as that should never be rebuilt
// If the signaling file was deleted, run this script again to rebuild Monero though
println!("cargo:rerun-if-changed=c/.build/monero");
if !Path::new("c/.build/monero").exists() {
if !Command::new("make").arg(format!("-j{}", &env::var("THREADS").unwrap_or("2".to_string())))
.current_dir(&Path::new("c/monero")).status().unwrap().success() {
panic!("make failed to build Monero. Please check your dependencies");
}
if !Command::new("touch").arg("monero")
.current_dir(&Path::new("c/.build")).status().unwrap().success() {
panic!("failed to create a file to label Monero as built");
}
}
println!("cargo:rerun-if-changed=c/wrapper.cpp");
cc::Build::new()
.static_flag(true)
.warnings(false)
.extra_warnings(false)
.flag("-Wno-deprecated-declarations")
.include("c/monero/external/supercop/include")
.include("c/monero/contrib/epee/include")
.include("c/monero/src")
.include("c/monero/build/release/generated_include")
.define("AUTO_INITIALIZE_EASYLOGGINGPP", None)
.include("c/monero/external/easylogging++")
.file("c/monero/external/easylogging++/easylogging++.cc")
.file("c/monero/src/common/aligned.c")
.file("c/monero/src/common/perf_timer.cpp")
.include("c/monero/src/crypto")
.file("c/monero/src/crypto/crypto-ops-data.c")
.file("c/monero/src/crypto/crypto-ops.c")
.file("c/monero/src/crypto/keccak.c")
.file("c/monero/src/crypto/hash.c")
.include("c/monero/src/device")
.file("c/monero/src/device/device_default.cpp")
.include("c/monero/src/ringct")
.file("c/monero/src/ringct/rctCryptoOps.c")
.file("c/monero/src/ringct/rctTypes.cpp")
.file("c/monero/src/ringct/rctOps.cpp")
.file("c/monero/src/ringct/multiexp.cc")
.file("c/monero/src/ringct/bulletproofs.cc")
.file("c/monero/src/ringct/rctSigs.cpp")
.file("c/wrapper.cpp")
.compile("wrapper");
println!("cargo:rustc-link-search={}", out_dir);
println!("cargo:rustc-link-lib=wrapper");
println!("cargo:rustc-link-lib=stdc++");
}

1
coins/monero/c/monero Submodule

Submodule coins/monero/c/monero added at 424e4de16b

158
coins/monero/c/wrapper.cpp Normal file
View File

@@ -0,0 +1,158 @@
#include <mutex>
#include "device/device_default.hpp"
#include "ringct/bulletproofs.h"
#include "ringct/rctSigs.h"
typedef std::lock_guard<std::mutex> lock;
std::mutex rng_mutex;
uint8_t rng_entropy[64];
extern "C" {
void rng(uint8_t* seed) {
// Set the first half to the seed
memcpy(rng_entropy, seed, 32);
// Set the second half to the hash of a DST to ensure a lack of collisions
crypto::cn_fast_hash("RNG_entropy_seed", 16, (char*) &rng_entropy[32]);
}
}
extern "C" void monero_wide_reduce(uint8_t* value);
namespace crypto {
void generate_random_bytes_not_thread_safe(size_t n, void* value) {
size_t written = 0;
while (written != n) {
uint8_t hash[32];
crypto::cn_fast_hash(rng_entropy, 64, (char*) hash);
// Step the RNG by setting the latter half to the most recent result
// Does not leak the RNG, even if the values are leaked (which they are
// expected to be) due to the first half remaining constant and
// undisclosed
memcpy(&rng_entropy[32], hash, 32);
size_t next = n - written;
if (next > 32) {
next = 32;
}
memcpy(&((uint8_t*) value)[written], hash, next);
written += next;
}
}
void random32_unbiased(unsigned char *bytes) {
uint8_t value[64];
generate_random_bytes_not_thread_safe(64, value);
monero_wide_reduce(value);
memcpy(bytes, value, 32);
}
}
extern "C" {
void c_hash_to_point(uint8_t* point) {
rct::key key_point;
ge_p3 e_p3;
memcpy(key_point.bytes, point, 32);
rct::hash_to_p3(e_p3, key_point);
ge_p3_tobytes(point, &e_p3);
}
uint8_t* c_generate_bp(uint8_t* seed, uint8_t len, uint64_t* a, uint8_t* m) {
lock guard(rng_mutex);
rng(seed);
rct::keyV masks;
std::vector<uint64_t> amounts;
masks.resize(len);
amounts.resize(len);
for (uint8_t i = 0; i < len; i++) {
memcpy(masks[i].bytes, m + (i * 32), 32);
amounts[i] = a[i];
}
rct::Bulletproof bp = rct::bulletproof_PROVE(amounts, masks);
std::stringstream ss;
binary_archive<true> ba(ss);
::serialization::serialize(ba, bp);
uint8_t* res = (uint8_t*) calloc(ss.str().size(), 1);
memcpy(res, ss.str().data(), ss.str().size());
return res;
}
bool c_verify_bp(
uint8_t* seed,
uint s_len,
uint8_t* s,
uint8_t c_len,
uint8_t* c
) {
// BPs are batch verified which use RNG based weights to ensure individual
// integrity
// That's why this must also have control over RNG, to prevent interrupting
// multisig signing while not using known seeds. Considering this doesn't
// actually define a batch, and it's only verifying a single BP,
// it'd probably be fine, but...
lock guard(rng_mutex);
rng(seed);
rct::Bulletproof bp;
std::stringstream ss;
std::string str;
str.assign((char*) s, (size_t) s_len);
ss << str;
binary_archive<false> ba(ss);
::serialization::serialize(ba, bp);
if (!ss.good()) {
return false;
}
bp.V.resize(c_len);
for (uint8_t i = 0; i < c_len; i++) {
memcpy(bp.V[i].bytes, &c[i * 32], 32);
}
try { return rct::bulletproof_VERIFY(bp); } catch(...) { return false; }
}
bool c_verify_clsag(
uint s_len,
uint8_t* s,
uint8_t k_len,
uint8_t* k,
uint8_t* I,
uint8_t* p,
uint8_t* m
) {
rct::clsag clsag;
std::stringstream ss;
std::string str;
str.assign((char*) s, (size_t) s_len);
ss << str;
binary_archive<false> ba(ss);
::serialization::serialize(ba, clsag);
if (!ss.good()) {
return false;
}
rct::ctkeyV keys;
keys.resize(k_len);
for (uint8_t i = 0; i < k_len; i++) {
memcpy(keys[i].dest.bytes, &k[(i * 2) * 32], 32);
memcpy(keys[i].mask.bytes, &k[((i * 2) + 1) * 32], 32);
}
memcpy(clsag.I.bytes, I, 32);
rct::key pseudo_out;
memcpy(pseudo_out.bytes, p, 32);
rct::key msg;
memcpy(msg.bytes, m, 32);
try {
return verRctCLSAGSimple(msg, clsag, keys, pseudo_out);
} catch(...) { return false; }
}
}

View File

@@ -1,28 +0,0 @@
[package]
name = "monero-generators"
version = "0.4.0"
description = "Monero's hash_to_point and generators"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/coins/monero/generators"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
edition = "2021"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[dependencies]
std-shims = { path = "../../../common/std-shims", version = "^0.1.1", default-features = false }
subtle = { version = "^2.4", default-features = false }
sha3 = { version = "0.10", default-features = false }
curve25519-dalek = { version = "4", default-features = false, features = ["alloc", "zeroize", "precomputed-tables"] }
group = { version = "0.13", default-features = false }
dalek-ff-group = { path = "../../../crypto/dalek-ff-group", version = "0.4", default-features = false }
[features]
std = ["std-shims/std", "subtle/std", "sha3/std", "dalek-ff-group/std"]
default = ["std"]

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2022-2023 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,7 +0,0 @@
# Monero Generators
Generators used by Monero in both its Pedersen commitments and Bulletproofs(+).
An implementation of Monero's `ge_fromfe_frombytes_vartime`, simply called
`hash_to_point` here, is included, as needed to generate generators.
This library is usable under no_std when the `alloc` feature is enabled.

View File

@@ -1,51 +0,0 @@
use subtle::ConditionallySelectable;
use curve25519_dalek::edwards::{EdwardsPoint, CompressedEdwardsY};
use group::ff::{Field, PrimeField};
use dalek_ff_group::FieldElement;
use crate::hash;
/// Monero's hash to point function, as named `ge_fromfe_frombytes_vartime`.
pub fn hash_to_point(bytes: [u8; 32]) -> EdwardsPoint {
#[allow(non_snake_case)]
let A = FieldElement::from(486662u64);
let v = FieldElement::from_square(hash(&bytes)).double();
let w = v + FieldElement::ONE;
let x = w.square() + (-A.square() * v);
// This isn't the complete X, yet its initial value
// We don't calculate the full X, and instead solely calculate Y, letting dalek reconstruct X
// While inefficient, it solves API boundaries and reduces the amount of work done here
#[allow(non_snake_case)]
let X = {
let u = w;
let v = x;
let v3 = v * v * v;
let uv3 = u * v3;
let v7 = v3 * v3 * v;
let uv7 = u * v7;
uv3 * uv7.pow((-FieldElement::from(5u8)) * FieldElement::from(8u8).invert().unwrap())
};
let x = X.square() * x;
let y = w - x;
let non_zero_0 = !y.is_zero();
let y_if_non_zero_0 = w + x;
let sign = non_zero_0 & (!y_if_non_zero_0.is_zero());
let mut z = -A;
z *= FieldElement::conditional_select(&v, &FieldElement::from(1u8), sign);
#[allow(non_snake_case)]
let Z = z + w;
#[allow(non_snake_case)]
let mut Y = z - w;
Y *= Z.invert().unwrap();
let mut bytes = Y.to_repr();
bytes[31] |= sign.unwrap_u8() << 7;
CompressedEdwardsY(bytes).decompress().unwrap().mul_by_cofactor()
}

View File

@@ -1,79 +0,0 @@
//! Generators used by Monero in both its Pedersen commitments and Bulletproofs(+).
//!
//! An implementation of Monero's `ge_fromfe_frombytes_vartime`, simply called
//! `hash_to_point` here, is included, as needed to generate generators.
#![cfg_attr(not(feature = "std"), no_std)]
use std_shims::{sync::OnceLock, vec::Vec};
use sha3::{Digest, Keccak256};
use curve25519_dalek::edwards::{EdwardsPoint as DalekPoint, CompressedEdwardsY};
use group::{Group, GroupEncoding};
use dalek_ff_group::EdwardsPoint;
mod varint;
use varint::write_varint;
mod hash_to_point;
pub use hash_to_point::hash_to_point;
fn hash(data: &[u8]) -> [u8; 32] {
Keccak256::digest(data).into()
}
static H_CELL: OnceLock<DalekPoint> = OnceLock::new();
/// Monero's alternate generator `H`, used for amounts in Pedersen commitments.
#[allow(non_snake_case)]
pub fn H() -> DalekPoint {
*H_CELL.get_or_init(|| {
CompressedEdwardsY(hash(&EdwardsPoint::generator().to_bytes()))
.decompress()
.unwrap()
.mul_by_cofactor()
})
}
static H_POW_2_CELL: OnceLock<[DalekPoint; 64]> = OnceLock::new();
/// Monero's alternate generator `H`, multiplied by 2**i for i in 1 ..= 64.
#[allow(non_snake_case)]
pub fn H_pow_2() -> &'static [DalekPoint; 64] {
H_POW_2_CELL.get_or_init(|| {
let mut res = [H(); 64];
for i in 1 .. 64 {
res[i] = res[i - 1] + res[i - 1];
}
res
})
}
const MAX_M: usize = 16;
const N: usize = 64;
const MAX_MN: usize = MAX_M * N;
/// Container struct for Bulletproofs(+) generators.
#[allow(non_snake_case)]
pub struct Generators {
pub G: Vec<EdwardsPoint>,
pub H: Vec<EdwardsPoint>,
}
/// Generate generators as needed for Bulletproofs(+), as Monero does.
pub fn bulletproofs_generators(dst: &'static [u8]) -> Generators {
let mut res = Generators { G: Vec::with_capacity(MAX_MN), H: Vec::with_capacity(MAX_MN) };
for i in 0 .. MAX_MN {
let i = 2 * i;
let mut even = H().compress().to_bytes().to_vec();
even.extend(dst);
let mut odd = even.clone();
write_varint(&i.try_into().unwrap(), &mut even).unwrap();
write_varint(&(i + 1).try_into().unwrap(), &mut odd).unwrap();
res.H.push(EdwardsPoint(hash_to_point(hash(&even))));
res.G.push(EdwardsPoint(hash_to_point(hash(&odd))));
}
res
}

View File

@@ -1,16 +0,0 @@
use std_shims::io::{self, Write};
const VARINT_CONTINUATION_MASK: u8 = 0b1000_0000;
pub(crate) fn write_varint<W: Write>(varint: &u64, w: &mut W) -> io::Result<()> {
let mut varint = *varint;
while {
let mut b = u8::try_from(varint & u64::from(!VARINT_CONTINUATION_MASK)).unwrap();
varint >>= 7;
if varint != 0 {
b |= VARINT_CONTINUATION_MASK;
}
w.write_all(&[b])?;
varint != 0
} {}
Ok(())
}

View File

@@ -1,323 +0,0 @@
#[cfg(feature = "binaries")]
mod binaries {
pub(crate) use std::sync::Arc;
pub(crate) use curve25519_dalek::{
scalar::Scalar,
edwards::{CompressedEdwardsY, EdwardsPoint},
};
pub(crate) use multiexp::BatchVerifier;
pub(crate) use serde::Deserialize;
pub(crate) use serde_json::json;
pub(crate) use monero_serai::{
Commitment,
ringct::RctPrunable,
transaction::{Input, Transaction},
block::Block,
rpc::{RpcError, Rpc, HttpRpc},
};
pub(crate) use tokio::task::JoinHandle;
pub(crate) async fn check_block(rpc: Arc<Rpc<HttpRpc>>, block_i: usize) {
let hash = loop {
match rpc.get_block_hash(block_i).await {
Ok(hash) => break hash,
Err(RpcError::ConnectionError(e)) => {
println!("get_block_hash ConnectionError: {e}");
continue;
}
Err(e) => panic!("couldn't get block {block_i}'s hash: {e:?}"),
}
};
// TODO: Grab the JSON to also check it was deserialized correctly
#[derive(Deserialize, Debug)]
struct BlockResponse {
blob: String,
}
let res: BlockResponse = loop {
match rpc.json_rpc_call("get_block", Some(json!({ "hash": hex::encode(hash) }))).await {
Ok(res) => break res,
Err(RpcError::ConnectionError(e)) => {
println!("get_block ConnectionError: {e}");
continue;
}
Err(e) => panic!("couldn't get block {block_i} via block.hash(): {e:?}"),
}
};
let blob = hex::decode(res.blob).expect("node returned non-hex block");
let block = Block::read(&mut blob.as_slice())
.unwrap_or_else(|e| panic!("couldn't deserialize block {block_i}: {e}"));
assert_eq!(block.hash(), hash, "hash differs");
assert_eq!(block.serialize(), blob, "serialization differs");
let txs_len = 1 + block.txs.len();
if !block.txs.is_empty() {
#[derive(Deserialize, Debug)]
struct TransactionResponse {
tx_hash: String,
as_hex: String,
}
#[derive(Deserialize, Debug)]
struct TransactionsResponse {
#[serde(default)]
missed_tx: Vec<String>,
txs: Vec<TransactionResponse>,
}
let mut hashes_hex = block.txs.iter().map(hex::encode).collect::<Vec<_>>();
let mut all_txs = vec![];
while !hashes_hex.is_empty() {
let txs: TransactionsResponse = loop {
match rpc
.rpc_call(
"get_transactions",
Some(json!({
"txs_hashes": hashes_hex.drain(.. hashes_hex.len().min(100)).collect::<Vec<_>>(),
})),
)
.await
{
Ok(txs) => break txs,
Err(RpcError::ConnectionError(e)) => {
println!("get_transactions ConnectionError: {e}");
continue;
}
Err(e) => panic!("couldn't call get_transactions: {e:?}"),
}
};
assert!(txs.missed_tx.is_empty());
all_txs.extend(txs.txs);
}
let mut batch = BatchVerifier::new(block.txs.len());
for (tx_hash, tx_res) in block.txs.into_iter().zip(all_txs) {
assert_eq!(
tx_res.tx_hash,
hex::encode(tx_hash),
"node returned a transaction with different hash"
);
let tx = Transaction::read(
&mut hex::decode(&tx_res.as_hex).expect("node returned non-hex transaction").as_slice(),
)
.expect("couldn't deserialize transaction");
assert_eq!(
hex::encode(tx.serialize()),
tx_res.as_hex,
"Transaction serialization was different"
);
assert_eq!(tx.hash(), tx_hash, "Transaction hash was different");
if matches!(tx.rct_signatures.prunable, RctPrunable::Null) {
assert_eq!(tx.prefix.version, 1);
assert!(!tx.signatures.is_empty());
continue;
}
let sig_hash = tx.signature_hash();
// Verify all proofs we support proving for
// This is due to having debug_asserts calling verify within their proving, and CLSAG
// multisig explicitly calling verify as part of its signing process
// Accordingly, making sure our signature_hash algorithm is correct is great, and further
// making sure the verification functions are valid is appreciated
match tx.rct_signatures.prunable {
RctPrunable::Null |
RctPrunable::AggregateMlsagBorromean { .. } |
RctPrunable::MlsagBorromean { .. } => {}
RctPrunable::MlsagBulletproofs { bulletproofs, .. } => {
assert!(bulletproofs.batch_verify(
&mut rand_core::OsRng,
&mut batch,
(),
&tx.rct_signatures.base.commitments
));
}
RctPrunable::Clsag { bulletproofs, clsags, pseudo_outs } => {
assert!(bulletproofs.batch_verify(
&mut rand_core::OsRng,
&mut batch,
(),
&tx.rct_signatures.base.commitments
));
for (i, clsag) in clsags.into_iter().enumerate() {
let (amount, key_offsets, image) = match &tx.prefix.inputs[i] {
Input::Gen(_) => panic!("Input::Gen"),
Input::ToKey { amount, key_offsets, key_image } => (amount, key_offsets, key_image),
};
let mut running_sum = 0;
let mut actual_indexes = vec![];
for offset in key_offsets {
running_sum += offset;
actual_indexes.push(running_sum);
}
async fn get_outs(
rpc: &Rpc<HttpRpc>,
amount: u64,
indexes: &[u64],
) -> Vec<[EdwardsPoint; 2]> {
#[derive(Deserialize, Debug)]
struct Out {
key: String,
mask: String,
}
#[derive(Deserialize, Debug)]
struct Outs {
outs: Vec<Out>,
}
let outs: Outs = loop {
match rpc
.rpc_call(
"get_outs",
Some(json!({
"get_txid": true,
"outputs": indexes.iter().map(|o| json!({
"amount": amount,
"index": o
})).collect::<Vec<_>>()
})),
)
.await
{
Ok(outs) => break outs,
Err(RpcError::ConnectionError(e)) => {
println!("get_outs ConnectionError: {e}");
continue;
}
Err(e) => panic!("couldn't connect to RPC to get outs: {e:?}"),
}
};
let rpc_point = |point: &str| {
CompressedEdwardsY(
hex::decode(point)
.expect("invalid hex for ring member")
.try_into()
.expect("invalid point len for ring member"),
)
.decompress()
.expect("invalid point for ring member")
};
outs
.outs
.iter()
.map(|out| {
let mask = rpc_point(&out.mask);
if amount != 0 {
assert_eq!(mask, Commitment::new(Scalar::from(1u8), amount).calculate());
}
[rpc_point(&out.key), mask]
})
.collect()
}
clsag
.verify(
&get_outs(&rpc, amount.unwrap_or(0), &actual_indexes).await,
image,
&pseudo_outs[i],
&sig_hash,
)
.unwrap();
}
}
}
}
assert!(batch.verify_vartime());
}
println!("Deserialized, hashed, and reserialized {block_i} with {} TXs", txs_len);
}
}
#[cfg(feature = "binaries")]
#[tokio::main]
async fn main() {
use binaries::*;
let args = std::env::args().collect::<Vec<String>>();
// Read start block as the first arg
let mut block_i = args[1].parse::<usize>().expect("invalid start block");
// How many blocks to work on at once
let async_parallelism: usize =
args.get(2).unwrap_or(&"8".to_string()).parse::<usize>().expect("invalid parallelism argument");
// Read further args as RPC URLs
let default_nodes = vec![
"http://xmr-node.cakewallet.com:18081".to_string(),
"https://node.sethforprivacy.com".to_string(),
];
let mut specified_nodes = vec![];
{
let mut i = 0;
loop {
let Some(node) = args.get(3 + i) else { break };
specified_nodes.push(node.clone());
i += 1;
}
}
let nodes = if specified_nodes.is_empty() { default_nodes } else { specified_nodes };
let rpc = |url: String| async move {
HttpRpc::new(url.clone())
.await
.unwrap_or_else(|_| panic!("couldn't create HttpRpc connected to {url}"))
};
let main_rpc = rpc(nodes[0].clone()).await;
let mut rpcs = vec![];
for i in 0 .. async_parallelism {
rpcs.push(Arc::new(rpc(nodes[i % nodes.len()].clone()).await));
}
let mut rpc_i = 0;
let mut handles: Vec<JoinHandle<()>> = vec![];
let mut height = 0;
loop {
let new_height = main_rpc.get_height().await.expect("couldn't call get_height");
if new_height == height {
break;
}
height = new_height;
while block_i < height {
if handles.len() >= async_parallelism {
// Guarantee one handle is complete
handles.swap_remove(0).await.unwrap();
// Remove all of the finished handles
let mut i = 0;
while i < handles.len() {
if handles[i].is_finished() {
handles.swap_remove(i).await.unwrap();
continue;
}
i += 1;
}
}
handles.push(tokio::spawn(check_block(rpcs[rpc_i].clone(), block_i)));
rpc_i = (rpc_i + 1) % rpcs.len();
block_i += 1;
}
}
}
#[cfg(not(feature = "binaries"))]
fn main() {
panic!("To run binaries, please build with `--feature binaries`.");
}

View File

@@ -1,31 +1,19 @@
use std_shims::{
vec::Vec,
io::{self, Read, Write},
};
use crate::{
hash,
merkle::merkle_root,
serialize::*,
transaction::{Input, Transaction},
transaction::Transaction
};
const CORRECT_BLOCK_HASH_202612: [u8; 32] =
hex_literal::hex!("426d16cff04c71f8b16340b722dc4010a2dd3831c22041431f772547ba6e331a");
const EXISTING_BLOCK_HASH_202612: [u8; 32] =
hex_literal::hex!("bbd604d2ba11ba27935e006ed39c9bfdd99b76bf4a50654bc1e1e61217962698");
#[derive(Clone, PartialEq, Eq, Debug)]
#[derive(Clone, PartialEq, Debug)]
pub struct BlockHeader {
pub major_version: u8,
pub minor_version: u8,
pub major_version: u64,
pub minor_version: u64,
pub timestamp: u64,
pub previous: [u8; 32],
pub nonce: u32,
pub nonce: u32
}
impl BlockHeader {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
write_varint(&self.major_version, w)?;
write_varint(&self.minor_version, w)?;
write_varint(&self.timestamp, w)?;
@@ -33,91 +21,46 @@ impl BlockHeader {
w.write_all(&self.nonce.to_le_bytes())
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).unwrap();
serialized
}
pub fn read<R: Read>(r: &mut R) -> io::Result<BlockHeader> {
Ok(BlockHeader {
major_version: read_varint(r)?,
minor_version: read_varint(r)?,
timestamp: read_varint(r)?,
previous: read_bytes(r)?,
nonce: read_bytes(r).map(u32::from_le_bytes)?,
})
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<BlockHeader> {
Ok(
BlockHeader {
major_version: read_varint(r)?,
minor_version: read_varint(r)?,
timestamp: read_varint(r)?,
previous: { let mut previous = [0; 32]; r.read_exact(&mut previous)?; previous },
nonce: { let mut nonce = [0; 4]; r.read_exact(&mut nonce)?; u32::from_le_bytes(nonce) }
}
)
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
#[derive(Clone, PartialEq, Debug)]
pub struct Block {
pub header: BlockHeader,
pub miner_tx: Transaction,
pub txs: Vec<[u8; 32]>,
pub txs: Vec<[u8; 32]>
}
impl Block {
pub fn number(&self) -> usize {
match self.miner_tx.prefix.inputs.first() {
Some(Input::Gen(number)) => (*number).try_into().unwrap(),
_ => panic!("invalid block, miner TX didn't have a Input::Gen"),
}
}
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.header.write(w)?;
self.miner_tx.write(w)?;
write_varint(&self.txs.len(), w)?;
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
self.header.serialize(w)?;
self.miner_tx.serialize(w)?;
write_varint(&self.txs.len().try_into().unwrap(), w)?;
for tx in &self.txs {
w.write_all(tx)?;
}
Ok(())
}
fn tx_merkle_root(&self) -> [u8; 32] {
merkle_root(self.miner_tx.hash(), &self.txs)
}
/// Serialize the block as required for the proof of work hash.
///
/// This is distinct from the serialization required for the block hash. To get the block hash,
/// use the [`Block::hash`] function.
pub fn serialize_hashable(&self) -> Vec<u8> {
let mut blob = self.header.serialize();
blob.extend_from_slice(&self.tx_merkle_root());
write_varint(&(1 + u64::try_from(self.txs.len()).unwrap()), &mut blob).unwrap();
blob
}
pub fn hash(&self) -> [u8; 32] {
let mut hashable = self.serialize_hashable();
// Monero pre-appends a VarInt of the block hashing blobs length before getting the block hash
// but doesn't do this when getting the proof of work hash :)
let mut hashing_blob = Vec::with_capacity(8 + hashable.len());
write_varint(&u64::try_from(hashable.len()).unwrap(), &mut hashing_blob).unwrap();
hashing_blob.append(&mut hashable);
let hash = hash(&hashing_blob);
if hash == CORRECT_BLOCK_HASH_202612 {
return EXISTING_BLOCK_HASH_202612;
};
hash
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).unwrap();
serialized
}
pub fn read<R: Read>(r: &mut R) -> io::Result<Block> {
Ok(Block {
header: BlockHeader::read(r)?,
miner_tx: Transaction::read(r)?,
txs: (0_usize .. read_varint(r)?).map(|_| read_bytes(r)).collect::<Result<_, _>>()?,
})
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<Block> {
Ok(
Block {
header: BlockHeader::deserialize(r)?,
miner_tx: Transaction::deserialize(r)?,
txs: (0 .. read_varint(r)?).map(
|_| { let mut tx = [0; 32]; r.read_exact(&mut tx).map(|_| tx) }
).collect::<Result<_, _>>()?
}
)
}
}

76
coins/monero/src/frost.rs Normal file
View File

@@ -0,0 +1,76 @@
use std::io::Read;
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
use group::{Group, GroupEncoding};
use transcript::{Transcript, RecommendedTranscript};
use dalek_ff_group as dfg;
use dleq::{Generators, DLEqProof};
#[derive(Clone, Error, Debug)]
pub enum MultisigError {
#[error("internal error ({0})")]
InternalError(String),
#[error("invalid discrete log equality proof")]
InvalidDLEqProof(u16),
#[error("invalid key image {0}")]
InvalidKeyImage(u16)
}
fn transcript() -> RecommendedTranscript {
RecommendedTranscript::new(b"monero_key_image_dleq")
}
#[allow(non_snake_case)]
pub(crate) fn write_dleq<R: RngCore + CryptoRng>(
rng: &mut R,
H: EdwardsPoint,
x: Scalar
) -> Vec<u8> {
let mut res = Vec::with_capacity(64);
DLEqProof::prove(
rng,
// Doesn't take in a larger transcript object due to the usage of this
// Every prover would immediately write their own DLEq proof, when they can only do so in
// the proper order if they want to reach consensus
// It'd be a poor API to have CLSAG define a new transcript solely to pass here, just to try to
// merge later in some form, when it should instead just merge xH (as it does)
&mut transcript(),
Generators::new(dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(H)),
dfg::Scalar(x)
).serialize(&mut res).unwrap();
res
}
#[allow(non_snake_case)]
pub(crate) fn read_dleq<Re: Read>(
serialized: &mut Re,
H: EdwardsPoint,
l: u16,
xG: dfg::EdwardsPoint
) -> Result<dfg::EdwardsPoint, MultisigError> {
let mut bytes = [0; 32];
serialized.read_exact(&mut bytes).map_err(|_| MultisigError::InvalidDLEqProof(l))?;
// dfg ensures the point is torsion free
let xH = Option::<dfg::EdwardsPoint>::from(
dfg::EdwardsPoint::from_bytes(&bytes)).ok_or(MultisigError::InvalidDLEqProof(l)
)?;
// Ensure this is a canonical point
if xH.to_bytes() != bytes {
Err(MultisigError::InvalidDLEqProof(l))?;
}
DLEqProof::<dfg::EdwardsPoint>::deserialize(
serialized
).map_err(|_| MultisigError::InvalidDLEqProof(l))?.verify(
&mut transcript(),
Generators::new(dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(H)),
(xG, xH)
).map_err(|_| MultisigError::InvalidDLEqProof(l))?;
Ok(xH)
}

View File

@@ -1,225 +1,100 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(not(feature = "std"))]
#[macro_use]
extern crate alloc;
use std_shims::{sync::OnceLock, io};
use std::slice;
use lazy_static::lazy_static;
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop};
use subtle::ConstantTimeEq;
use sha3::{Digest, Keccak256};
use tiny_keccak::{Hasher, Keccak};
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar, edwards::EdwardsPoint};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
scalar::Scalar,
edwards::{EdwardsPoint, EdwardsBasepointTable, CompressedEdwardsY}
};
pub use monero_generators::H;
mod merkle;
#[cfg(feature = "multisig")]
pub mod frost;
mod serialize;
use serialize::{read_byte, read_u16};
/// UnreducedScalar struct with functionality for recovering incorrectly reduced scalars.
mod unreduced_scalar;
/// Ring Signature structs and functionality.
pub mod ring_signatures;
/// RingCT structs and functionality.
pub mod ringct;
use ringct::RctType;
/// Transaction structs.
pub mod transaction;
/// Block structs.
pub mod block;
/// Monero daemon RPC interface.
pub mod rpc;
/// Wallet functionality, enabling scanning and sending transactions.
pub mod wallet;
#[cfg(test)]
mod tests;
static INV_EIGHT_CELL: OnceLock<Scalar> = OnceLock::new();
lazy_static! {
static ref H: EdwardsPoint = CompressedEdwardsY(
hex::decode("8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94").unwrap().try_into().unwrap()
).decompress().unwrap();
static ref H_TABLE: EdwardsBasepointTable = EdwardsBasepointTable::create(&*H);
}
// Function from libsodium our subsection of Monero relies on. Implementing it here means we don't
// need to link against libsodium
#[no_mangle]
unsafe extern "C" fn crypto_verify_32(a: *const u8, b: *const u8) -> isize {
isize::from(
slice::from_raw_parts(a, 32).ct_eq(slice::from_raw_parts(b, 32)).unwrap_u8()
) - 1
}
// Offer a wide reduction to C. Our seeded RNG prevented Monero from defining an unbiased scalar
// generation function, and in order to not use Monero code (which would require propagating its
// license), the function was rewritten. It was rewritten with wide reduction, instead of rejection
// sampling however, hence the need for this function
#[no_mangle]
unsafe extern "C" fn monero_wide_reduce(value: *mut u8) {
let res = Scalar::from_bytes_mod_order_wide(
std::slice::from_raw_parts(value, 64).try_into().unwrap()
);
for (i, b) in res.to_bytes().iter().enumerate() {
value.add(i).write(*b);
}
}
#[allow(non_snake_case)]
pub(crate) fn INV_EIGHT() -> Scalar {
*INV_EIGHT_CELL.get_or_init(|| Scalar::from(8u8).invert())
}
/// Monero protocol version.
///
/// v15 is omitted as v15 was simply v14 and v16 being active at the same time, with regards to the
/// transactions supported. Accordingly, v16 should be used during v15.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
#[allow(non_camel_case_types)]
pub enum Protocol {
v14,
v16,
Custom {
ring_len: usize,
bp_plus: bool,
optimal_rct_type: RctType,
view_tags: bool,
v16_fee: bool,
},
}
impl Protocol {
/// Amount of ring members under this protocol version.
pub fn ring_len(&self) -> usize {
match self {
Protocol::v14 => 11,
Protocol::v16 => 16,
Protocol::Custom { ring_len, .. } => *ring_len,
}
}
/// Whether or not the specified version uses Bulletproofs or Bulletproofs+.
///
/// This method will likely be reworked when versions not using Bulletproofs at all are added.
pub fn bp_plus(&self) -> bool {
match self {
Protocol::v14 => false,
Protocol::v16 => true,
Protocol::Custom { bp_plus, .. } => *bp_plus,
}
}
// TODO: Make this an Option when we support pre-RCT protocols
pub fn optimal_rct_type(&self) -> RctType {
match self {
Protocol::v14 => RctType::Clsag,
Protocol::v16 => RctType::BulletproofsPlus,
Protocol::Custom { optimal_rct_type, .. } => *optimal_rct_type,
}
}
/// Whether or not the specified version uses view tags.
pub fn view_tags(&self) -> bool {
match self {
Protocol::v14 => false,
Protocol::v16 => true,
Protocol::Custom { view_tags, .. } => *view_tags,
}
}
/// Whether or not the specified version uses the fee algorithm from Monero
/// hard fork version 16 (released in v18 binaries).
pub fn v16_fee(&self) -> bool {
match self {
Protocol::v14 => false,
Protocol::v16 => true,
Protocol::Custom { v16_fee, .. } => *v16_fee,
}
}
pub(crate) fn write<W: io::Write>(&self, w: &mut W) -> io::Result<()> {
match self {
Protocol::v14 => w.write_all(&[0, 14]),
Protocol::v16 => w.write_all(&[0, 16]),
Protocol::Custom { ring_len, bp_plus, optimal_rct_type, view_tags, v16_fee } => {
// Custom, version 0
w.write_all(&[1, 0])?;
w.write_all(&u16::try_from(*ring_len).unwrap().to_le_bytes())?;
w.write_all(&[u8::from(*bp_plus)])?;
w.write_all(&[optimal_rct_type.to_byte()])?;
w.write_all(&[u8::from(*view_tags)])?;
w.write_all(&[u8::from(*v16_fee)])
}
}
}
pub(crate) fn read<R: io::Read>(r: &mut R) -> io::Result<Protocol> {
Ok(match read_byte(r)? {
// Monero protocol
0 => match read_byte(r)? {
14 => Protocol::v14,
16 => Protocol::v16,
_ => Err(io::Error::other("unrecognized monero protocol"))?,
},
// Custom
1 => match read_byte(r)? {
0 => Protocol::Custom {
ring_len: read_u16(r)?.into(),
bp_plus: match read_byte(r)? {
0 => false,
1 => true,
_ => Err(io::Error::other("invalid bool serialization"))?,
},
optimal_rct_type: RctType::from_byte(read_byte(r)?)
.ok_or_else(|| io::Error::other("invalid RctType serialization"))?,
view_tags: match read_byte(r)? {
0 => false,
1 => true,
_ => Err(io::Error::other("invalid bool serialization"))?,
},
v16_fee: match read_byte(r)? {
0 => false,
1 => true,
_ => Err(io::Error::other("invalid bool serialization"))?,
},
},
_ => Err(io::Error::other("unrecognized custom protocol serialization"))?,
},
_ => Err(io::Error::other("unrecognized protocol serialization"))?,
})
}
}
/// Transparent structure representing a Pedersen commitment's contents.
#[allow(non_snake_case)]
#[derive(Clone, PartialEq, Eq, Zeroize, ZeroizeOnDrop)]
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Commitment {
pub mask: Scalar,
pub amount: u64,
}
impl core::fmt::Debug for Commitment {
fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
fmt.debug_struct("Commitment").field("amount", &self.amount).finish_non_exhaustive()
}
pub amount: u64
}
impl Commitment {
/// A commitment to zero, defined with a mask of 1 (as to not be the identity).
pub fn zero() -> Commitment {
Commitment { mask: Scalar::ONE, amount: 0 }
Commitment { mask: Scalar::one(), amount: 0}
}
pub fn new(mask: Scalar, amount: u64) -> Commitment {
Commitment { mask, amount }
}
/// Calculate a Pedersen commitment, as a point, from the transparent structure.
pub fn calculate(&self) -> EdwardsPoint {
(&self.mask * ED25519_BASEPOINT_TABLE) + (Scalar::from(self.amount) * H())
(&self.mask * &ED25519_BASEPOINT_TABLE) + (&Scalar::from(self.amount) * &*H_TABLE)
}
}
/// Support generating a random scalar using a modern rand, as dalek's is notoriously dated.
// Allows using a modern rand as dalek's is notoriously dated
pub fn random_scalar<R: RngCore + CryptoRng>(rng: &mut R) -> Scalar {
let mut r = [0; 64];
rng.fill_bytes(&mut r);
Scalar::from_bytes_mod_order_wide(&r)
}
pub(crate) fn hash(data: &[u8]) -> [u8; 32] {
Keccak256::digest(data).into()
pub fn hash(data: &[u8]) -> [u8; 32] {
let mut keccak = Keccak::v256();
keccak.update(data);
let mut res = [0; 32];
keccak.finalize(&mut res);
res
}
/// Hash the provided data to a scalar via keccak256(data) % l.
pub fn hash_to_scalar(data: &[u8]) -> Scalar {
let scalar = Scalar::from_bytes_mod_order(hash(data));
// Monero will explicitly error in this case
// This library acknowledges its practical impossibility of it occurring, and doesn't bother to
// code in logic to handle it. That said, if it ever occurs, something must happen in order to
// not generate/verify a proof we believe to be valid when it isn't
assert!(scalar != Scalar::ZERO, "ZERO HASH: {data:?}");
scalar
Scalar::from_bytes_mod_order(hash(&data))
}

View File

@@ -1,55 +0,0 @@
use std_shims::vec::Vec;
use crate::hash;
pub(crate) fn merkle_root(root: [u8; 32], leafs: &[[u8; 32]]) -> [u8; 32] {
match leafs.len() {
0 => root,
1 => hash(&[root, leafs[0]].concat()),
_ => {
let mut hashes = Vec::with_capacity(1 + leafs.len());
hashes.push(root);
hashes.extend(leafs);
// Monero preprocess this so the length is a power of 2
let mut high_pow_2 = 4; // 4 is the lowest value this can be
while high_pow_2 < hashes.len() {
high_pow_2 *= 2;
}
let low_pow_2 = high_pow_2 / 2;
// Merge right-most hashes until we're at the low_pow_2
{
let overage = hashes.len() - low_pow_2;
let mut rightmost = hashes.drain((low_pow_2 - overage) ..);
// This is true since we took overage from beneath and above low_pow_2, taking twice as
// many elements as overage
debug_assert_eq!(rightmost.len() % 2, 0);
let mut paired_hashes = Vec::with_capacity(overage);
while let Some(left) = rightmost.next() {
let right = rightmost.next().unwrap();
paired_hashes.push(hash(&[left.as_ref(), &right].concat()));
}
drop(rightmost);
hashes.extend(paired_hashes);
assert_eq!(hashes.len(), low_pow_2);
}
// Do a traditional pairing off
let mut new_hashes = Vec::with_capacity(hashes.len() / 2);
while hashes.len() > 1 {
let mut i = 0;
while i < hashes.len() {
new_hashes.push(hash(&[hashes[i], hashes[i + 1]].concat()));
i += 2;
}
hashes = new_hashes;
new_hashes = Vec::with_capacity(hashes.len() / 2);
}
hashes[0]
}
}
}

View File

@@ -1,72 +0,0 @@
use std_shims::{
io::{self, *},
vec::Vec,
};
use zeroize::Zeroize;
use curve25519_dalek::{EdwardsPoint, Scalar};
use monero_generators::hash_to_point;
use crate::{serialize::*, hash_to_scalar};
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct Signature {
c: Scalar,
r: Scalar,
}
impl Signature {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_scalar(&self.c, w)?;
write_scalar(&self.r, w)?;
Ok(())
}
pub fn read<R: Read>(r: &mut R) -> io::Result<Signature> {
Ok(Signature { c: read_scalar(r)?, r: read_scalar(r)? })
}
}
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct RingSignature {
sigs: Vec<Signature>,
}
impl RingSignature {
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
for sig in &self.sigs {
sig.write(w)?;
}
Ok(())
}
pub fn read<R: Read>(members: usize, r: &mut R) -> io::Result<RingSignature> {
Ok(RingSignature { sigs: read_raw_vec(Signature::read, members, r)? })
}
pub fn verify(&self, msg: &[u8; 32], ring: &[EdwardsPoint], key_image: &EdwardsPoint) -> bool {
if ring.len() != self.sigs.len() {
return false;
}
let mut buf = Vec::with_capacity(32 + (32 * 2 * ring.len()));
buf.extend_from_slice(msg);
let mut sum = Scalar::ZERO;
for (ring_member, sig) in ring.iter().zip(&self.sigs) {
#[allow(non_snake_case)]
let Li = EdwardsPoint::vartime_double_scalar_mul_basepoint(&sig.c, ring_member, &sig.r);
buf.extend_from_slice(Li.compress().as_bytes());
#[allow(non_snake_case)]
let Ri = (sig.r * hash_to_point(ring_member.compress().to_bytes())) + (sig.c * key_image);
buf.extend_from_slice(Ri.compress().as_bytes());
sum += sig.c;
}
sum == hash_to_scalar(&buf)
}
}

View File

@@ -1,97 +0,0 @@
use core::fmt::Debug;
use std_shims::io::{self, Read, Write};
use curve25519_dalek::{traits::Identity, Scalar, EdwardsPoint};
use monero_generators::H_pow_2;
use crate::{hash_to_scalar, unreduced_scalar::UnreducedScalar, serialize::*};
/// 64 Borromean ring signatures.
///
/// s0 and s1 are stored as `UnreducedScalar`s due to Monero not requiring they were reduced.
/// `UnreducedScalar` preserves their original byte encoding and implements a custom reduction
/// algorithm which was in use.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct BorromeanSignatures {
pub s0: [UnreducedScalar; 64],
pub s1: [UnreducedScalar; 64],
pub ee: Scalar,
}
impl BorromeanSignatures {
pub fn read<R: Read>(r: &mut R) -> io::Result<BorromeanSignatures> {
Ok(BorromeanSignatures {
s0: read_array(UnreducedScalar::read, r)?,
s1: read_array(UnreducedScalar::read, r)?,
ee: read_scalar(r)?,
})
}
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
for s0 in &self.s0 {
s0.write(w)?;
}
for s1 in &self.s1 {
s1.write(w)?;
}
write_scalar(&self.ee, w)
}
fn verify(&self, keys_a: &[EdwardsPoint], keys_b: &[EdwardsPoint]) -> bool {
let mut transcript = [0; 2048];
for i in 0 .. 64 {
#[allow(non_snake_case)]
let LL = EdwardsPoint::vartime_double_scalar_mul_basepoint(
&self.ee,
&keys_a[i],
&self.s0[i].recover_monero_slide_scalar(),
);
#[allow(non_snake_case)]
let LV = EdwardsPoint::vartime_double_scalar_mul_basepoint(
&hash_to_scalar(LL.compress().as_bytes()),
&keys_b[i],
&self.s1[i].recover_monero_slide_scalar(),
);
transcript[(i * 32) .. ((i + 1) * 32)].copy_from_slice(LV.compress().as_bytes());
}
hash_to_scalar(&transcript) == self.ee
}
}
/// A range proof premised on Borromean ring signatures.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct BorromeanRange {
pub sigs: BorromeanSignatures,
pub bit_commitments: [EdwardsPoint; 64],
}
impl BorromeanRange {
pub fn read<R: Read>(r: &mut R) -> io::Result<BorromeanRange> {
Ok(BorromeanRange {
sigs: BorromeanSignatures::read(r)?,
bit_commitments: read_array(read_point, r)?,
})
}
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.sigs.write(w)?;
write_raw_vec(write_point, &self.bit_commitments, w)
}
pub fn verify(&self, commitment: &EdwardsPoint) -> bool {
if &self.bit_commitments.iter().sum::<EdwardsPoint>() != commitment {
return false;
}
#[allow(non_snake_case)]
let H_pow_2 = H_pow_2();
let mut commitments_sub_one = [EdwardsPoint::identity(); 64];
for i in 0 .. 64 {
commitments_sub_one[i] = self.bit_commitments[i] - H_pow_2[i];
}
self.sigs.verify(&self.bit_commitments, &commitments_sub_one)
}
}

View File

@@ -0,0 +1,161 @@
#![allow(non_snake_case)]
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
use crate::{Commitment, wallet::TransactionError, serialize::*};
pub(crate) const MAX_OUTPUTS: usize = 16;
#[derive(Clone, PartialEq, Debug)]
pub struct Bulletproofs {
pub A: EdwardsPoint,
pub S: EdwardsPoint,
pub T1: EdwardsPoint,
pub T2: EdwardsPoint,
pub taux: Scalar,
pub mu: Scalar,
pub L: Vec<EdwardsPoint>,
pub R: Vec<EdwardsPoint>,
pub a: Scalar,
pub b: Scalar,
pub t: Scalar
}
impl Bulletproofs {
pub(crate) fn fee_weight(outputs: usize) -> usize {
let proofs = 6 + usize::try_from(usize::BITS - (outputs - 1).leading_zeros()).unwrap();
let len = (9 + (2 * proofs)) * 32;
let mut clawback = 0;
let padded = 1 << (proofs - 6);
if padded > 2 {
const BP_BASE: usize = 368;
clawback = ((BP_BASE * padded) - len) * 4 / 5;
}
len + clawback
}
pub fn new<R: RngCore + CryptoRng>(rng: &mut R, outputs: &[Commitment]) -> Result<Bulletproofs, TransactionError> {
if outputs.len() > MAX_OUTPUTS {
return Err(TransactionError::TooManyOutputs)?;
}
let mut seed = [0; 32];
rng.fill_bytes(&mut seed);
let masks = outputs.iter().map(|commitment| commitment.mask.to_bytes()).collect::<Vec<_>>();
let amounts = outputs.iter().map(|commitment| commitment.amount).collect::<Vec<_>>();
let res;
unsafe {
#[link(name = "wrapper")]
extern "C" {
fn free(ptr: *const u8);
fn c_generate_bp(seed: *const u8, len: u8, amounts: *const u64, masks: *const [u8; 32]) -> *const u8;
}
let ptr = c_generate_bp(
seed.as_ptr(),
u8::try_from(outputs.len()).unwrap(),
amounts.as_ptr(),
masks.as_ptr()
);
let mut len = 6 * 32;
len += (2 * (1 + (usize::from(ptr.add(len).read()) * 32))) + (3 * 32);
res = Bulletproofs::deserialize(
// Wrap in a cursor to provide a mutable Reader
&mut std::io::Cursor::new(std::slice::from_raw_parts(ptr, len))
).expect("Couldn't deserialize Bulletproofs from Monero");
free(ptr);
};
Ok(res)
}
#[must_use]
pub fn verify<R: RngCore + CryptoRng>(&self, rng: &mut R, commitments: &[EdwardsPoint]) -> bool {
if commitments.len() > 16 {
return false;
}
let mut seed = [0; 32];
rng.fill_bytes(&mut seed);
let mut serialized = Vec::with_capacity((9 + (2 * self.L.len())) * 32);
self.serialize(&mut serialized).unwrap();
let commitments: Vec<[u8; 32]> = commitments.iter().map(
|commitment| (commitment * Scalar::from(8u8).invert()).compress().to_bytes()
).collect();
unsafe {
#[link(name = "wrapper")]
extern "C" {
fn c_verify_bp(
seed: *const u8,
serialized_len: usize,
serialized: *const u8,
commitments_len: u8,
commitments: *const [u8; 32]
) -> bool;
}
c_verify_bp(
seed.as_ptr(),
serialized.len(),
serialized.as_ptr(),
u8::try_from(commitments.len()).unwrap(),
commitments.as_ptr()
)
}
}
fn serialize_core<
W: std::io::Write,
F: Fn(&[EdwardsPoint], &mut W) -> std::io::Result<()>
>(&self, w: &mut W, specific_write_vec: F) -> std::io::Result<()> {
write_point(&self.A, w)?;
write_point(&self.S, w)?;
write_point(&self.T1, w)?;
write_point(&self.T2, w)?;
write_scalar(&self.taux, w)?;
write_scalar(&self.mu, w)?;
specific_write_vec(&self.L, w)?;
specific_write_vec(&self.R, w)?;
write_scalar(&self.a, w)?;
write_scalar(&self.b, w)?;
write_scalar(&self.t, w)
}
pub fn signature_serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
self.serialize_core(w, |points, w| write_raw_vec(write_point, points, w))
}
pub fn serialize<W: std::io::Write>(&self, w: &mut W) -> std::io::Result<()> {
self.serialize_core(w, |points, w| write_vec(write_point, points, w))
}
pub fn deserialize<R: std::io::Read>(r: &mut R) -> std::io::Result<Bulletproofs> {
let bp = Bulletproofs {
A: read_point(r)?,
S: read_point(r)?,
T1: read_point(r)?,
T2: read_point(r)?,
taux: read_scalar(r)?,
mu: read_scalar(r)?,
L: read_vec(read_point, r)?,
R: read_vec(read_point, r)?,
a: read_scalar(r)?,
b: read_scalar(r)?,
t: read_scalar(r)?
};
if bp.L.len() != bp.R.len() {
Err(std::io::Error::new(std::io::ErrorKind::Other, "mismatched L/R len"))?;
}
Ok(bp)
}
}

View File

@@ -1,153 +0,0 @@
use std_shims::{vec::Vec, sync::OnceLock};
use rand_core::{RngCore, CryptoRng};
use subtle::{Choice, ConditionallySelectable};
use curve25519_dalek::edwards::EdwardsPoint as DalekPoint;
use group::{ff::Field, Group};
use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::multiexp as multiexp_const;
pub(crate) use monero_generators::Generators;
use crate::{INV_EIGHT as DALEK_INV_EIGHT, H as DALEK_H, Commitment, hash_to_scalar as dalek_hash};
pub(crate) use crate::ringct::bulletproofs::scalar_vector::*;
#[inline]
pub(crate) fn INV_EIGHT() -> Scalar {
Scalar(DALEK_INV_EIGHT())
}
#[inline]
pub(crate) fn H() -> EdwardsPoint {
EdwardsPoint(DALEK_H())
}
pub(crate) fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar(dalek_hash(data))
}
// Components common between variants
pub(crate) const MAX_M: usize = 16;
pub(crate) const LOG_N: usize = 6; // 2 << 6 == N
pub(crate) const N: usize = 64;
pub(crate) fn prove_multiexp(pairs: &[(Scalar, EdwardsPoint)]) -> EdwardsPoint {
multiexp_const(pairs) * INV_EIGHT()
}
pub(crate) fn vector_exponent(
generators: &Generators,
a: &ScalarVector,
b: &ScalarVector,
) -> EdwardsPoint {
debug_assert_eq!(a.len(), b.len());
(a * &generators.G[.. a.len()]) + (b * &generators.H[.. b.len()])
}
pub(crate) fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
let slice =
&[cache.to_bytes().as_ref(), mash.iter().copied().flatten().collect::<Vec<_>>().as_ref()]
.concat();
*cache = hash_to_scalar(slice);
*cache
}
pub(crate) fn MN(outputs: usize) -> (usize, usize, usize) {
let mut logM = 0;
let mut M;
while {
M = 1 << logM;
(M <= MAX_M) && (M < outputs)
} {
logM += 1;
}
(logM + LOG_N, M, M * N)
}
pub(crate) fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
let (_, M, MN) = MN(commitments.len());
let sv = commitments.iter().map(|c| Scalar::from(c.amount)).collect::<Vec<_>>();
let mut aL = ScalarVector::new(MN);
let mut aR = ScalarVector::new(MN);
for j in 0 .. M {
for i in (0 .. N).rev() {
let mut bit = Choice::from(0);
if j < sv.len() {
bit = Choice::from((sv[j][i / 8] >> (i % 8)) & 1);
}
aL.0[(j * N) + i] = Scalar::conditional_select(&Scalar::ZERO, &Scalar::ONE, bit);
aR.0[(j * N) + i] = Scalar::conditional_select(&-Scalar::ONE, &Scalar::ZERO, bit);
}
}
(aL, aR)
}
pub(crate) fn hash_commitments<C: IntoIterator<Item = DalekPoint>>(
commitments: C,
) -> (Scalar, Vec<EdwardsPoint>) {
let V = commitments.into_iter().map(|c| EdwardsPoint(c) * INV_EIGHT()).collect::<Vec<_>>();
(hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>()), V)
}
pub(crate) fn alpha_rho<R: RngCore + CryptoRng>(
rng: &mut R,
generators: &Generators,
aL: &ScalarVector,
aR: &ScalarVector,
) -> (Scalar, EdwardsPoint) {
let ar = Scalar::random(rng);
(ar, (vector_exponent(generators, aL, aR) + (EdwardsPoint::generator() * ar)) * INV_EIGHT())
}
pub(crate) fn LR_statements(
a: &ScalarVector,
G_i: &[EdwardsPoint],
b: &ScalarVector,
H_i: &[EdwardsPoint],
cL: Scalar,
U: EdwardsPoint,
) -> Vec<(Scalar, EdwardsPoint)> {
let mut res = a
.0
.iter()
.copied()
.zip(G_i.iter().copied())
.chain(b.0.iter().copied().zip(H_i.iter().copied()))
.collect::<Vec<_>>();
res.push((cL, U));
res
}
static TWO_N_CELL: OnceLock<ScalarVector> = OnceLock::new();
pub(crate) fn TWO_N() -> &'static ScalarVector {
TWO_N_CELL.get_or_init(|| ScalarVector::powers(Scalar::from(2u8), N))
}
pub(crate) fn challenge_products(w: &[Scalar], winv: &[Scalar]) -> Vec<Scalar> {
let mut products = vec![Scalar::ZERO; 1 << w.len()];
products[0] = winv[0];
products[1] = w[0];
for j in 1 .. w.len() {
let mut slots = (1 << (j + 1)) - 1;
while slots > 0 {
products[slots] = products[slots / 2] * w[j];
products[slots - 1] = products[slots / 2] * winv[j];
slots = slots.saturating_sub(2);
}
}
// Sanity check as if the above failed to populate, it'd be critical
for w in &products {
debug_assert!(!bool::from(w.is_zero()));
}
products
}

View File

@@ -1,229 +0,0 @@
#![allow(non_snake_case)]
use std_shims::{
vec::Vec,
io::{self, Read, Write},
};
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use curve25519_dalek::edwards::EdwardsPoint;
use multiexp::BatchVerifier;
use crate::{Commitment, wallet::TransactionError, serialize::*};
pub(crate) mod scalar_vector;
pub(crate) mod core;
use self::core::LOG_N;
pub(crate) mod original;
use self::original::OriginalStruct;
pub(crate) mod plus;
use self::plus::*;
pub(crate) const MAX_OUTPUTS: usize = self::core::MAX_M;
/// Bulletproofs enum, supporting the original and plus formulations.
#[allow(clippy::large_enum_variant)]
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Bulletproofs {
Original(OriginalStruct),
Plus(AggregateRangeProof),
}
impl Bulletproofs {
fn bp_fields(plus: bool) -> usize {
if plus {
6
} else {
9
}
}
// https://github.com/monero-project/monero/blob/94e67bf96bbc010241f29ada6abc89f49a81759c/
// src/cryptonote_basic/cryptonote_format_utils.cpp#L106-L124
pub(crate) fn calculate_bp_clawback(plus: bool, n_outputs: usize) -> (usize, usize) {
#[allow(non_snake_case)]
let mut LR_len = 0;
let mut n_padded_outputs = 1;
while n_padded_outputs < n_outputs {
LR_len += 1;
n_padded_outputs = 1 << LR_len;
}
LR_len += LOG_N;
let mut bp_clawback = 0;
if n_padded_outputs > 2 {
let fields = Bulletproofs::bp_fields(plus);
let base = ((fields + (2 * (LOG_N + 1))) * 32) / 2;
let size = (fields + (2 * LR_len)) * 32;
bp_clawback = ((base * n_padded_outputs) - size) * 4 / 5;
}
(bp_clawback, LR_len)
}
pub(crate) fn fee_weight(plus: bool, outputs: usize) -> usize {
#[allow(non_snake_case)]
let (bp_clawback, LR_len) = Bulletproofs::calculate_bp_clawback(plus, outputs);
32 * (Bulletproofs::bp_fields(plus) + (2 * LR_len)) + 2 + bp_clawback
}
/// Prove the list of commitments are within [0 .. 2^64).
pub fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
outputs: &[Commitment],
plus: bool,
) -> Result<Bulletproofs, TransactionError> {
if outputs.is_empty() {
Err(TransactionError::NoOutputs)?;
}
if outputs.len() > MAX_OUTPUTS {
Err(TransactionError::TooManyOutputs)?;
}
Ok(if !plus {
Bulletproofs::Original(OriginalStruct::prove(rng, outputs))
} else {
use dalek_ff_group::EdwardsPoint as DfgPoint;
Bulletproofs::Plus(
AggregateRangeStatement::new(outputs.iter().map(|com| DfgPoint(com.calculate())).collect())
.unwrap()
.prove(rng, AggregateRangeWitness::new(outputs).unwrap())
.unwrap(),
)
})
}
/// Verify the given Bulletproofs.
#[must_use]
pub fn verify<R: RngCore + CryptoRng>(&self, rng: &mut R, commitments: &[EdwardsPoint]) -> bool {
match self {
Bulletproofs::Original(bp) => bp.verify(rng, commitments),
Bulletproofs::Plus(bp) => {
let mut verifier = BatchVerifier::new(1);
// If this commitment is torsioned (which is allowed), this won't be a well-formed
// dfg::EdwardsPoint (expected to be of prime-order)
// The actual BP+ impl will perform a torsion clear though, making this safe
// TODO: Have AggregateRangeStatement take in dalek EdwardsPoint for clarity on this
let Some(statement) = AggregateRangeStatement::new(
commitments.iter().map(|c| dalek_ff_group::EdwardsPoint(*c)).collect(),
) else {
return false;
};
if !statement.verify(rng, &mut verifier, (), bp.clone()) {
return false;
}
verifier.verify_vartime()
}
}
}
/// Accumulate the verification for the given Bulletproofs into the specified BatchVerifier.
/// Returns false if the Bulletproofs aren't sane, without mutating the BatchVerifier.
/// Returns true if the Bulletproofs are sane, regardless of their validity.
#[must_use]
pub fn batch_verify<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, dalek_ff_group::EdwardsPoint>,
id: ID,
commitments: &[EdwardsPoint],
) -> bool {
match self {
Bulletproofs::Original(bp) => bp.batch_verify(rng, verifier, id, commitments),
Bulletproofs::Plus(bp) => {
let Some(statement) = AggregateRangeStatement::new(
commitments.iter().map(|c| dalek_ff_group::EdwardsPoint(*c)).collect(),
) else {
return false;
};
statement.verify(rng, verifier, id, bp.clone())
}
}
}
fn write_core<W: Write, F: Fn(&[EdwardsPoint], &mut W) -> io::Result<()>>(
&self,
w: &mut W,
specific_write_vec: F,
) -> io::Result<()> {
match self {
Bulletproofs::Original(bp) => {
write_point(&bp.A, w)?;
write_point(&bp.S, w)?;
write_point(&bp.T1, w)?;
write_point(&bp.T2, w)?;
write_scalar(&bp.taux, w)?;
write_scalar(&bp.mu, w)?;
specific_write_vec(&bp.L, w)?;
specific_write_vec(&bp.R, w)?;
write_scalar(&bp.a, w)?;
write_scalar(&bp.b, w)?;
write_scalar(&bp.t, w)
}
Bulletproofs::Plus(bp) => {
write_point(&bp.A.0, w)?;
write_point(&bp.wip.A.0, w)?;
write_point(&bp.wip.B.0, w)?;
write_scalar(&bp.wip.r_answer.0, w)?;
write_scalar(&bp.wip.s_answer.0, w)?;
write_scalar(&bp.wip.delta_answer.0, w)?;
specific_write_vec(&bp.wip.L.iter().cloned().map(|L| L.0).collect::<Vec<_>>(), w)?;
specific_write_vec(&bp.wip.R.iter().cloned().map(|R| R.0).collect::<Vec<_>>(), w)
}
}
}
pub(crate) fn signature_write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.write_core(w, |points, w| write_raw_vec(write_point, points, w))
}
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
self.write_core(w, |points, w| write_vec(write_point, points, w))
}
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).unwrap();
serialized
}
/// Read Bulletproofs.
pub fn read<R: Read>(r: &mut R) -> io::Result<Bulletproofs> {
Ok(Bulletproofs::Original(OriginalStruct {
A: read_point(r)?,
S: read_point(r)?,
T1: read_point(r)?,
T2: read_point(r)?,
taux: read_scalar(r)?,
mu: read_scalar(r)?,
L: read_vec(read_point, r)?,
R: read_vec(read_point, r)?,
a: read_scalar(r)?,
b: read_scalar(r)?,
t: read_scalar(r)?,
}))
}
/// Read Bulletproofs+.
pub fn read_plus<R: Read>(r: &mut R) -> io::Result<Bulletproofs> {
use dalek_ff_group::{Scalar as DfgScalar, EdwardsPoint as DfgPoint};
Ok(Bulletproofs::Plus(AggregateRangeProof {
A: DfgPoint(read_point(r)?),
wip: WipProof {
A: DfgPoint(read_point(r)?),
B: DfgPoint(read_point(r)?),
r_answer: DfgScalar(read_scalar(r)?),
s_answer: DfgScalar(read_scalar(r)?),
delta_answer: DfgScalar(read_scalar(r)?),
L: read_vec(read_point, r)?.into_iter().map(DfgPoint).collect(),
R: read_vec(read_point, r)?.into_iter().map(DfgPoint).collect(),
},
}))
}
}

View File

@@ -1,309 +0,0 @@
use std_shims::{vec::Vec, sync::OnceLock};
use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
use group::{ff::Field, Group};
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
use multiexp::BatchVerifier;
use crate::{Commitment, ringct::bulletproofs::core::*};
include!(concat!(env!("OUT_DIR"), "/generators.rs"));
static IP12_CELL: OnceLock<Scalar> = OnceLock::new();
pub(crate) fn IP12() -> Scalar {
*IP12_CELL.get_or_init(|| inner_product(&ScalarVector(vec![Scalar::ONE; N]), TWO_N()))
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct OriginalStruct {
pub(crate) A: DalekPoint,
pub(crate) S: DalekPoint,
pub(crate) T1: DalekPoint,
pub(crate) T2: DalekPoint,
pub(crate) taux: DalekScalar,
pub(crate) mu: DalekScalar,
pub(crate) L: Vec<DalekPoint>,
pub(crate) R: Vec<DalekPoint>,
pub(crate) a: DalekScalar,
pub(crate) b: DalekScalar,
pub(crate) t: DalekScalar,
}
impl OriginalStruct {
pub(crate) fn prove<R: RngCore + CryptoRng>(
rng: &mut R,
commitments: &[Commitment],
) -> OriginalStruct {
let (logMN, M, MN) = MN(commitments.len());
let (aL, aR) = bit_decompose(commitments);
let commitments_points = commitments.iter().map(Commitment::calculate).collect::<Vec<_>>();
let (mut cache, _) = hash_commitments(commitments_points.clone());
let (sL, sR) =
ScalarVector((0 .. (MN * 2)).map(|_| Scalar::random(&mut *rng)).collect::<Vec<_>>()).split();
let generators = GENERATORS();
let (mut alpha, A) = alpha_rho(&mut *rng, generators, &aL, &aR);
let (mut rho, S) = alpha_rho(&mut *rng, generators, &sL, &sR);
let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]);
let mut cache = hash_to_scalar(&y.to_bytes());
let z = cache;
let l0 = &aL - z;
let l1 = sL;
let mut zero_twos = Vec::with_capacity(MN);
let zpow = ScalarVector::powers(z, M + 2);
for j in 0 .. M {
for i in 0 .. N {
zero_twos.push(zpow[j + 2] * TWO_N()[i]);
}
}
let yMN = ScalarVector::powers(y, MN);
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
let r1 = yMN * sR;
let (T1, T2, x, mut taux) = {
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
let t2 = inner_product(&l1, &r1);
let mut tau1 = Scalar::random(&mut *rng);
let mut tau2 = Scalar::random(&mut *rng);
let T1 = prove_multiexp(&[(t1, H()), (tau1, EdwardsPoint::generator())]);
let T2 = prove_multiexp(&[(t2, H()), (tau2, EdwardsPoint::generator())]);
let x =
hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]);
let taux = (tau2 * (x * x)) + (tau1 * x);
tau1.zeroize();
tau2.zeroize();
(T1, T2, x, taux)
};
let mu = (x * rho) + alpha;
alpha.zeroize();
rho.zeroize();
for (i, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
taux += zpow[i + 2] * gamma;
}
let l = &l0 + &(l1 * x);
let r = &r0 + &(r1 * x);
let t = inner_product(&l, &r);
let x_ip =
hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
let mut a = l;
let mut b = r;
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let mut G_proof = generators.G[.. a.len()].to_vec();
let mut H_proof = generators.H[.. a.len()].to_vec();
H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow);
let U = H() * x_ip;
let mut L = Vec::with_capacity(logMN);
let mut R = Vec::with_capacity(logMN);
while a.len() != 1 {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = inner_product(&aL, &bR);
let cR = inner_product(&aR, &bL);
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
let L_i = prove_multiexp(&LR_statements(&aL, G_R, &bR, H_L, cL, U));
let R_i = prove_multiexp(&LR_statements(&aR, G_L, &bL, H_R, cR, U));
L.push(L_i);
R.push(R_i);
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let winv = w.invert().unwrap();
a = (aL * w) + (aR * winv);
b = (bL * winv) + (bR * w);
if a.len() != 1 {
G_proof = hadamard_fold(G_L, G_R, winv, w);
H_proof = hadamard_fold(H_L, H_R, w, winv);
}
}
let res = OriginalStruct {
A: *A,
S: *S,
T1: *T1,
T2: *T2,
taux: *taux,
mu: *mu,
L: L.drain(..).map(|L| *L).collect(),
R: R.drain(..).map(|R| *R).collect(),
a: *a[0],
b: *b[0],
t: *t,
};
debug_assert!(res.verify(rng, &commitments_points));
res
}
#[must_use]
fn verify_core<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
// Verify commitments are valid
if commitments.is_empty() || (commitments.len() > MAX_M) {
return false;
}
// Verify L and R are properly sized
if self.L.len() != self.R.len() {
return false;
}
let (logMN, M, MN) = MN(commitments.len());
if self.L.len() != logMN {
return false;
}
// Rebuild all challenges
let (mut cache, commitments) = hash_commitments(commitments.iter().copied());
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]);
let z = hash_to_scalar(&y.to_bytes());
cache = z;
let x = hash_cache(
&mut cache,
&[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()],
);
let x_ip = hash_cache(
&mut cache,
&[x.to_bytes(), self.taux.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()],
);
let mut w = Vec::with_capacity(logMN);
let mut winv = Vec::with_capacity(logMN);
for (L, R) in self.L.iter().zip(&self.R) {
w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]));
winv.push(cache.invert().unwrap());
}
// Convert the proof from * INV_EIGHT to its actual form
let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor());
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
let T1 = normalize(&self.T1);
let T2 = normalize(&self.T2);
let A = normalize(&self.A);
let S = normalize(&self.S);
let commitments = commitments.iter().map(|c| c.mul_by_cofactor()).collect::<Vec<_>>();
// Verify it
let mut proof = Vec::with_capacity(4 + commitments.len());
let zpow = ScalarVector::powers(z, M + 3);
let ip1y = ScalarVector::powers(y, M * N).sum();
let mut k = -(zpow[2] * ip1y);
for j in 1 ..= M {
k -= zpow[j + 2] * IP12();
}
let y1 = Scalar(self.t) - ((z * ip1y) + k);
proof.push((-y1, H()));
proof.push((-Scalar(self.taux), G));
for (j, commitment) in commitments.iter().enumerate() {
proof.push((zpow[j + 2], *commitment));
}
proof.push((x, T1));
proof.push((x * x, T2));
verifier.queue(&mut *rng, id, proof);
proof = Vec::with_capacity(4 + (2 * (MN + logMN)));
let z3 = (Scalar(self.t) - (Scalar(self.a) * Scalar(self.b))) * x_ip;
proof.push((z3, H()));
proof.push((-Scalar(self.mu), G));
proof.push((Scalar::ONE, A));
proof.push((x, S));
{
let ypow = ScalarVector::powers(y, MN);
let yinv = y.invert().unwrap();
let yinvpow = ScalarVector::powers(yinv, MN);
let w_cache = challenge_products(&w, &winv);
let generators = GENERATORS();
for i in 0 .. MN {
let g = (Scalar(self.a) * w_cache[i]) + z;
proof.push((-g, generators.G[i]));
let mut h = Scalar(self.b) * yinvpow[i] * w_cache[(!i) & (MN - 1)];
h -= ((zpow[(i / N) + 2] * TWO_N()[i % N]) + (z * ypow[i])) * yinvpow[i];
proof.push((-h, generators.H[i]));
}
}
for i in 0 .. logMN {
proof.push((w[i] * w[i], L[i]));
proof.push((winv[i] * winv[i], R[i]));
}
verifier.queue(rng, id, proof);
true
}
#[must_use]
pub(crate) fn verify<R: RngCore + CryptoRng>(
&self,
rng: &mut R,
commitments: &[DalekPoint],
) -> bool {
let mut verifier = BatchVerifier::new(1);
if self.verify_core(rng, &mut verifier, (), commitments) {
verifier.verify_vartime()
} else {
false
}
}
#[must_use]
pub(crate) fn batch_verify<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
&self,
rng: &mut R,
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
id: ID,
commitments: &[DalekPoint],
) -> bool {
self.verify_core(rng, verifier, id, commitments)
}
}

View File

@@ -1,249 +0,0 @@
use std_shims::vec::Vec;
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop};
use multiexp::{multiexp, multiexp_vartime, BatchVerifier};
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
};
use dalek_ff_group::{Scalar, EdwardsPoint};
use crate::{
Commitment,
ringct::{
bulletproofs::core::{MAX_M, N},
bulletproofs::plus::{
ScalarVector, PointVector, GeneratorsList, Generators,
transcript::*,
weighted_inner_product::{WipStatement, WipWitness, WipProof},
padded_pow_of_2, u64_decompose,
},
},
};
// Figure 3
#[derive(Clone, Debug)]
pub(crate) struct AggregateRangeStatement {
generators: Generators,
V: Vec<EdwardsPoint>,
}
impl Zeroize for AggregateRangeStatement {
fn zeroize(&mut self) {
self.V.zeroize();
}
}
#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
pub(crate) struct AggregateRangeWitness {
values: Vec<u64>,
gammas: Vec<Scalar>,
}
impl AggregateRangeWitness {
pub(crate) fn new(commitments: &[Commitment]) -> Option<Self> {
if commitments.is_empty() || (commitments.len() > MAX_M) {
return None;
}
let mut values = Vec::with_capacity(commitments.len());
let mut gammas = Vec::with_capacity(commitments.len());
for commitment in commitments {
values.push(commitment.amount);
gammas.push(Scalar(commitment.mask));
}
Some(AggregateRangeWitness { values, gammas })
}
}
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct AggregateRangeProof {
pub(crate) A: EdwardsPoint,
pub(crate) wip: WipProof,
}
impl AggregateRangeStatement {
pub(crate) fn new(V: Vec<EdwardsPoint>) -> Option<Self> {
if V.is_empty() || (V.len() > MAX_M) {
return None;
}
Some(Self { generators: Generators::new(), V })
}
fn transcript_A(transcript: &mut Scalar, A: EdwardsPoint) -> (Scalar, Scalar) {
let y = hash_to_scalar(&[transcript.to_repr().as_ref(), A.to_bytes().as_ref()].concat());
let z = hash_to_scalar(y.to_bytes().as_ref());
*transcript = z;
(y, z)
}
fn d_j(j: usize, m: usize) -> ScalarVector {
let mut d_j = Vec::with_capacity(m * N);
for _ in 0 .. (j - 1) * N {
d_j.push(Scalar::ZERO);
}
d_j.append(&mut ScalarVector::powers(Scalar::from(2u8), N).0);
for _ in 0 .. (m - j) * N {
d_j.push(Scalar::ZERO);
}
ScalarVector(d_j)
}
fn compute_A_hat(
mut V: PointVector,
generators: &Generators,
transcript: &mut Scalar,
mut A: EdwardsPoint,
) -> (Scalar, ScalarVector, Scalar, Scalar, ScalarVector, EdwardsPoint) {
let (y, z) = Self::transcript_A(transcript, A);
A = A.mul_by_cofactor();
while V.len() < padded_pow_of_2(V.len()) {
V.0.push(EdwardsPoint::identity());
}
let mn = V.len() * N;
let mut z_pow = Vec::with_capacity(V.len());
let mut d = ScalarVector::new(mn);
for j in 1 ..= V.len() {
z_pow.push(z.pow(Scalar::from(2 * u64::try_from(j).unwrap()))); // TODO: Optimize this
d = d.add_vec(&Self::d_j(j, V.len()).mul(z_pow[j - 1]));
}
let mut ascending_y = ScalarVector(vec![y]);
for i in 1 .. d.len() {
ascending_y.0.push(ascending_y[i - 1] * y);
}
let y_pows = ascending_y.clone().sum();
let mut descending_y = ascending_y.clone();
descending_y.0.reverse();
let d_descending_y = d.mul_vec(&descending_y);
let y_mn_plus_one = descending_y[0] * y;
let mut commitment_accum = EdwardsPoint::identity();
for (j, commitment) in V.0.iter().enumerate() {
commitment_accum += *commitment * z_pow[j];
}
let neg_z = -z;
let mut A_terms = Vec::with_capacity((generators.len() * 2) + 2);
for (i, d_y_z) in d_descending_y.add(z).0.drain(..).enumerate() {
A_terms.push((neg_z, generators.generator(GeneratorsList::GBold1, i)));
A_terms.push((d_y_z, generators.generator(GeneratorsList::HBold1, i)));
}
A_terms.push((y_mn_plus_one, commitment_accum));
A_terms.push((
((y_pows * z) - (d.sum() * y_mn_plus_one * z) - (y_pows * z.square())),
generators.g(),
));
(y, d_descending_y, y_mn_plus_one, z, ScalarVector(z_pow), A + multiexp_vartime(&A_terms))
}
pub(crate) fn prove<R: RngCore + CryptoRng>(
self,
rng: &mut R,
witness: AggregateRangeWitness,
) -> Option<AggregateRangeProof> {
// Check for consistency with the witness
if self.V.len() != witness.values.len() {
return None;
}
for (commitment, (value, gamma)) in
self.V.iter().zip(witness.values.iter().zip(witness.gammas.iter()))
{
if Commitment::new(**gamma, *value).calculate() != **commitment {
return None;
}
}
let Self { generators, V } = self;
// Monero expects all of these points to be torsion-free
// Generally, for Bulletproofs, it sends points * INV_EIGHT and then performs a torsion clear
// by multiplying by 8
// This also restores the original value due to the preprocessing
// Commitments aren't transmitted INV_EIGHT though, so this multiplies by INV_EIGHT to enable
// clearing its cofactor without mutating the value
// For some reason, these values are transcripted * INV_EIGHT, not as transmitted
let mut V = V.into_iter().map(|V| EdwardsPoint(V.0 * crate::INV_EIGHT())).collect::<Vec<_>>();
let mut transcript = initial_transcript(V.iter());
V.iter_mut().for_each(|V| *V = V.mul_by_cofactor());
// Pad V
while V.len() < padded_pow_of_2(V.len()) {
V.push(EdwardsPoint::identity());
}
let generators = generators.reduce(V.len() * N);
let mut d_js = Vec::with_capacity(V.len());
let mut a_l = ScalarVector(Vec::with_capacity(V.len() * N));
for j in 1 ..= V.len() {
d_js.push(Self::d_j(j, V.len()));
a_l.0.append(&mut u64_decompose(*witness.values.get(j - 1).unwrap_or(&0)).0);
}
let a_r = a_l.sub(Scalar::ONE);
let alpha = Scalar::random(&mut *rng);
let mut A_terms = Vec::with_capacity((generators.len() * 2) + 1);
for (i, a_l) in a_l.0.iter().enumerate() {
A_terms.push((*a_l, generators.generator(GeneratorsList::GBold1, i)));
}
for (i, a_r) in a_r.0.iter().enumerate() {
A_terms.push((*a_r, generators.generator(GeneratorsList::HBold1, i)));
}
A_terms.push((alpha, generators.h()));
let mut A = multiexp(&A_terms);
A_terms.zeroize();
// Multiply by INV_EIGHT per earlier commentary
A.0 *= crate::INV_EIGHT();
let (y, d_descending_y, y_mn_plus_one, z, z_pow, A_hat) =
Self::compute_A_hat(PointVector(V), &generators, &mut transcript, A);
let a_l = a_l.sub(z);
let a_r = a_r.add_vec(&d_descending_y).add(z);
let mut alpha = alpha;
for j in 1 ..= witness.gammas.len() {
alpha += z_pow[j - 1] * witness.gammas[j - 1] * y_mn_plus_one;
}
Some(AggregateRangeProof {
A,
wip: WipStatement::new(generators, A_hat, y)
.prove(rng, transcript, WipWitness::new(a_l, a_r, alpha).unwrap())
.unwrap(),
})
}
pub(crate) fn verify<Id: Copy + Zeroize, R: RngCore + CryptoRng>(
self,
rng: &mut R,
verifier: &mut BatchVerifier<Id, EdwardsPoint>,
id: Id,
proof: AggregateRangeProof,
) -> bool {
let Self { generators, V } = self;
let mut V = V.into_iter().map(|V| EdwardsPoint(V.0 * crate::INV_EIGHT())).collect::<Vec<_>>();
let mut transcript = initial_transcript(V.iter());
V.iter_mut().for_each(|V| *V = V.mul_by_cofactor());
let generators = generators.reduce(V.len() * N);
let (y, _, _, _, _, A_hat) =
Self::compute_A_hat(PointVector(V), &generators, &mut transcript, proof.A);
WipStatement::new(generators, A_hat, y).verify(rng, verifier, id, transcript, proof.wip)
}
}

View File

@@ -1,92 +0,0 @@
#![allow(non_snake_case)]
use group::Group;
use dalek_ff_group::{Scalar, EdwardsPoint};
mod scalar_vector;
pub(crate) use scalar_vector::{ScalarVector, weighted_inner_product};
mod point_vector;
pub(crate) use point_vector::PointVector;
pub(crate) mod transcript;
pub(crate) mod weighted_inner_product;
pub(crate) use weighted_inner_product::*;
pub(crate) mod aggregate_range_proof;
pub(crate) use aggregate_range_proof::*;
pub(crate) fn padded_pow_of_2(i: usize) -> usize {
let mut next_pow_of_2 = 1;
while next_pow_of_2 < i {
next_pow_of_2 <<= 1;
}
next_pow_of_2
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub(crate) enum GeneratorsList {
GBold1,
HBold1,
}
// TODO: Table these
#[derive(Clone, Debug)]
pub(crate) struct Generators {
g: EdwardsPoint,
g_bold1: &'static [EdwardsPoint],
h_bold1: &'static [EdwardsPoint],
}
mod generators {
use std_shims::sync::OnceLock;
use monero_generators::Generators;
include!(concat!(env!("OUT_DIR"), "/generators_plus.rs"));
}
impl Generators {
#[allow(clippy::new_without_default)]
pub(crate) fn new() -> Self {
let gens = generators::GENERATORS();
Generators { g: dalek_ff_group::EdwardsPoint(crate::H()), g_bold1: &gens.G, h_bold1: &gens.H }
}
pub(crate) fn len(&self) -> usize {
self.g_bold1.len()
}
pub(crate) fn g(&self) -> EdwardsPoint {
self.g
}
pub(crate) fn h(&self) -> EdwardsPoint {
EdwardsPoint::generator()
}
pub(crate) fn generator(&self, list: GeneratorsList, i: usize) -> EdwardsPoint {
match list {
GeneratorsList::GBold1 => self.g_bold1[i],
GeneratorsList::HBold1 => self.h_bold1[i],
}
}
pub(crate) fn reduce(&self, generators: usize) -> Self {
// Round to the nearest power of 2
let generators = padded_pow_of_2(generators);
assert!(generators <= self.g_bold1.len());
Generators {
g: self.g,
g_bold1: &self.g_bold1[.. generators],
h_bold1: &self.h_bold1[.. generators],
}
}
}
// Returns the little-endian decomposition.
fn u64_decompose(value: u64) -> ScalarVector {
let mut bits = ScalarVector::new(64);
for bit in 0 .. 64 {
bits[bit] = Scalar::from((value >> bit) & 1);
}
bits
}

View File

@@ -1,50 +0,0 @@
use core::ops::{Index, IndexMut};
use std_shims::vec::Vec;
use zeroize::{Zeroize, ZeroizeOnDrop};
use dalek_ff_group::EdwardsPoint;
#[cfg(test)]
use multiexp::multiexp;
#[cfg(test)]
use crate::ringct::bulletproofs::plus::ScalarVector;
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub(crate) struct PointVector(pub(crate) Vec<EdwardsPoint>);
impl Index<usize> for PointVector {
type Output = EdwardsPoint;
fn index(&self, index: usize) -> &EdwardsPoint {
&self.0[index]
}
}
impl IndexMut<usize> for PointVector {
fn index_mut(&mut self, index: usize) -> &mut EdwardsPoint {
&mut self.0[index]
}
}
impl PointVector {
#[cfg(test)]
pub(crate) fn multiexp(&self, vector: &ScalarVector) -> EdwardsPoint {
debug_assert_eq!(self.len(), vector.len());
let mut res = Vec::with_capacity(self.len());
for (point, scalar) in self.0.iter().copied().zip(vector.0.iter().copied()) {
res.push((scalar, point));
}
multiexp(&res)
}
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn split(mut self) -> (Self, Self) {
debug_assert!(self.len() > 1);
let r = self.0.split_off(self.0.len() / 2);
debug_assert_eq!(self.len(), r.len());
(self, PointVector(r))
}
}

View File

@@ -1,114 +0,0 @@
use core::{
borrow::Borrow,
ops::{Index, IndexMut},
};
use std_shims::vec::Vec;
use zeroize::Zeroize;
use group::ff::Field;
use dalek_ff_group::Scalar;
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub(crate) struct ScalarVector(pub(crate) Vec<Scalar>);
impl Index<usize> for ScalarVector {
type Output = Scalar;
fn index(&self, index: usize) -> &Scalar {
&self.0[index]
}
}
impl IndexMut<usize> for ScalarVector {
fn index_mut(&mut self, index: usize) -> &mut Scalar {
&mut self.0[index]
}
}
impl ScalarVector {
pub(crate) fn new(len: usize) -> Self {
ScalarVector(vec![Scalar::ZERO; len])
}
pub(crate) fn add(&self, scalar: impl Borrow<Scalar>) -> Self {
let mut res = self.clone();
for val in res.0.iter_mut() {
*val += scalar.borrow();
}
res
}
pub(crate) fn sub(&self, scalar: impl Borrow<Scalar>) -> Self {
let mut res = self.clone();
for val in res.0.iter_mut() {
*val -= scalar.borrow();
}
res
}
pub(crate) fn mul(&self, scalar: impl Borrow<Scalar>) -> Self {
let mut res = self.clone();
for val in res.0.iter_mut() {
*val *= scalar.borrow();
}
res
}
pub(crate) fn add_vec(&self, vector: &Self) -> Self {
debug_assert_eq!(self.len(), vector.len());
let mut res = self.clone();
for (i, val) in res.0.iter_mut().enumerate() {
*val += vector.0[i];
}
res
}
pub(crate) fn mul_vec(&self, vector: &Self) -> Self {
debug_assert_eq!(self.len(), vector.len());
let mut res = self.clone();
for (i, val) in res.0.iter_mut().enumerate() {
*val *= vector.0[i];
}
res
}
pub(crate) fn inner_product(&self, vector: &Self) -> Scalar {
self.mul_vec(vector).sum()
}
pub(crate) fn powers(x: Scalar, len: usize) -> Self {
debug_assert!(len != 0);
let mut res = Vec::with_capacity(len);
res.push(Scalar::ONE);
res.push(x);
for i in 2 .. len {
res.push(res[i - 1] * x);
}
res.truncate(len);
ScalarVector(res)
}
pub(crate) fn sum(mut self) -> Scalar {
self.0.drain(..).sum()
}
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn split(mut self) -> (Self, Self) {
debug_assert!(self.len() > 1);
let r = self.0.split_off(self.0.len() / 2);
debug_assert_eq!(self.len(), r.len());
(self, ScalarVector(r))
}
}
pub(crate) fn weighted_inner_product(
a: &ScalarVector,
b: &ScalarVector,
y: &ScalarVector,
) -> Scalar {
a.inner_product(&b.mul_vec(y))
}

View File

@@ -1,24 +0,0 @@
use std_shims::{sync::OnceLock, vec::Vec};
use dalek_ff_group::{Scalar, EdwardsPoint};
use monero_generators::{hash_to_point as raw_hash_to_point};
use crate::{hash, hash_to_scalar as dalek_hash};
// Monero starts BP+ transcripts with the following constant.
static TRANSCRIPT_CELL: OnceLock<[u8; 32]> = OnceLock::new();
pub(crate) fn TRANSCRIPT() -> [u8; 32] {
// Why this uses a hash_to_point is completely unknown.
*TRANSCRIPT_CELL
.get_or_init(|| raw_hash_to_point(hash(b"bulletproof_plus_transcript")).compress().to_bytes())
}
pub(crate) fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar(dalek_hash(data))
}
pub(crate) fn initial_transcript(commitments: core::slice::Iter<'_, EdwardsPoint>) -> Scalar {
let commitments_hash =
hash_to_scalar(&commitments.flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>());
hash_to_scalar(&[TRANSCRIPT().as_ref(), &commitments_hash.to_bytes()].concat())
}

View File

@@ -1,447 +0,0 @@
use std_shims::vec::Vec;
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop};
use multiexp::{multiexp, multiexp_vartime, BatchVerifier};
use group::{
ff::{Field, PrimeField},
GroupEncoding,
};
use dalek_ff_group::{Scalar, EdwardsPoint};
use crate::ringct::bulletproofs::plus::{
ScalarVector, PointVector, GeneratorsList, Generators, padded_pow_of_2, weighted_inner_product,
transcript::*,
};
// Figure 1
#[derive(Clone, Debug)]
pub(crate) struct WipStatement {
generators: Generators,
P: EdwardsPoint,
y: ScalarVector,
}
impl Zeroize for WipStatement {
fn zeroize(&mut self) {
self.P.zeroize();
self.y.zeroize();
}
}
#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
pub(crate) struct WipWitness {
a: ScalarVector,
b: ScalarVector,
alpha: Scalar,
}
impl WipWitness {
pub(crate) fn new(mut a: ScalarVector, mut b: ScalarVector, alpha: Scalar) -> Option<Self> {
if a.0.is_empty() || (a.len() != b.len()) {
return None;
}
// Pad to the nearest power of 2
let missing = padded_pow_of_2(a.len()) - a.len();
a.0.reserve(missing);
b.0.reserve(missing);
for _ in 0 .. missing {
a.0.push(Scalar::ZERO);
b.0.push(Scalar::ZERO);
}
Some(Self { a, b, alpha })
}
}
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub(crate) struct WipProof {
pub(crate) L: Vec<EdwardsPoint>,
pub(crate) R: Vec<EdwardsPoint>,
pub(crate) A: EdwardsPoint,
pub(crate) B: EdwardsPoint,
pub(crate) r_answer: Scalar,
pub(crate) s_answer: Scalar,
pub(crate) delta_answer: Scalar,
}
impl WipStatement {
pub(crate) fn new(generators: Generators, P: EdwardsPoint, y: Scalar) -> Self {
debug_assert_eq!(generators.len(), padded_pow_of_2(generators.len()));
// y ** n
let mut y_vec = ScalarVector::new(generators.len());
y_vec[0] = y;
for i in 1 .. y_vec.len() {
y_vec[i] = y_vec[i - 1] * y;
}
Self { generators, P, y: y_vec }
}
fn transcript_L_R(transcript: &mut Scalar, L: EdwardsPoint, R: EdwardsPoint) -> Scalar {
let e = hash_to_scalar(
&[transcript.to_repr().as_ref(), L.to_bytes().as_ref(), R.to_bytes().as_ref()].concat(),
);
*transcript = e;
e
}
fn transcript_A_B(transcript: &mut Scalar, A: EdwardsPoint, B: EdwardsPoint) -> Scalar {
let e = hash_to_scalar(
&[transcript.to_repr().as_ref(), A.to_bytes().as_ref(), B.to_bytes().as_ref()].concat(),
);
*transcript = e;
e
}
// Prover's variant of the shared code block to calculate G/H/P when n > 1
// Returns each permutation of G/H since the prover needs to do operation on each permutation
// P is dropped as it's unused in the prover's path
// TODO: It'd still probably be faster to keep in terms of the original generators, both between
// the reduced amount of group operations and the potential tabling of the generators under
// multiexp
#[allow(clippy::too_many_arguments)]
fn next_G_H(
transcript: &mut Scalar,
mut g_bold1: PointVector,
mut g_bold2: PointVector,
mut h_bold1: PointVector,
mut h_bold2: PointVector,
L: EdwardsPoint,
R: EdwardsPoint,
y_inv_n_hat: Scalar,
) -> (Scalar, Scalar, Scalar, Scalar, PointVector, PointVector) {
debug_assert_eq!(g_bold1.len(), g_bold2.len());
debug_assert_eq!(h_bold1.len(), h_bold2.len());
debug_assert_eq!(g_bold1.len(), h_bold1.len());
let e = Self::transcript_L_R(transcript, L, R);
let inv_e = e.invert().unwrap();
// This vartime is safe as all of these arguments are public
let mut new_g_bold = Vec::with_capacity(g_bold1.len());
let e_y_inv = e * y_inv_n_hat;
for g_bold in g_bold1.0.drain(..).zip(g_bold2.0.drain(..)) {
new_g_bold.push(multiexp_vartime(&[(inv_e, g_bold.0), (e_y_inv, g_bold.1)]));
}
let mut new_h_bold = Vec::with_capacity(h_bold1.len());
for h_bold in h_bold1.0.drain(..).zip(h_bold2.0.drain(..)) {
new_h_bold.push(multiexp_vartime(&[(e, h_bold.0), (inv_e, h_bold.1)]));
}
let e_square = e.square();
let inv_e_square = inv_e.square();
(e, inv_e, e_square, inv_e_square, PointVector(new_g_bold), PointVector(new_h_bold))
}
/*
This has room for optimization worth investigating further. It currently takes
an iterative approach. It can be optimized further via divide and conquer.
Assume there are 4 challenges.
Iterative approach (current):
1. Do the optimal multiplications across challenge column 0 and 1.
2. Do the optimal multiplications across that result and column 2.
3. Do the optimal multiplications across that result and column 3.
Divide and conquer (worth investigating further):
1. Do the optimal multiplications across challenge column 0 and 1.
2. Do the optimal multiplications across challenge column 2 and 3.
3. Multiply both results together.
When there are 4 challenges (n=16), the iterative approach does 28 multiplications
versus divide and conquer's 24.
*/
fn challenge_products(challenges: &[(Scalar, Scalar)]) -> Vec<Scalar> {
let mut products = vec![Scalar::ONE; 1 << challenges.len()];
if !challenges.is_empty() {
products[0] = challenges[0].1;
products[1] = challenges[0].0;
for (j, challenge) in challenges.iter().enumerate().skip(1) {
let mut slots = (1 << (j + 1)) - 1;
while slots > 0 {
products[slots] = products[slots / 2] * challenge.0;
products[slots - 1] = products[slots / 2] * challenge.1;
slots = slots.saturating_sub(2);
}
}
// Sanity check since if the above failed to populate, it'd be critical
for product in &products {
debug_assert!(!bool::from(product.is_zero()));
}
}
products
}
pub(crate) fn prove<R: RngCore + CryptoRng>(
self,
rng: &mut R,
mut transcript: Scalar,
witness: WipWitness,
) -> Option<WipProof> {
let WipStatement { generators, P, mut y } = self;
#[cfg(not(debug_assertions))]
let _ = P;
if generators.len() != witness.a.len() {
return None;
}
let (g, h) = (generators.g(), generators.h());
let mut g_bold = vec![];
let mut h_bold = vec![];
for i in 0 .. generators.len() {
g_bold.push(generators.generator(GeneratorsList::GBold1, i));
h_bold.push(generators.generator(GeneratorsList::HBold1, i));
}
let mut g_bold = PointVector(g_bold);
let mut h_bold = PointVector(h_bold);
// Check P has the expected relationship
#[cfg(debug_assertions)]
{
let mut P_terms = witness
.a
.0
.iter()
.copied()
.zip(g_bold.0.iter().copied())
.chain(witness.b.0.iter().copied().zip(h_bold.0.iter().copied()))
.collect::<Vec<_>>();
P_terms.push((weighted_inner_product(&witness.a, &witness.b, &y), g));
P_terms.push((witness.alpha, h));
debug_assert_eq!(multiexp(&P_terms), P);
P_terms.zeroize();
}
let mut a = witness.a.clone();
let mut b = witness.b.clone();
let mut alpha = witness.alpha;
// From here on, g_bold.len() is used as n
debug_assert_eq!(g_bold.len(), a.len());
let mut L_vec = vec![];
let mut R_vec = vec![];
// else n > 1 case from figure 1
while g_bold.len() > 1 {
let (a1, a2) = a.clone().split();
let (b1, b2) = b.clone().split();
let (g_bold1, g_bold2) = g_bold.split();
let (h_bold1, h_bold2) = h_bold.split();
let n_hat = g_bold1.len();
debug_assert_eq!(a1.len(), n_hat);
debug_assert_eq!(a2.len(), n_hat);
debug_assert_eq!(b1.len(), n_hat);
debug_assert_eq!(b2.len(), n_hat);
debug_assert_eq!(g_bold1.len(), n_hat);
debug_assert_eq!(g_bold2.len(), n_hat);
debug_assert_eq!(h_bold1.len(), n_hat);
debug_assert_eq!(h_bold2.len(), n_hat);
let y_n_hat = y[n_hat - 1];
y.0.truncate(n_hat);
let d_l = Scalar::random(&mut *rng);
let d_r = Scalar::random(&mut *rng);
let c_l = weighted_inner_product(&a1, &b2, &y);
let c_r = weighted_inner_product(&(a2.mul(y_n_hat)), &b1, &y);
// TODO: Calculate these with a batch inversion
let y_inv_n_hat = y_n_hat.invert().unwrap();
let mut L_terms = a1
.mul(y_inv_n_hat)
.0
.drain(..)
.zip(g_bold2.0.iter().copied())
.chain(b2.0.iter().copied().zip(h_bold1.0.iter().copied()))
.collect::<Vec<_>>();
L_terms.push((c_l, g));
L_terms.push((d_l, h));
let L = multiexp(&L_terms) * Scalar(crate::INV_EIGHT());
L_vec.push(L);
L_terms.zeroize();
let mut R_terms = a2
.mul(y_n_hat)
.0
.drain(..)
.zip(g_bold1.0.iter().copied())
.chain(b1.0.iter().copied().zip(h_bold2.0.iter().copied()))
.collect::<Vec<_>>();
R_terms.push((c_r, g));
R_terms.push((d_r, h));
let R = multiexp(&R_terms) * Scalar(crate::INV_EIGHT());
R_vec.push(R);
R_terms.zeroize();
let (e, inv_e, e_square, inv_e_square);
(e, inv_e, e_square, inv_e_square, g_bold, h_bold) =
Self::next_G_H(&mut transcript, g_bold1, g_bold2, h_bold1, h_bold2, L, R, y_inv_n_hat);
a = a1.mul(e).add_vec(&a2.mul(y_n_hat * inv_e));
b = b1.mul(inv_e).add_vec(&b2.mul(e));
alpha += (d_l * e_square) + (d_r * inv_e_square);
debug_assert_eq!(g_bold.len(), a.len());
debug_assert_eq!(g_bold.len(), h_bold.len());
debug_assert_eq!(g_bold.len(), b.len());
}
// n == 1 case from figure 1
debug_assert_eq!(g_bold.len(), 1);
debug_assert_eq!(h_bold.len(), 1);
debug_assert_eq!(a.len(), 1);
debug_assert_eq!(b.len(), 1);
let r = Scalar::random(&mut *rng);
let s = Scalar::random(&mut *rng);
let delta = Scalar::random(&mut *rng);
let eta = Scalar::random(&mut *rng);
let ry = r * y[0];
let mut A_terms =
vec![(r, g_bold[0]), (s, h_bold[0]), ((ry * b[0]) + (s * y[0] * a[0]), g), (delta, h)];
let A = multiexp(&A_terms) * Scalar(crate::INV_EIGHT());
A_terms.zeroize();
let mut B_terms = vec![(ry * s, g), (eta, h)];
let B = multiexp(&B_terms) * Scalar(crate::INV_EIGHT());
B_terms.zeroize();
let e = Self::transcript_A_B(&mut transcript, A, B);
let r_answer = r + (a[0] * e);
let s_answer = s + (b[0] * e);
let delta_answer = eta + (delta * e) + (alpha * e.square());
Some(WipProof { L: L_vec, R: R_vec, A, B, r_answer, s_answer, delta_answer })
}
pub(crate) fn verify<Id: Copy + Zeroize, R: RngCore + CryptoRng>(
self,
rng: &mut R,
verifier: &mut BatchVerifier<Id, EdwardsPoint>,
id: Id,
mut transcript: Scalar,
mut proof: WipProof,
) -> bool {
let WipStatement { generators, P, y } = self;
let (g, h) = (generators.g(), generators.h());
// Verify the L/R lengths
{
let mut lr_len = 0;
while (1 << lr_len) < generators.len() {
lr_len += 1;
}
if (proof.L.len() != lr_len) ||
(proof.R.len() != lr_len) ||
(generators.len() != (1 << lr_len))
{
return false;
}
}
let inv_y = {
let inv_y = y[0].invert().unwrap();
let mut res = Vec::with_capacity(y.len());
res.push(inv_y);
while res.len() < y.len() {
res.push(inv_y * res.last().unwrap());
}
res
};
let mut P_terms = vec![(Scalar::ONE, P)];
P_terms.reserve(6 + (2 * generators.len()) + proof.L.len());
let mut challenges = Vec::with_capacity(proof.L.len());
let product_cache = {
let mut es = Vec::with_capacity(proof.L.len());
for (L, R) in proof.L.iter_mut().zip(proof.R.iter_mut()) {
es.push(Self::transcript_L_R(&mut transcript, *L, *R));
*L = L.mul_by_cofactor();
*R = R.mul_by_cofactor();
}
let mut inv_es = es.clone();
let mut scratch = vec![Scalar::ZERO; es.len()];
group::ff::BatchInverter::invert_with_external_scratch(&mut inv_es, &mut scratch);
drop(scratch);
debug_assert_eq!(es.len(), inv_es.len());
debug_assert_eq!(es.len(), proof.L.len());
debug_assert_eq!(es.len(), proof.R.len());
for ((e, inv_e), (L, R)) in
es.drain(..).zip(inv_es.drain(..)).zip(proof.L.iter().zip(proof.R.iter()))
{
debug_assert_eq!(e.invert().unwrap(), inv_e);
challenges.push((e, inv_e));
let e_square = e.square();
let inv_e_square = inv_e.square();
P_terms.push((e_square, *L));
P_terms.push((inv_e_square, *R));
}
Self::challenge_products(&challenges)
};
let e = Self::transcript_A_B(&mut transcript, proof.A, proof.B);
proof.A = proof.A.mul_by_cofactor();
proof.B = proof.B.mul_by_cofactor();
let neg_e_square = -e.square();
let mut multiexp = P_terms;
multiexp.reserve(4 + (2 * generators.len()));
for (scalar, _) in multiexp.iter_mut() {
*scalar *= neg_e_square;
}
let re = proof.r_answer * e;
for i in 0 .. generators.len() {
let mut scalar = product_cache[i] * re;
if i > 0 {
scalar *= inv_y[i - 1];
}
multiexp.push((scalar, generators.generator(GeneratorsList::GBold1, i)));
}
let se = proof.s_answer * e;
for i in 0 .. generators.len() {
multiexp.push((
se * product_cache[product_cache.len() - 1 - i],
generators.generator(GeneratorsList::HBold1, i),
));
}
multiexp.push((-e, proof.A));
multiexp.push((proof.r_answer * y[0] * proof.s_answer, g));
multiexp.push((proof.delta_answer, h));
multiexp.push((-Scalar::ONE, proof.B));
verifier.queue(rng, id, multiexp);
true
}
}

View File

@@ -1,114 +0,0 @@
use core::ops::{Add, Sub, Mul, Index};
use std_shims::vec::Vec;
use zeroize::{Zeroize, ZeroizeOnDrop};
use group::ff::Field;
use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::multiexp;
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub(crate) struct ScalarVector(pub(crate) Vec<Scalar>);
macro_rules! math_op {
($Op: ident, $op: ident, $f: expr) => {
#[allow(clippy::redundant_closure_call)]
impl $Op<Scalar> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
#[allow(clippy::redundant_closure_call)]
impl $Op<Scalar> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
#[allow(clippy::redundant_closure_call)]
impl $Op<ScalarVector> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
#[allow(clippy::redundant_closure_call)]
impl $Op<&ScalarVector> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: &ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
};
}
math_op!(Add, add, |(a, b): (&Scalar, &Scalar)| *a + *b);
math_op!(Sub, sub, |(a, b): (&Scalar, &Scalar)| *a - *b);
math_op!(Mul, mul, |(a, b): (&Scalar, &Scalar)| *a * *b);
impl ScalarVector {
pub(crate) fn new(len: usize) -> ScalarVector {
ScalarVector(vec![Scalar::ZERO; len])
}
pub(crate) fn powers(x: Scalar, len: usize) -> ScalarVector {
debug_assert!(len != 0);
let mut res = Vec::with_capacity(len);
res.push(Scalar::ONE);
for i in 1 .. len {
res.push(res[i - 1] * x);
}
ScalarVector(res)
}
pub(crate) fn sum(mut self) -> Scalar {
self.0.drain(..).sum()
}
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn split(self) -> (ScalarVector, ScalarVector) {
let (l, r) = self.0.split_at(self.0.len() / 2);
(ScalarVector(l.to_vec()), ScalarVector(r.to_vec()))
}
}
impl Index<usize> for ScalarVector {
type Output = Scalar;
fn index(&self, index: usize) -> &Scalar {
&self.0[index]
}
}
pub(crate) fn inner_product(a: &ScalarVector, b: &ScalarVector) -> Scalar {
(a * b).sum()
}
impl Mul<&[EdwardsPoint]> for &ScalarVector {
type Output = EdwardsPoint;
fn mul(self, b: &[EdwardsPoint]) -> EdwardsPoint {
debug_assert_eq!(self.len(), b.len());
multiexp(&self.0.iter().copied().zip(b.iter().copied()).collect::<Vec<_>>())
}
}
pub(crate) fn hadamard_fold(
l: &[EdwardsPoint],
r: &[EdwardsPoint],
a: Scalar,
b: Scalar,
) -> Vec<EdwardsPoint> {
let mut res = Vec::with_capacity(l.len() / 2);
for i in 0 .. l.len() {
res.push(multiexp(&[(a, l[i]), (b, r[i])]));
}
res
}

Some files were not shown because too many files have changed in this diff Show More