Merge branch 'develop' into HEAD

This commit is contained in:
Luke Parker
2024-06-06 02:43:33 -04:00
261 changed files with 10394 additions and 3812 deletions

View File

@@ -5,7 +5,7 @@ inputs:
version:
description: "Version to download and run"
required: false
default: 24.0.1
default: "27.0"
runs:
using: "composite"

View File

@@ -42,8 +42,8 @@ runs:
shell: bash
run: |
cargo install svm-rs
svm install 0.8.16
svm use 0.8.16
svm install 0.8.25
svm use 0.8.25
# - name: Cache Rust
# uses: Swatinem/rust-cache@a95ba195448af2da9b00fb742d14ffaaf3c21f43

View File

@@ -10,7 +10,7 @@ inputs:
bitcoin-version:
description: "Bitcoin version to download and run as a regtest node"
required: false
default: 24.0.1
default: "27.0"
runs:
using: "composite"
@@ -19,9 +19,9 @@ runs:
uses: ./.github/actions/build-dependencies
- name: Install Foundry
uses: foundry-rs/foundry-toolchain@cb603ca0abb544f301eaed59ac0baf579aa6aecf
uses: foundry-rs/foundry-toolchain@8f1998e9878d786675189ef566a2e4bf24869773
with:
version: nightly-09fe3e041369a816365a020f715ad6f94dbce9f2
version: nightly-f625d0fa7c51e65b4bf1e8f7931cd1c6e2e285e9
cache: false
- name: Run a Monero Regtest Node

View File

@@ -1 +1 @@
nightly-2024-02-07
nightly-2024-06-01

View File

@@ -30,6 +30,7 @@ jobs:
run: |
GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features \
-p bitcoin-serai \
-p alloy-simple-request-transport \
-p ethereum-serai \
-p monero-generators \
-p monero-serai

View File

@@ -28,4 +28,5 @@ jobs:
-p std-shims \
-p zalloc \
-p serai-db \
-p serai-env
-p serai-env \
-p simple-request

View File

@@ -37,4 +37,4 @@ jobs:
uses: ./.github/actions/build-dependencies
- name: Run coordinator Docker tests
run: cd tests/coordinator && GITHUB_CI=true RUST_BACKTRACE=1 cargo test
run: cd tests/coordinator && GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features

View File

@@ -19,4 +19,4 @@ jobs:
uses: ./.github/actions/build-dependencies
- name: Run Full Stack Docker tests
run: cd tests/full-stack && GITHUB_CI=true RUST_BACKTRACE=1 cargo test
run: cd tests/full-stack && GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features

View File

@@ -33,4 +33,4 @@ jobs:
uses: ./.github/actions/build-dependencies
- name: Run message-queue Docker tests
run: cd tests/message-queue && GITHUB_CI=true RUST_BACKTRACE=1 cargo test
run: cd tests/message-queue && GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features

90
.github/workflows/pages.yml vendored Normal file
View File

@@ -0,0 +1,90 @@
# MIT License
#
# Copyright (c) 2022 just-the-docs
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
# Sample workflow for building and deploying a Jekyll site to GitHub Pages
name: Deploy Jekyll site to Pages
on:
push:
branches:
- "develop"
paths:
- "docs/**"
# Allows you to run this workflow manually from the Actions tab
workflow_dispatch:
# Sets permissions of the GITHUB_TOKEN to allow deployment to GitHub Pages
permissions:
contents: read
pages: write
id-token: write
# Allow one concurrent deployment
concurrency:
group: "pages"
cancel-in-progress: true
jobs:
# Build job
build:
runs-on: ubuntu-latest
defaults:
run:
working-directory: docs
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Setup Ruby
uses: ruby/setup-ruby@v1
with:
bundler-cache: true
cache-version: 0
working-directory: "${{ github.workspace }}/docs"
- name: Setup Pages
id: pages
uses: actions/configure-pages@v3
- name: Build with Jekyll
run: bundle exec jekyll build --baseurl "${{ steps.pages.outputs.base_path }}"
env:
JEKYLL_ENV: production
- name: Upload artifact
uses: actions/upload-pages-artifact@v1
with:
path: "docs/_site/"
# Deployment job
deploy:
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
runs-on: ubuntu-latest
needs: build
steps:
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v2

View File

@@ -37,4 +37,4 @@ jobs:
uses: ./.github/actions/build-dependencies
- name: Run processor Docker tests
run: cd tests/processor && GITHUB_CI=true RUST_BACKTRACE=1 cargo test
run: cd tests/processor && GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features

View File

@@ -33,4 +33,4 @@ jobs:
uses: ./.github/actions/build-dependencies
- name: Run Reproducible Runtime tests
run: cd tests/reproducible-runtime && GITHUB_CI=true RUST_BACKTRACE=1 cargo test
run: cd tests/reproducible-runtime && GITHUB_CI=true RUST_BACKTRACE=1 cargo test --all-features

View File

@@ -43,6 +43,7 @@ jobs:
-p tendermint-machine \
-p tributary-chain \
-p serai-coordinator \
-p serai-orchestrator \
-p serai-docker-tests
test-substrate:
@@ -64,7 +65,9 @@ jobs:
-p serai-validator-sets-pallet \
-p serai-in-instructions-primitives \
-p serai-in-instructions-pallet \
-p serai-signals-primitives \
-p serai-signals-pallet \
-p serai-abi \
-p serai-runtime \
-p serai-node

2697
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -2,7 +2,10 @@
resolver = "2"
members = [
# Version patches
"patches/parking_lot_core",
"patches/parking_lot",
"patches/zstd",
"patches/rocksdb",
"patches/proc-macro-crate",
# std patches
@@ -35,7 +38,11 @@ members = [
"crypto/schnorrkel",
"coins/bitcoin",
"coins/ethereum/alloy-simple-request-transport",
"coins/ethereum",
"coins/ethereum/relayer",
"coins/monero/generators",
"coins/monero",
@@ -108,10 +115,14 @@ panic = "unwind"
lazy_static = { git = "https://github.com/rust-lang-nursery/lazy-static.rs", rev = "5735630d46572f1e5377c8f2ba0f79d18f53b10c" }
# Needed due to dockertest's usage of `Rc`s when we need `Arc`s
dockertest = { git = "https://github.com/kayabaNerve/dockertest-rs", branch = "arc" }
dockertest = { git = "https://github.com/orcalabs/dockertest-rs", rev = "4dd6ae24738aa6dc5c89444cc822ea4745517493" }
parking_lot_core = { path = "patches/parking_lot_core" }
parking_lot = { path = "patches/parking_lot" }
# wasmtime pulls in an old version for this
zstd = { path = "patches/zstd" }
# Needed for WAL compression
rocksdb = { path = "patches/rocksdb" }
# proc-macro-crate 2 binds to an old version of toml for msrv so we patch to 3
proc-macro-crate = { path = "patches/proc-macro-crate" }

View File

@@ -5,13 +5,16 @@ Bitcoin, Ethereum, DAI, and Monero, offering a liquidity-pool-based trading
experience. Funds are stored in an economically secured threshold-multisig
wallet.
[Getting Started](docs/Getting%20Started.md)
[Getting Started](spec/Getting%20Started.md)
### Layout
- `audits`: Audits for various parts of Serai.
- `docs`: Documentation on the Serai protocol.
- `spec`: The specification of the Serai protocol, both internally and as
networked.
- `docs`: User-facing documentation on the Serai protocol.
- `common`: Crates containing utilities common to a variety of areas under
Serai, none neatly fitting under another category.

View File

@@ -23,7 +23,7 @@ thiserror = { version = "1", default-features = false, optional = true }
zeroize = { version = "^1.5", default-features = false }
rand_core = { version = "0.6", default-features = false }
bitcoin = { version = "0.31", default-features = false, features = ["no-std"] }
bitcoin = { version = "0.32", default-features = false }
k256 = { version = "^0.13.1", default-features = false, features = ["arithmetic", "bits"] }
@@ -36,7 +36,7 @@ serde_json = { version = "1", default-features = false, optional = true }
simple-request = { path = "../../common/request", version = "0.1", default-features = false, features = ["tls", "basic-auth"], optional = true }
[dev-dependencies]
secp256k1 = { version = "0.28", default-features = false, features = ["std"] }
secp256k1 = { version = "0.29", default-features = false, features = ["std"] }
frost = { package = "modular-frost", path = "../../crypto/frost", features = ["tests"] }

View File

@@ -195,13 +195,13 @@ impl Rpc {
// If this was already successfully published, consider this having succeeded
if let RpcError::RequestError(Error { code, .. }) = e {
if code == RPC_VERIFY_ALREADY_IN_CHAIN {
return Ok(tx.txid());
return Ok(tx.compute_txid());
}
}
Err(e)?
}
};
if txid != tx.txid() {
if txid != tx.compute_txid() {
Err(RpcError::InvalidResponse("returned TX ID inequals calculated TX ID"))?;
}
Ok(txid)
@@ -215,7 +215,7 @@ impl Rpc {
let tx: Transaction = encode::deserialize(&bytes)
.map_err(|_| RpcError::InvalidResponse("node sent an improperly serialized transaction"))?;
let mut tx_hash = *tx.txid().as_raw_hash().as_byte_array();
let mut tx_hash = *tx.compute_txid().as_raw_hash().as_byte_array();
tx_hash.reverse();
if hash != &tx_hash {
Err(RpcError::InvalidResponse("node replied with a different transaction"))?;

View File

@@ -39,7 +39,7 @@ fn test_algorithm() {
.verify_schnorr(
&Signature::from_slice(&sig)
.expect("couldn't convert produced signature to secp256k1::Signature"),
&Message::from(Hash::hash(MESSAGE)),
&Message::from_digest_slice(Hash::hash(MESSAGE).as_ref()).unwrap(),
&x_only(&keys[&Participant::new(1).unwrap()].group_key()),
)
.unwrap()

View File

@@ -4,7 +4,7 @@ use std_shims::{
io::{self, Write},
};
#[cfg(feature = "std")]
use std_shims::io::Read;
use std::io::{Read, BufReader};
use k256::{
elliptic_curve::sec1::{Tag, ToEncodedPoint},
@@ -18,8 +18,8 @@ use frost::{
};
use bitcoin::{
consensus::encode::serialize, key::TweakedPublicKey, address::Payload, OutPoint, ScriptBuf,
TxOut, Transaction, Block,
consensus::encode::serialize, key::TweakedPublicKey, OutPoint, ScriptBuf, TxOut, Transaction,
Block,
};
#[cfg(feature = "std")]
use bitcoin::consensus::encode::Decodable;
@@ -46,12 +46,12 @@ pub fn tweak_keys(keys: &ThresholdKeys<Secp256k1>) -> ThresholdKeys<Secp256k1> {
/// Return the Taproot address payload for a public key.
///
/// If the key is odd, this will return None.
pub fn address_payload(key: ProjectivePoint) -> Option<Payload> {
pub fn p2tr_script_buf(key: ProjectivePoint) -> Option<ScriptBuf> {
if key.to_encoded_point(true).tag() != Tag::CompressedEvenY {
return None;
}
Some(Payload::p2tr_tweaked(TweakedPublicKey::dangerous_assume_tweaked(x_only(&key))))
Some(ScriptBuf::new_p2tr_tweaked(TweakedPublicKey::dangerous_assume_tweaked(x_only(&key))))
}
/// A spendable output.
@@ -89,11 +89,17 @@ impl ReceivedOutput {
/// Read a ReceivedOutput from a generic satisfying Read.
#[cfg(feature = "std")]
pub fn read<R: Read>(r: &mut R) -> io::Result<ReceivedOutput> {
Ok(ReceivedOutput {
offset: Secp256k1::read_F(r)?,
output: TxOut::consensus_decode(r).map_err(|_| io::Error::other("invalid TxOut"))?,
outpoint: OutPoint::consensus_decode(r).map_err(|_| io::Error::other("invalid OutPoint"))?,
})
let offset = Secp256k1::read_F(r)?;
let output;
let outpoint;
{
let mut buf_r = BufReader::with_capacity(0, r);
output =
TxOut::consensus_decode(&mut buf_r).map_err(|_| io::Error::other("invalid TxOut"))?;
outpoint =
OutPoint::consensus_decode(&mut buf_r).map_err(|_| io::Error::other("invalid OutPoint"))?;
}
Ok(ReceivedOutput { offset, output, outpoint })
}
/// Write a ReceivedOutput to a generic satisfying Write.
@@ -124,7 +130,7 @@ impl Scanner {
/// Returns None if this key can't be scanned for.
pub fn new(key: ProjectivePoint) -> Option<Scanner> {
let mut scripts = HashMap::new();
scripts.insert(address_payload(key)?.script_pubkey(), Scalar::ZERO);
scripts.insert(p2tr_script_buf(key)?, Scalar::ZERO);
Some(Scanner { key, scripts })
}
@@ -141,9 +147,8 @@ impl Scanner {
// chance of being even
// That means this should terminate within a very small amount of iterations
loop {
match address_payload(self.key + (ProjectivePoint::GENERATOR * offset)) {
Some(address) => {
let script = address.script_pubkey();
match p2tr_script_buf(self.key + (ProjectivePoint::GENERATOR * offset)) {
Some(script) => {
if self.scripts.contains_key(&script) {
None?;
}
@@ -166,7 +171,7 @@ impl Scanner {
res.push(ReceivedOutput {
offset: *offset,
output: output.clone(),
outpoint: OutPoint::new(tx.txid(), vout),
outpoint: OutPoint::new(tx.compute_txid(), vout),
});
}
}

View File

@@ -18,12 +18,12 @@ use bitcoin::{
absolute::LockTime,
script::{PushBytesBuf, ScriptBuf},
transaction::{Version, Transaction},
OutPoint, Sequence, Witness, TxIn, Amount, TxOut, Address,
OutPoint, Sequence, Witness, TxIn, Amount, TxOut,
};
use crate::{
crypto::Schnorr,
wallet::{ReceivedOutput, address_payload},
wallet::{ReceivedOutput, p2tr_script_buf},
};
#[rustfmt::skip]
@@ -61,7 +61,11 @@ pub struct SignableTransaction {
}
impl SignableTransaction {
fn calculate_weight(inputs: usize, payments: &[(Address, u64)], change: Option<&Address>) -> u64 {
fn calculate_weight(
inputs: usize,
payments: &[(ScriptBuf, u64)],
change: Option<&ScriptBuf>,
) -> u64 {
// Expand this a full transaction in order to use the bitcoin library's weight function
let mut tx = Transaction {
version: Version(2),
@@ -86,14 +90,14 @@ impl SignableTransaction {
// The script pub key is not of a fixed size and does have to be used here
.map(|payment| TxOut {
value: Amount::from_sat(payment.1),
script_pubkey: payment.0.script_pubkey(),
script_pubkey: payment.0.clone(),
})
.collect(),
};
if let Some(change) = change {
// Use a 0 value since we're currently unsure what the change amount will be, and since
// the value is fixed size (so any value could be used here)
tx.output.push(TxOut { value: Amount::ZERO, script_pubkey: change.script_pubkey() });
tx.output.push(TxOut { value: Amount::ZERO, script_pubkey: change.clone() });
}
u64::from(tx.weight())
}
@@ -121,8 +125,8 @@ impl SignableTransaction {
/// If data is specified, an OP_RETURN output will be added with it.
pub fn new(
mut inputs: Vec<ReceivedOutput>,
payments: &[(Address, u64)],
change: Option<&Address>,
payments: &[(ScriptBuf, u64)],
change: Option<ScriptBuf>,
data: Option<Vec<u8>>,
fee_per_weight: u64,
) -> Result<SignableTransaction, TransactionError> {
@@ -159,10 +163,7 @@ impl SignableTransaction {
let payment_sat = payments.iter().map(|payment| payment.1).sum::<u64>();
let mut tx_outs = payments
.iter()
.map(|payment| TxOut {
value: Amount::from_sat(payment.1),
script_pubkey: payment.0.script_pubkey(),
})
.map(|payment| TxOut { value: Amount::from_sat(payment.1), script_pubkey: payment.0.clone() })
.collect::<Vec<_>>();
// Add the OP_RETURN output
@@ -213,12 +214,11 @@ impl SignableTransaction {
// If there's a change address, check if there's change to give it
if let Some(change) = change {
let weight_with_change = Self::calculate_weight(tx_ins.len(), payments, Some(change));
let weight_with_change = Self::calculate_weight(tx_ins.len(), payments, Some(&change));
let fee_with_change = fee_per_weight * weight_with_change;
if let Some(value) = input_sat.checked_sub(payment_sat + fee_with_change) {
if value >= DUST {
tx_outs
.push(TxOut { value: Amount::from_sat(value), script_pubkey: change.script_pubkey() });
tx_outs.push(TxOut { value: Amount::from_sat(value), script_pubkey: change });
weight = weight_with_change;
needed_fee = fee_with_change;
}
@@ -248,7 +248,7 @@ impl SignableTransaction {
/// Returns the TX ID of the transaction this will create.
pub fn txid(&self) -> [u8; 32] {
let mut res = self.tx.txid().to_byte_array();
let mut res = self.tx.compute_txid().to_byte_array();
res.reverse();
res
}
@@ -288,7 +288,7 @@ impl SignableTransaction {
transcript.append_message(b"signing_input", u32::try_from(i).unwrap().to_le_bytes());
let offset = keys.clone().offset(self.offsets[i]);
if address_payload(offset.group_key())?.script_pubkey() != self.prevouts[i].script_pubkey {
if p2tr_script_buf(offset.group_key())? != self.prevouts[i].script_pubkey {
None?;
}
@@ -375,7 +375,7 @@ impl SignMachine<Transaction> for TransactionSignMachine {
msg: &[u8],
) -> Result<(TransactionSignatureMachine, Self::SignatureShare), FrostError> {
if !msg.is_empty() {
panic!("message was passed to the TransactionMachine when it generates its own");
panic!("message was passed to the TransactionSignMachine when it generates its own");
}
let commitments = (0 .. self.sigs.len())

View File

@@ -22,11 +22,10 @@ use bitcoin_serai::{
hashes::Hash as HashTrait,
blockdata::opcodes::all::OP_RETURN,
script::{PushBytesBuf, Instruction, Instructions, Script},
address::NetworkChecked,
OutPoint, Amount, TxOut, Transaction, Network, Address,
},
wallet::{
tweak_keys, address_payload, ReceivedOutput, Scanner, TransactionError, SignableTransaction,
tweak_keys, p2tr_script_buf, ReceivedOutput, Scanner, TransactionError, SignableTransaction,
},
rpc::Rpc,
};
@@ -48,7 +47,7 @@ async fn send_and_get_output(rpc: &Rpc, scanner: &Scanner, key: ProjectivePoint)
"generatetoaddress",
serde_json::json!([
1,
Address::<NetworkChecked>::new(Network::Regtest, address_payload(key).unwrap())
Address::from_script(&p2tr_script_buf(key).unwrap(), Network::Regtest).unwrap()
]),
)
.await
@@ -69,7 +68,7 @@ async fn send_and_get_output(rpc: &Rpc, scanner: &Scanner, key: ProjectivePoint)
assert_eq!(outputs, scanner.scan_transaction(&block.txdata[0]));
assert_eq!(outputs.len(), 1);
assert_eq!(outputs[0].outpoint(), &OutPoint::new(block.txdata[0].txid(), 0));
assert_eq!(outputs[0].outpoint(), &OutPoint::new(block.txdata[0].compute_txid(), 0));
assert_eq!(outputs[0].value(), block.txdata[0].output[0].value.to_sat());
assert_eq!(
@@ -193,7 +192,7 @@ async_sequential! {
assert_eq!(output.offset(), Scalar::ZERO);
let inputs = vec![output];
let addr = || Address::<NetworkChecked>::new(Network::Regtest, address_payload(key).unwrap());
let addr = || p2tr_script_buf(key).unwrap();
let payments = vec![(addr(), 1000)];
assert!(SignableTransaction::new(inputs.clone(), &payments, None, None, FEE).is_ok());
@@ -206,7 +205,7 @@ async_sequential! {
// No change
assert!(SignableTransaction::new(inputs.clone(), &[(addr(), 1000)], None, None, FEE).is_ok());
// Consolidation TX
assert!(SignableTransaction::new(inputs.clone(), &[], Some(&addr()), None, FEE).is_ok());
assert!(SignableTransaction::new(inputs.clone(), &[], Some(addr()), None, FEE).is_ok());
// Data
assert!(SignableTransaction::new(inputs.clone(), &[], None, Some(vec![]), FEE).is_ok());
// No outputs
@@ -229,7 +228,7 @@ async_sequential! {
);
assert_eq!(
SignableTransaction::new(inputs.clone(), &[], Some(&addr()), None, 0),
SignableTransaction::new(inputs.clone(), &[], Some(addr()), None, 0),
Err(TransactionError::TooLowFee),
);
@@ -261,20 +260,19 @@ async_sequential! {
// Declare payments, change, fee
let payments = [
(Address::<NetworkChecked>::new(Network::Regtest, address_payload(key).unwrap()), 1005),
(Address::<NetworkChecked>::new(Network::Regtest, address_payload(offset_key).unwrap()), 1007)
(p2tr_script_buf(key).unwrap(), 1005),
(p2tr_script_buf(offset_key).unwrap(), 1007)
];
let change_offset = scanner.register_offset(Scalar::random(&mut OsRng)).unwrap();
let change_key = key + (ProjectivePoint::GENERATOR * change_offset);
let change_addr =
Address::<NetworkChecked>::new(Network::Regtest, address_payload(change_key).unwrap());
let change_addr = p2tr_script_buf(change_key).unwrap();
// Create and sign the TX
let tx = SignableTransaction::new(
vec![output.clone(), offset_output.clone()],
&payments,
Some(&change_addr),
Some(change_addr.clone()),
None,
FEE
).unwrap();
@@ -287,7 +285,7 @@ async_sequential! {
// Ensure we can scan it
let outputs = scanner.scan_transaction(&tx);
for (o, output) in outputs.iter().enumerate() {
assert_eq!(output.outpoint(), &OutPoint::new(tx.txid(), u32::try_from(o).unwrap()));
assert_eq!(output.outpoint(), &OutPoint::new(tx.compute_txid(), u32::try_from(o).unwrap()));
assert_eq!(&ReceivedOutput::read::<&[u8]>(&mut output.serialize().as_ref()).unwrap(), output);
}
@@ -299,7 +297,7 @@ async_sequential! {
for ((output, scanned), payment) in tx.output.iter().zip(outputs.iter()).zip(payments.iter()) {
assert_eq!(
output,
&TxOut { script_pubkey: payment.0.script_pubkey(), value: Amount::from_sat(payment.1) },
&TxOut { script_pubkey: payment.0.clone(), value: Amount::from_sat(payment.1) },
);
assert_eq!(scanned.value(), payment.1 );
}
@@ -314,13 +312,13 @@ async_sequential! {
input_value - payments.iter().map(|payment| payment.1).sum::<u64>() - needed_fee;
assert_eq!(
tx.output[2],
TxOut { script_pubkey: change_addr.script_pubkey(), value: Amount::from_sat(change_amount) },
TxOut { script_pubkey: change_addr, value: Amount::from_sat(change_amount) },
);
// This also tests send_raw_transaction and get_transaction, which the RPC test can't
// effectively test
rpc.send_raw_transaction(&tx).await.unwrap();
let mut hash = *tx.txid().as_raw_hash().as_byte_array();
let mut hash = *tx.compute_txid().as_raw_hash().as_byte_array();
hash.reverse();
assert_eq!(tx, rpc.get_transaction(&hash).await.unwrap());
assert_eq!(expected_id, hash);
@@ -344,7 +342,7 @@ async_sequential! {
&SignableTransaction::new(
vec![output],
&[],
Some(&Address::<NetworkChecked>::new(Network::Regtest, address_payload(key).unwrap())),
Some(p2tr_script_buf(key).unwrap()),
Some(data.clone()),
FEE
).unwrap()

View File

@@ -1,3 +1,3 @@
# solidity build outputs
# Solidity build outputs
cache
artifacts

View File

@@ -18,25 +18,32 @@ workspace = true
[dependencies]
thiserror = { version = "1", default-features = false }
eyre = { version = "0.6", default-features = false }
sha3 = { version = "0.10", default-features = false, features = ["std"] }
group = { version = "0.13", default-features = false }
k256 = { version = "^0.13.1", default-features = false, features = ["std", "ecdsa"] }
frost = { package = "modular-frost", path = "../../crypto/frost", features = ["secp256k1", "tests"] }
ethers-core = { version = "2", default-features = false }
ethers-providers = { version = "2", default-features = false }
ethers-contract = { version = "2", default-features = false, features = ["abigen", "providers"] }
[dev-dependencies]
rand_core = { version = "0.6", default-features = false, features = ["std"] }
hex = { version = "0.4", default-features = false, features = ["std"] }
serde = { version = "1", default-features = false, features = ["std"] }
serde_json = { version = "1", default-features = false, features = ["std"] }
transcript = { package = "flexible-transcript", path = "../../crypto/transcript", default-features = false, features = ["recommended"] }
sha2 = { version = "0.10", default-features = false, features = ["std"] }
group = { version = "0.13", default-features = false }
k256 = { version = "^0.13.1", default-features = false, features = ["std", "ecdsa", "arithmetic"] }
frost = { package = "modular-frost", path = "../../crypto/frost", default-features = false, features = ["secp256k1"] }
alloy-core = { version = "0.7", default-features = false }
alloy-sol-types = { version = "0.7", default-features = false, features = ["json"] }
alloy-consensus = { git = "https://github.com/alloy-rs/alloy", rev = "64feb9bc51c8021ea08535694c44de84222f474e", default-features = false, features = ["k256"] }
alloy-network = { git = "https://github.com/alloy-rs/alloy", rev = "64feb9bc51c8021ea08535694c44de84222f474e", default-features = false }
alloy-rpc-types = { git = "https://github.com/alloy-rs/alloy", rev = "64feb9bc51c8021ea08535694c44de84222f474e", default-features = false }
alloy-rpc-client = { git = "https://github.com/alloy-rs/alloy", rev = "64feb9bc51c8021ea08535694c44de84222f474e", default-features = false }
alloy-simple-request-transport = { path = "./alloy-simple-request-transport", default-features = false }
alloy-provider = { git = "https://github.com/alloy-rs/alloy", rev = "64feb9bc51c8021ea08535694c44de84222f474e", default-features = false }
alloy-node-bindings = { git = "https://github.com/alloy-rs/alloy", rev = "64feb9bc51c8021ea08535694c44de84222f474e", default-features = false, optional = true }
[dev-dependencies]
frost = { package = "modular-frost", path = "../../crypto/frost", default-features = false, features = ["tests"] }
tokio = { version = "1", features = ["macros"] }
alloy-node-bindings = { git = "https://github.com/alloy-rs/alloy", rev = "64feb9bc51c8021ea08535694c44de84222f474e", default-features = false }
[features]
tests = ["alloy-node-bindings", "frost/tests"]

View File

@@ -3,6 +3,12 @@
This package contains Ethereum-related functionality, specifically deploying and
interacting with Serai contracts.
While `monero-serai` and `bitcoin-serai` are general purpose libraries,
`ethereum-serai` is Serai specific. If any of the utilities are generally
desired, please fork and maintain your own copy to ensure the desired
functionality is preserved, or open an issue to request we make this library
general purpose.
### Dependencies
- solc

View File

@@ -0,0 +1,29 @@
[package]
name = "alloy-simple-request-transport"
version = "0.1.0"
description = "A transport for alloy based off simple-request"
license = "MIT"
repository = "https://github.com/serai-dex/serai/tree/develop/coins/ethereum/alloy-simple-request-transport"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
edition = "2021"
rust-version = "1.74"
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[lints]
workspace = true
[dependencies]
tower = "0.4"
serde_json = { version = "1", default-features = false }
simple-request = { path = "../../../common/request", default-features = false }
alloy-json-rpc = { git = "https://github.com/alloy-rs/alloy", rev = "64feb9bc51c8021ea08535694c44de84222f474e", default-features = false }
alloy-transport = { git = "https://github.com/alloy-rs/alloy", rev = "64feb9bc51c8021ea08535694c44de84222f474e", default-features = false }
[features]
default = ["tls"]
tls = ["simple-request/tls"]

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2024 Luke Parker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,4 @@
# Alloy Simple Request Transport
A transport for alloy based on simple-request, a small HTTP client built around
hyper.

View File

@@ -0,0 +1,60 @@
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
use core::task;
use std::io;
use alloy_json_rpc::{RequestPacket, ResponsePacket};
use alloy_transport::{TransportError, TransportErrorKind, TransportFut};
use simple_request::{hyper, Request, Client};
use tower::Service;
#[derive(Clone, Debug)]
pub struct SimpleRequest {
client: Client,
url: String,
}
impl SimpleRequest {
pub fn new(url: String) -> Self {
Self { client: Client::with_connection_pool(), url }
}
}
impl Service<RequestPacket> for SimpleRequest {
type Response = ResponsePacket;
type Error = TransportError;
type Future = TransportFut<'static>;
#[inline]
fn poll_ready(&mut self, _cx: &mut task::Context<'_>) -> task::Poll<Result<(), Self::Error>> {
task::Poll::Ready(Ok(()))
}
#[inline]
fn call(&mut self, req: RequestPacket) -> Self::Future {
let inner = self.clone();
Box::pin(async move {
let packet = req.serialize().map_err(TransportError::SerError)?;
let request = Request::from(
hyper::Request::post(&inner.url)
.header("Content-Type", "application/json")
.body(serde_json::to_vec(&packet).map_err(TransportError::SerError)?.into())
.unwrap(),
);
let mut res = inner
.client
.request(request)
.await
.map_err(|e| TransportErrorKind::custom(io::Error::other(format!("{e:?}"))))?
.body()
.await
.map_err(|e| TransportErrorKind::custom(io::Error::other(format!("{e:?}"))))?;
serde_json::from_reader(&mut res).map_err(|e| TransportError::deser_err(e, ""))
})
}
}

View File

@@ -1,15 +1,41 @@
use std::process::Command;
fn main() {
println!("cargo:rerun-if-changed=contracts");
println!("cargo:rerun-if-changed=artifacts");
println!("cargo:rerun-if-changed=contracts/*");
println!("cargo:rerun-if-changed=artifacts/*");
for line in String::from_utf8(Command::new("solc").args(["--version"]).output().unwrap().stdout)
.unwrap()
.lines()
{
if let Some(version) = line.strip_prefix("Version: ") {
let version = version.split('+').next().unwrap();
assert_eq!(version, "0.8.25");
}
}
#[rustfmt::skip]
let args = [
"--base-path", ".",
"-o", "./artifacts", "--overwrite",
"--bin", "--abi",
"--optimize",
"./contracts/Schnorr.sol"
];
"--via-ir", "--optimize",
assert!(std::process::Command::new("solc").args(args).status().unwrap().success());
"./contracts/IERC20.sol",
"./contracts/Schnorr.sol",
"./contracts/Deployer.sol",
"./contracts/Sandbox.sol",
"./contracts/Router.sol",
"./src/tests/contracts/Schnorr.sol",
"./src/tests/contracts/ERC20.sol",
"--no-color",
];
let solc = Command::new("solc").args(args).output().unwrap();
assert!(solc.status.success());
for line in String::from_utf8(solc.stderr).unwrap().lines() {
assert!(!line.starts_with("Error:"));
}
}

View File

@@ -0,0 +1,52 @@
// SPDX-License-Identifier: AGPLv3
pragma solidity ^0.8.0;
/*
The expected deployment process of the Router is as follows:
1) A transaction deploying Deployer is made. Then, a deterministic signature is
created such that an account with an unknown private key is the creator of
the contract. Anyone can fund this address, and once anyone does, the
transaction deploying Deployer can be published by anyone. No other
transaction may be made from that account.
2) Anyone deploys the Router through the Deployer. This uses a sequential nonce
such that meet-in-the-middle attacks, with complexity 2**80, aren't feasible.
While such attacks would still be feasible if the Deployer's address was
controllable, the usage of a deterministic signature with a NUMS method
prevents that.
This doesn't have any denial-of-service risks and will resolve once anyone steps
forward as deployer. This does fail to guarantee an identical address across
every chain, though it enables letting anyone efficiently ask the Deployer for
the address (with the Deployer having an identical address on every chain).
Unfortunately, guaranteeing identical addresses aren't feasible. We'd need the
Deployer contract to use a consistent salt for the Router, yet the Router must
be deployed with a specific public key for Serai. Since Ethereum isn't able to
determine a valid public key (one the result of a Serai DKG) from a dishonest
public key, we have to allow multiple deployments with Serai being the one to
determine which to use.
The alternative would be to have a council publish the Serai key on-Ethereum,
with Serai verifying the published result. This would introduce a DoS risk in
the council not publishing the correct key/not publishing any key.
*/
contract Deployer {
event Deployment(bytes32 indexed init_code_hash, address created);
error DeploymentFailed();
function deploy(bytes memory init_code) external {
address created;
assembly {
created := create(0, add(init_code, 0x20), mload(init_code))
}
if (created == address(0)) {
revert DeploymentFailed();
}
// These may be emitted out of order upon re-entrancy
emit Deployment(keccak256(init_code), created);
}
}

View File

@@ -0,0 +1,20 @@
// SPDX-License-Identifier: CC0
pragma solidity ^0.8.0;
interface IERC20 {
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);
function approve(address spender, uint256 value) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
}

View File

@@ -0,0 +1,222 @@
// SPDX-License-Identifier: AGPLv3
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./Schnorr.sol";
import "./Sandbox.sol";
contract Router {
// Nonce is incremented for each batch of transactions executed/key update
uint256 public nonce;
// Current public key's x-coordinate
// This key must always have the parity defined within the Schnorr contract
bytes32 public seraiKey;
struct OutInstruction {
address to;
Call[] calls;
uint256 value;
}
struct Signature {
bytes32 c;
bytes32 s;
}
event SeraiKeyUpdated(
uint256 indexed nonce,
bytes32 indexed key,
Signature signature
);
event InInstruction(
address indexed from,
address indexed coin,
uint256 amount,
bytes instruction
);
// success is a uint256 representing a bitfield of transaction successes
event Executed(
uint256 indexed nonce,
bytes32 indexed batch,
uint256 success,
Signature signature
);
// error types
error InvalidKey();
error InvalidSignature();
error InvalidAmount();
error FailedTransfer();
error TooManyTransactions();
modifier _updateSeraiKeyAtEndOfFn(
uint256 _nonce,
bytes32 key,
Signature memory sig
) {
if (
(key == bytes32(0)) ||
((bytes32(uint256(key) % Schnorr.Q)) != key)
) {
revert InvalidKey();
}
_;
seraiKey = key;
emit SeraiKeyUpdated(_nonce, key, sig);
}
constructor(bytes32 _seraiKey) _updateSeraiKeyAtEndOfFn(
0,
_seraiKey,
Signature({ c: bytes32(0), s: bytes32(0) })
) {
nonce = 1;
}
// updateSeraiKey validates the given Schnorr signature against the current
// public key, and if successful, updates the contract's public key to the
// given one.
function updateSeraiKey(
bytes32 _seraiKey,
Signature calldata sig
) external _updateSeraiKeyAtEndOfFn(nonce, _seraiKey, sig) {
bytes memory message =
abi.encodePacked("updateSeraiKey", block.chainid, nonce, _seraiKey);
nonce++;
if (!Schnorr.verify(seraiKey, message, sig.c, sig.s)) {
revert InvalidSignature();
}
}
function inInstruction(
address coin,
uint256 amount,
bytes memory instruction
) external payable {
if (coin == address(0)) {
if (amount != msg.value) {
revert InvalidAmount();
}
} else {
(bool success, bytes memory res) =
address(coin).call(
abi.encodeWithSelector(
IERC20.transferFrom.selector,
msg.sender,
address(this),
amount
)
);
// Require there was nothing returned, which is done by some non-standard
// tokens, or that the ERC20 contract did in fact return true
bool nonStandardResOrTrue =
(res.length == 0) || abi.decode(res, (bool));
if (!(success && nonStandardResOrTrue)) {
revert FailedTransfer();
}
}
/*
Due to fee-on-transfer tokens, emitting the amount directly is frowned upon.
The amount instructed to transfer may not actually be the amount
transferred.
If we add nonReentrant to every single function which can effect the
balance, we can check the amount exactly matches. This prevents transfers of
less value than expected occurring, at least, not without an additional
transfer to top up the difference (which isn't routed through this contract
and accordingly isn't trying to artificially create events).
If we don't add nonReentrant, a transfer can be started, and then a new
transfer for the difference can follow it up (again and again until a
rounding error is reached). This contract would believe all transfers were
done in full, despite each only being done in part (except for the last
one).
Given fee-on-transfer tokens aren't intended to be supported, the only
token planned to be supported is Dai and it doesn't have any fee-on-transfer
logic, fee-on-transfer tokens aren't even able to be supported at this time,
we simply classify this entire class of tokens as non-standard
implementations which induce undefined behavior. It is the Serai network's
role not to add support for any non-standard implementations.
*/
emit InInstruction(msg.sender, coin, amount, instruction);
}
// execute accepts a list of transactions to execute as well as a signature.
// if signature verification passes, the given transactions are executed.
// if signature verification fails, this function will revert.
function execute(
OutInstruction[] calldata transactions,
Signature calldata sig
) external {
if (transactions.length > 256) {
revert TooManyTransactions();
}
bytes memory message =
abi.encode("execute", block.chainid, nonce, transactions);
uint256 executed_with_nonce = nonce;
// This prevents re-entrancy from causing double spends yet does allow
// out-of-order execution via re-entrancy
nonce++;
if (!Schnorr.verify(seraiKey, message, sig.c, sig.s)) {
revert InvalidSignature();
}
uint256 successes;
for (uint256 i = 0; i < transactions.length; i++) {
bool success;
// If there are no calls, send to `to` the value
if (transactions[i].calls.length == 0) {
(success, ) = transactions[i].to.call{
value: transactions[i].value,
gas: 5_000
}("");
} else {
// If there are calls, ignore `to`. Deploy a new Sandbox and proxy the
// calls through that
//
// We could use a single sandbox in order to reduce gas costs, yet that
// risks one person creating an approval that's hooked before another
// user's intended action executes, in order to drain their coins
//
// While technically, that would be a flaw in the sandboxed flow, this
// is robust and prevents such flaws from being possible
//
// We also don't want people to set state via the Sandbox and expect it
// future available when anyone else could set a distinct value
Sandbox sandbox = new Sandbox();
(success, ) = address(sandbox).call{
value: transactions[i].value,
// TODO: Have the Call specify the gas up front
gas: 350_000
}(
abi.encodeWithSelector(
Sandbox.sandbox.selector,
transactions[i].calls
)
);
}
assembly {
successes := or(successes, shl(i, success))
}
}
emit Executed(
executed_with_nonce,
keccak256(message),
successes,
sig
);
}
}

View File

@@ -0,0 +1,48 @@
// SPDX-License-Identifier: AGPLv3
pragma solidity ^0.8.24;
struct Call {
address to;
uint256 value;
bytes data;
}
// A minimal sandbox focused on gas efficiency.
//
// The first call is executed if any of the calls fail, making it a fallback.
// All other calls are executed sequentially.
contract Sandbox {
error AlreadyCalled();
error CallsFailed();
function sandbox(Call[] calldata calls) external payable {
// Prevent re-entrancy due to this executing arbitrary calls from anyone
// and anywhere
bool called;
assembly { called := tload(0) }
if (called) {
revert AlreadyCalled();
}
assembly { tstore(0, 1) }
// Execute the calls, starting from 1
for (uint256 i = 1; i < calls.length; i++) {
(bool success, ) =
calls[i].to.call{ value: calls[i].value }(calls[i].data);
// If this call failed, execute the fallback (call 0)
if (!success) {
(success, ) =
calls[0].to.call{ value: address(this).balance }(calls[0].data);
// If this call also failed, revert entirely
if (!success) {
revert CallsFailed();
}
return;
}
}
// We don't clear the re-entrancy guard as this contract should never be
// called again, so there's no reason to spend the effort
}
}

View File

@@ -1,36 +1,44 @@
//SPDX-License-Identifier: AGPLv3
// SPDX-License-Identifier: AGPLv3
pragma solidity ^0.8.0;
// see https://github.com/noot/schnorr-verify for implementation details
contract Schnorr {
library Schnorr {
// secp256k1 group order
uint256 constant public Q =
0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141;
// parity := public key y-coord parity (27 or 28)
// px := public key x-coord
// message := 32-byte message
// s := schnorr signature
// e := schnorr signature challenge
function verify(
uint8 parity,
bytes32 px,
bytes32 message,
bytes32 s,
bytes32 e
) public view returns (bool) {
// ecrecover = (m, v, r, s);
bytes32 sp = bytes32(Q - mulmod(uint256(s), uint256(px), Q));
bytes32 ep = bytes32(Q - mulmod(uint256(e), uint256(px), Q));
// Fixed parity for the public keys used in this contract
// This avoids spending a word passing the parity in a similar style to
// Bitcoin's Taproot
uint8 constant public KEY_PARITY = 27;
require(sp != 0);
// the ecrecover precompile implementation checks that the `r` and `s`
// inputs are non-zero (in this case, `px` and `ep`), thus we don't need to
// check if they're zero.will make me
address R = ecrecover(sp, parity, px, ep);
require(R != address(0), "ecrecover failed");
return e == keccak256(
abi.encodePacked(R, uint8(parity), px, block.chainid, message)
);
error InvalidSOrA();
error MalformedSignature();
// px := public key x-coord, where the public key has a parity of KEY_PARITY
// message := 32-byte hash of the message
// c := schnorr signature challenge
// s := schnorr signature
function verify(
bytes32 px,
bytes memory message,
bytes32 c,
bytes32 s
) internal pure returns (bool) {
// ecrecover = (m, v, r, s) -> key
// We instead pass the following to obtain the nonce (not the key)
// Then we hash it and verify it matches the challenge
bytes32 sa = bytes32(Q - mulmod(uint256(s), uint256(px), Q));
bytes32 ca = bytes32(Q - mulmod(uint256(c), uint256(px), Q));
// For safety, we want each input to ecrecover to be 0 (sa, px, ca)
// The ecreover precomple checks `r` and `s` (`px` and `ca`) are non-zero
// That leaves us to check `sa` are non-zero
if (sa == 0) revert InvalidSOrA();
address R = ecrecover(sa, KEY_PARITY, px, ca);
if (R == address(0)) revert MalformedSignature();
// Check the signature is correct by rebuilding the challenge
return c == keccak256(abi.encodePacked(R, px, message));
}
}

View File

@@ -0,0 +1,30 @@
[package]
name = "serai-ethereum-relayer"
version = "0.1.0"
description = "A relayer for Serai's Ethereum transactions"
license = "AGPL-3.0-only"
repository = "https://github.com/serai-dex/serai/tree/develop/coins/ethereum/relayer"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = []
edition = "2021"
publish = false
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[lints]
workspace = true
[dependencies]
log = { version = "0.4", default-features = false, features = ["std"] }
env_logger = { version = "0.10", default-features = false, features = ["humantime"] }
tokio = { version = "1", default-features = false, features = ["rt", "time", "io-util", "net", "macros"] }
serai-env = { path = "../../../common/env" }
serai-db = { path = "../../../common/db" }
[features]
parity-db = ["serai-db/parity-db"]
rocksdb = ["serai-db/rocksdb"]

View File

@@ -0,0 +1,15 @@
AGPL-3.0-only license
Copyright (c) 2023-2024 Luke Parker
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License Version 3 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

View File

@@ -0,0 +1,4 @@
# Ethereum Transaction Relayer
This server collects Ethereum router commands to be published, offering an RPC
to fetch them.

View File

@@ -0,0 +1,100 @@
pub(crate) use tokio::{
io::{AsyncReadExt, AsyncWriteExt},
net::TcpListener,
};
use serai_db::{Get, DbTxn, Db as DbTrait};
#[tokio::main(flavor = "current_thread")]
async fn main() {
// Override the panic handler with one which will panic if any tokio task panics
{
let existing = std::panic::take_hook();
std::panic::set_hook(Box::new(move |panic| {
existing(panic);
const MSG: &str = "exiting the process due to a task panicking";
println!("{MSG}");
log::error!("{MSG}");
std::process::exit(1);
}));
}
if std::env::var("RUST_LOG").is_err() {
std::env::set_var("RUST_LOG", serai_env::var("RUST_LOG").unwrap_or_else(|| "info".to_string()));
}
env_logger::init();
log::info!("Starting Ethereum relayer server...");
// Open the DB
#[allow(unused_variables, unreachable_code)]
let db = {
#[cfg(all(feature = "parity-db", feature = "rocksdb"))]
panic!("built with parity-db and rocksdb");
#[cfg(all(feature = "parity-db", not(feature = "rocksdb")))]
let db =
serai_db::new_parity_db(&serai_env::var("DB_PATH").expect("path to DB wasn't specified"));
#[cfg(feature = "rocksdb")]
let db =
serai_db::new_rocksdb(&serai_env::var("DB_PATH").expect("path to DB wasn't specified"));
db
};
// Start command recipience server
// This should not be publicly exposed
// TODO: Add auth
tokio::spawn({
let db = db.clone();
async move {
// 5132 ^ ((b'E' << 8) | b'R')
let server = TcpListener::bind("0.0.0.0:20830").await.unwrap();
loop {
let (mut socket, _) = server.accept().await.unwrap();
let db = db.clone();
tokio::spawn(async move {
let mut db = db.clone();
loop {
let Ok(msg_len) = socket.read_u32_le().await else { break };
let mut buf = vec![0; usize::try_from(msg_len).unwrap()];
let Ok(_) = socket.read_exact(&mut buf).await else { break };
if buf.len() < 5 {
break;
}
let nonce = u32::from_le_bytes(buf[.. 4].try_into().unwrap());
let mut txn = db.txn();
txn.put(nonce.to_le_bytes(), &buf[4 ..]);
txn.commit();
let Ok(()) = socket.write_all(&[1]).await else { break };
log::info!("received signed command #{nonce}");
}
});
}
}
});
// Start command fetch server
// 5132 ^ ((b'E' << 8) | b'R') + 1
let server = TcpListener::bind("0.0.0.0:20831").await.unwrap();
loop {
let (mut socket, _) = server.accept().await.unwrap();
let db = db.clone();
tokio::spawn(async move {
let db = db.clone();
loop {
// Nonce to get the router comamnd for
let mut buf = vec![0; 4];
let Ok(_) = socket.read_exact(&mut buf).await else { break };
let command = db.get(&buf[.. 4]).unwrap_or(vec![]);
let Ok(()) = socket.write_all(&u32::try_from(command.len()).unwrap().to_le_bytes()).await
else {
break;
};
let Ok(()) = socket.write_all(&command).await else { break };
}
});
}
}

View File

@@ -0,0 +1,37 @@
use alloy_sol_types::sol;
#[rustfmt::skip]
#[allow(warnings)]
#[allow(needless_pass_by_value)]
#[allow(clippy::all)]
#[allow(clippy::ignored_unit_patterns)]
#[allow(clippy::redundant_closure_for_method_calls)]
mod erc20_container {
use super::*;
sol!("contracts/IERC20.sol");
}
pub use erc20_container::IERC20 as erc20;
#[rustfmt::skip]
#[allow(warnings)]
#[allow(needless_pass_by_value)]
#[allow(clippy::all)]
#[allow(clippy::ignored_unit_patterns)]
#[allow(clippy::redundant_closure_for_method_calls)]
mod deployer_container {
use super::*;
sol!("contracts/Deployer.sol");
}
pub use deployer_container::Deployer as deployer;
#[rustfmt::skip]
#[allow(warnings)]
#[allow(needless_pass_by_value)]
#[allow(clippy::all)]
#[allow(clippy::ignored_unit_patterns)]
#[allow(clippy::redundant_closure_for_method_calls)]
mod router_container {
use super::*;
sol!(Router, "artifacts/Router.abi");
}
pub use router_container::Router as router;

View File

@@ -1,36 +0,0 @@
use thiserror::Error;
use eyre::{eyre, Result};
use ethers_providers::{Provider, Http};
use ethers_contract::abigen;
use crate::crypto::ProcessedSignature;
#[derive(Error, Debug)]
pub enum EthereumError {
#[error("failed to verify Schnorr signature")]
VerificationError,
}
abigen!(Schnorr, "./artifacts/Schnorr.abi");
pub async fn call_verify(
contract: &Schnorr<Provider<Http>>,
params: &ProcessedSignature,
) -> Result<()> {
if contract
.verify(
params.parity + 27,
params.px.to_bytes().into(),
params.message,
params.s.to_bytes().into(),
params.e.to_bytes().into(),
)
.call()
.await?
{
Ok(())
} else {
Err(eyre!(EthereumError::VerificationError))
}
}

View File

@@ -1,107 +1,188 @@
use sha3::{Digest, Keccak256};
use group::Group;
use group::ff::PrimeField;
use k256::{
elliptic_curve::{
bigint::ArrayEncoding, ops::Reduce, point::DecompressPoint, sec1::ToEncodedPoint,
},
AffinePoint, ProjectivePoint, Scalar, U256,
elliptic_curve::{ops::Reduce, point::AffineCoordinates, sec1::ToEncodedPoint},
ProjectivePoint, Scalar, U256 as KU256,
};
#[cfg(test)]
use k256::{elliptic_curve::point::DecompressPoint, AffinePoint};
use frost::{
algorithm::{Hram, SchnorrSignature},
curve::{Ciphersuite, Secp256k1},
};
use frost::{algorithm::Hram, curve::Secp256k1};
use alloy_core::primitives::{Parity, Signature as AlloySignature};
use alloy_consensus::{SignableTransaction, Signed, TxLegacy};
pub fn keccak256(data: &[u8]) -> [u8; 32] {
Keccak256::digest(data).into()
use crate::abi::router::{Signature as AbiSignature};
pub(crate) fn keccak256(data: &[u8]) -> [u8; 32] {
alloy_core::primitives::keccak256(data).into()
}
pub fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar::reduce(U256::from_be_slice(&keccak256(data)))
pub(crate) fn hash_to_scalar(data: &[u8]) -> Scalar {
<Scalar as Reduce<KU256>>::reduce_bytes(&keccak256(data).into())
}
pub fn address(point: &ProjectivePoint) -> [u8; 20] {
let encoded_point = point.to_encoded_point(false);
keccak256(&encoded_point.as_ref()[1 .. 65])[12 .. 32].try_into().unwrap()
// Last 20 bytes of the hash of the concatenated x and y coordinates
// We obtain the concatenated x and y coordinates via the uncompressed encoding of the point
keccak256(&encoded_point.as_ref()[1 .. 65])[12 ..].try_into().unwrap()
}
pub fn ecrecover(message: Scalar, v: u8, r: Scalar, s: Scalar) -> Option<[u8; 20]> {
if r.is_zero().into() || s.is_zero().into() {
return None;
}
/// Deterministically sign a transaction.
///
/// This function panics if passed a transaction with a non-None chain ID.
pub fn deterministically_sign(tx: &TxLegacy) -> Signed<TxLegacy> {
assert!(
tx.chain_id.is_none(),
"chain ID was Some when deterministically signing a TX (causing a non-deterministic signer)"
);
#[allow(non_snake_case)]
let R = AffinePoint::decompress(&r.to_bytes(), v.into());
#[allow(non_snake_case)]
if let Some(R) = Option::<AffinePoint>::from(R) {
#[allow(non_snake_case)]
let R = ProjectivePoint::from(R);
let r = r.invert().unwrap();
let u1 = ProjectivePoint::GENERATOR * (-message * r);
let u2 = R * (s * r);
let key: ProjectivePoint = u1 + u2;
if !bool::from(key.is_identity()) {
return Some(address(&key));
let sig_hash = tx.signature_hash().0;
let mut r = hash_to_scalar(&[sig_hash.as_slice(), b"r"].concat());
let mut s = hash_to_scalar(&[sig_hash.as_slice(), b"s"].concat());
loop {
let r_bytes: [u8; 32] = r.to_repr().into();
let s_bytes: [u8; 32] = s.to_repr().into();
let v = Parity::NonEip155(false);
let signature =
AlloySignature::from_scalars_and_parity(r_bytes.into(), s_bytes.into(), v).unwrap();
let tx = tx.clone().into_signed(signature);
if tx.recover_signer().is_ok() {
return tx;
}
}
None
// Re-hash until valid
r = hash_to_scalar(r_bytes.as_ref());
s = hash_to_scalar(s_bytes.as_ref());
}
}
/// The public key for a Schnorr-signing account.
#[allow(non_snake_case)]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct PublicKey {
pub(crate) A: ProjectivePoint,
pub(crate) px: Scalar,
}
impl PublicKey {
/// Construct a new `PublicKey`.
///
/// This will return None if the provided point isn't eligible to be a public key (due to
/// bounds such as parity).
#[allow(non_snake_case)]
pub fn new(A: ProjectivePoint) -> Option<PublicKey> {
let affine = A.to_affine();
// Only allow even keys to save a word within Ethereum
let is_odd = bool::from(affine.y_is_odd());
if is_odd {
None?;
}
let x_coord = affine.x();
let x_coord_scalar = <Scalar as Reduce<KU256>>::reduce_bytes(&x_coord);
// Return None if a reduction would occur
// Reductions would be incredibly unlikely and shouldn't be an issue, yet it's one less
// headache/concern to have
// This does ban a trivial amoount of public keys
if x_coord_scalar.to_repr() != x_coord {
None?;
}
Some(PublicKey { A, px: x_coord_scalar })
}
pub fn point(&self) -> ProjectivePoint {
self.A
}
pub(crate) fn eth_repr(&self) -> [u8; 32] {
self.px.to_repr().into()
}
#[cfg(test)]
pub(crate) fn from_eth_repr(repr: [u8; 32]) -> Option<Self> {
#[allow(non_snake_case)]
let A = Option::<AffinePoint>::from(AffinePoint::decompress(&repr.into(), 0.into()))?.into();
Option::from(Scalar::from_repr(repr.into())).map(|px| PublicKey { A, px })
}
}
/// The HRAm to use for the Schnorr contract.
#[derive(Clone, Default)]
pub struct EthereumHram {}
impl Hram<Secp256k1> for EthereumHram {
#[allow(non_snake_case)]
fn hram(R: &ProjectivePoint, A: &ProjectivePoint, m: &[u8]) -> Scalar {
let a_encoded_point = A.to_encoded_point(true);
let mut a_encoded = a_encoded_point.as_ref().to_owned();
a_encoded[0] += 25; // Ethereum uses 27/28 for point parity
let x_coord = A.to_affine().x();
let mut data = address(R).to_vec();
data.append(&mut a_encoded);
data.append(&mut m.to_vec());
Scalar::reduce(U256::from_be_slice(&keccak256(&data)))
data.extend(x_coord.as_slice());
data.extend(m);
<Scalar as Reduce<KU256>>::reduce_bytes(&keccak256(&data).into())
}
}
pub struct ProcessedSignature {
pub s: Scalar,
pub px: Scalar,
pub parity: u8,
pub message: [u8; 32],
pub e: Scalar,
/// A signature for the Schnorr contract.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Signature {
pub(crate) c: Scalar,
pub(crate) s: Scalar,
}
#[allow(non_snake_case)]
pub fn preprocess_signature_for_ecrecover(
m: [u8; 32],
R: &ProjectivePoint,
s: Scalar,
A: &ProjectivePoint,
chain_id: U256,
) -> (Scalar, Scalar) {
let processed_sig = process_signature_for_contract(m, R, s, A, chain_id);
let sr = processed_sig.s.mul(&processed_sig.px).negate();
let er = processed_sig.e.mul(&processed_sig.px).negate();
(sr, er)
}
#[allow(non_snake_case)]
pub fn process_signature_for_contract(
m: [u8; 32],
R: &ProjectivePoint,
s: Scalar,
A: &ProjectivePoint,
chain_id: U256,
) -> ProcessedSignature {
let encoded_pk = A.to_encoded_point(true);
let px = &encoded_pk.as_ref()[1 .. 33];
let px_scalar = Scalar::reduce(U256::from_be_slice(px));
let e = EthereumHram::hram(R, A, &[chain_id.to_be_byte_array().as_slice(), &m].concat());
ProcessedSignature {
s,
px: px_scalar,
parity: &encoded_pk.as_ref()[0] - 2,
impl Signature {
pub fn verify(&self, public_key: &PublicKey, message: &[u8]) -> bool {
#[allow(non_snake_case)]
message: m,
e,
let R = (Secp256k1::generator() * self.s) - (public_key.A * self.c);
EthereumHram::hram(&R, &public_key.A, message) == self.c
}
/// Construct a new `Signature`.
///
/// This will return None if the signature is invalid.
pub fn new(
public_key: &PublicKey,
message: &[u8],
signature: SchnorrSignature<Secp256k1>,
) -> Option<Signature> {
let c = EthereumHram::hram(&signature.R, &public_key.A, message);
if !signature.verify(public_key.A, c) {
None?;
}
let res = Signature { c, s: signature.s };
assert!(res.verify(public_key, message));
Some(res)
}
pub fn c(&self) -> Scalar {
self.c
}
pub fn s(&self) -> Scalar {
self.s
}
pub fn to_bytes(&self) -> [u8; 64] {
let mut res = [0; 64];
res[.. 32].copy_from_slice(self.c.to_repr().as_ref());
res[32 ..].copy_from_slice(self.s.to_repr().as_ref());
res
}
pub fn from_bytes(bytes: [u8; 64]) -> std::io::Result<Self> {
let mut reader = bytes.as_slice();
let c = Secp256k1::read_F(&mut reader)?;
let s = Secp256k1::read_F(&mut reader)?;
Ok(Signature { c, s })
}
}
impl From<&Signature> for AbiSignature {
fn from(sig: &Signature) -> AbiSignature {
let c: [u8; 32] = sig.c.to_repr().into();
let s: [u8; 32] = sig.s.to_repr().into();
AbiSignature { c: c.into(), s: s.into() }
}
}

View File

@@ -0,0 +1,113 @@
use std::sync::Arc;
use alloy_core::primitives::{hex::FromHex, Address, B256, U256, Bytes, TxKind};
use alloy_consensus::{Signed, TxLegacy};
use alloy_sol_types::{SolCall, SolEvent};
use alloy_rpc_types::{BlockNumberOrTag, Filter};
use alloy_simple_request_transport::SimpleRequest;
use alloy_provider::{Provider, RootProvider};
use crate::{
Error,
crypto::{self, keccak256, PublicKey},
router::Router,
};
pub use crate::abi::deployer as abi;
/// The Deployer contract for the Router contract.
///
/// This Deployer has a deterministic address, letting it be immediately identified on any
/// compatible chain. It then supports retrieving the Router contract's address (which isn't
/// deterministic) using a single log query.
#[derive(Clone, Debug)]
pub struct Deployer;
impl Deployer {
/// Obtain the transaction to deploy this contract, already signed.
///
/// The account this transaction is sent from (which is populated in `from`) must be sufficiently
/// funded for this transaction to be submitted. This account has no known private key to anyone,
/// so ETH sent can be neither misappropriated nor returned.
pub fn deployment_tx() -> Signed<TxLegacy> {
let bytecode = include_str!("../artifacts/Deployer.bin");
let bytecode =
Bytes::from_hex(bytecode).expect("compiled-in Deployer bytecode wasn't valid hex");
let tx = TxLegacy {
chain_id: None,
nonce: 0,
gas_price: 100_000_000_000u128,
// TODO: Use a more accurate gas limit
gas_limit: 1_000_000u128,
to: TxKind::Create,
value: U256::ZERO,
input: bytecode,
};
crypto::deterministically_sign(&tx)
}
/// Obtain the deterministic address for this contract.
pub fn address() -> [u8; 20] {
let deployer_deployer =
Self::deployment_tx().recover_signer().expect("deployment_tx didn't have a valid signature");
**Address::create(&deployer_deployer, 0)
}
/// Construct a new view of the `Deployer`.
pub async fn new(provider: Arc<RootProvider<SimpleRequest>>) -> Result<Option<Self>, Error> {
let address = Self::address();
let code = provider.get_code_at(address.into()).await.map_err(|_| Error::ConnectionError)?;
// Contract has yet to be deployed
if code.is_empty() {
return Ok(None);
}
Ok(Some(Self))
}
/// Yield the `ContractCall` necessary to deploy the Router.
pub fn deploy_router(&self, key: &PublicKey) -> TxLegacy {
TxLegacy {
to: TxKind::Call(Self::address().into()),
input: abi::deployCall::new((Router::init_code(key).into(),)).abi_encode().into(),
gas_limit: 1_000_000,
..Default::default()
}
}
/// Find the first Router deployed with the specified key as its first key.
///
/// This is the Router Serai will use, and is the only way to construct a `Router`.
pub async fn find_router(
&self,
provider: Arc<RootProvider<SimpleRequest>>,
key: &PublicKey,
) -> Result<Option<Router>, Error> {
let init_code = Router::init_code(key);
let init_code_hash = keccak256(&init_code);
#[cfg(not(test))]
let to_block = BlockNumberOrTag::Finalized;
#[cfg(test)]
let to_block = BlockNumberOrTag::Latest;
// Find the first log using this init code (where the init code is binding to the key)
// TODO: Make an abstraction for event filtering (de-duplicating common code)
let filter =
Filter::new().from_block(0).to_block(to_block).address(Address::from(Self::address()));
let filter = filter.event_signature(abi::Deployment::SIGNATURE_HASH);
let filter = filter.topic1(B256::from(init_code_hash));
let logs = provider.get_logs(&filter).await.map_err(|_| Error::ConnectionError)?;
let Some(first_log) = logs.first() else { return Ok(None) };
let router = first_log
.log_decode::<abi::Deployment>()
.map_err(|_| Error::ConnectionError)?
.inner
.data
.created;
Ok(Some(Router::new(provider, router)))
}
}

105
coins/ethereum/src/erc20.rs Normal file
View File

@@ -0,0 +1,105 @@
use std::{sync::Arc, collections::HashSet};
use alloy_core::primitives::{Address, B256, U256};
use alloy_sol_types::{SolInterface, SolEvent};
use alloy_rpc_types::Filter;
use alloy_simple_request_transport::SimpleRequest;
use alloy_provider::{Provider, RootProvider};
use crate::Error;
pub use crate::abi::erc20 as abi;
use abi::{IERC20Calls, Transfer, transferCall, transferFromCall};
#[derive(Clone, Debug)]
pub struct TopLevelErc20Transfer {
pub id: [u8; 32],
pub from: [u8; 20],
pub amount: U256,
pub data: Vec<u8>,
}
/// A view for an ERC20 contract.
#[derive(Clone, Debug)]
pub struct Erc20(Arc<RootProvider<SimpleRequest>>, Address);
impl Erc20 {
/// Construct a new view of the specified ERC20 contract.
pub fn new(provider: Arc<RootProvider<SimpleRequest>>, address: [u8; 20]) -> Self {
Self(provider, Address::from(&address))
}
pub async fn top_level_transfers(
&self,
block: u64,
to: [u8; 20],
) -> Result<Vec<TopLevelErc20Transfer>, Error> {
let filter = Filter::new().from_block(block).to_block(block).address(self.1);
let filter = filter.event_signature(Transfer::SIGNATURE_HASH);
let mut to_topic = [0; 32];
to_topic[12 ..].copy_from_slice(&to);
let filter = filter.topic2(B256::from(to_topic));
let logs = self.0.get_logs(&filter).await.map_err(|_| Error::ConnectionError)?;
let mut handled = HashSet::new();
let mut top_level_transfers = vec![];
for log in logs {
// Double check the address which emitted this log
if log.address() != self.1 {
Err(Error::ConnectionError)?;
}
let tx_id = log.transaction_hash.ok_or(Error::ConnectionError)?;
let tx =
self.0.get_transaction_by_hash(tx_id).await.ok().flatten().ok_or(Error::ConnectionError)?;
// If this is a top-level call...
if tx.to == Some(self.1) {
// And we recognize the call...
// Don't validate the encoding as this can't be re-encoded to an identical bytestring due
// to the InInstruction appended
if let Ok(call) = IERC20Calls::abi_decode(&tx.input, false) {
// Extract the top-level call's from/to/value
let (from, call_to, value) = match call {
IERC20Calls::transfer(transferCall { to: call_to, value }) => (tx.from, call_to, value),
IERC20Calls::transferFrom(transferFromCall { from, to: call_to, value }) => {
(from, call_to, value)
}
// Treat any other function selectors as unrecognized
_ => continue,
};
let log = log.log_decode::<Transfer>().map_err(|_| Error::ConnectionError)?.inner.data;
// Ensure the top-level transfer is equivalent, and this presumably isn't a log for an
// internal transfer
if (log.from != from) || (call_to != to) || (value != log.value) {
continue;
}
// Now that the top-level transfer is confirmed to be equivalent to the log, ensure it's
// the only log we handle
if handled.contains(&tx_id) {
continue;
}
handled.insert(tx_id);
// Read the data appended after
let encoded = call.abi_encode();
let data = tx.input.as_ref()[encoded.len() ..].to_vec();
// Push the transfer
top_level_transfers.push(TopLevelErc20Transfer {
// Since we'll only handle one log for this TX, set the ID to the TX ID
id: *tx_id,
from: *log.from.0,
amount: log.value,
data,
});
}
}
}
Ok(top_level_transfers)
}
}

View File

@@ -1,2 +1,35 @@
pub mod contract;
use thiserror::Error;
pub mod alloy {
pub use alloy_core::primitives;
pub use alloy_core as core;
pub use alloy_sol_types as sol_types;
pub use alloy_consensus as consensus;
pub use alloy_network as network;
pub use alloy_rpc_types as rpc_types;
pub use alloy_simple_request_transport as simple_request_transport;
pub use alloy_rpc_client as rpc_client;
pub use alloy_provider as provider;
}
pub mod crypto;
pub(crate) mod abi;
pub mod erc20;
pub mod deployer;
pub mod router;
pub mod machine;
#[cfg(any(test, feature = "tests"))]
pub mod tests;
#[derive(Clone, Copy, PartialEq, Eq, Debug, Error)]
pub enum Error {
#[error("failed to verify Schnorr signature")]
InvalidSignature,
#[error("couldn't make call/send TX")]
ConnectionError,
}

View File

@@ -0,0 +1,414 @@
use std::{
io::{self, Read},
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng};
use transcript::{Transcript, RecommendedTranscript};
use group::GroupEncoding;
use frost::{
curve::{Ciphersuite, Secp256k1},
Participant, ThresholdKeys, FrostError,
algorithm::Schnorr,
sign::*,
};
use alloy_core::primitives::U256;
use crate::{
crypto::{PublicKey, EthereumHram, Signature},
router::{
abi::{Call as AbiCall, OutInstruction as AbiOutInstruction},
Router,
},
};
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Call {
pub to: [u8; 20],
pub value: U256,
pub data: Vec<u8>,
}
impl Call {
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut to = [0; 20];
reader.read_exact(&mut to)?;
let value = {
let mut value_bytes = [0; 32];
reader.read_exact(&mut value_bytes)?;
U256::from_le_slice(&value_bytes)
};
let mut data_len = {
let mut data_len = [0; 4];
reader.read_exact(&mut data_len)?;
usize::try_from(u32::from_le_bytes(data_len)).expect("u32 couldn't fit within a usize")
};
// A valid DoS would be to claim a 4 GB data is present for only 4 bytes
// We read this in 1 KB chunks to only read data actually present (with a max DoS of 1 KB)
let mut data = vec![];
while data_len > 0 {
let chunk_len = data_len.min(1024);
let mut chunk = vec![0; chunk_len];
reader.read_exact(&mut chunk)?;
data.extend(&chunk);
data_len -= chunk_len;
}
Ok(Call { to, value, data })
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&self.to)?;
writer.write_all(&self.value.as_le_bytes())?;
let data_len = u32::try_from(self.data.len())
.map_err(|_| io::Error::other("call data length exceeded 2**32"))?;
writer.write_all(&data_len.to_le_bytes())?;
writer.write_all(&self.data)
}
}
impl From<Call> for AbiCall {
fn from(call: Call) -> AbiCall {
AbiCall { to: call.to.into(), value: call.value, data: call.data.into() }
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum OutInstructionTarget {
Direct([u8; 20]),
Calls(Vec<Call>),
}
impl OutInstructionTarget {
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut kind = [0xff];
reader.read_exact(&mut kind)?;
match kind[0] {
0 => {
let mut addr = [0; 20];
reader.read_exact(&mut addr)?;
Ok(OutInstructionTarget::Direct(addr))
}
1 => {
let mut calls_len = [0; 4];
reader.read_exact(&mut calls_len)?;
let calls_len = u32::from_le_bytes(calls_len);
let mut calls = vec![];
for _ in 0 .. calls_len {
calls.push(Call::read(reader)?);
}
Ok(OutInstructionTarget::Calls(calls))
}
_ => Err(io::Error::other("unrecognized OutInstructionTarget"))?,
}
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
match self {
OutInstructionTarget::Direct(addr) => {
writer.write_all(&[0])?;
writer.write_all(addr)?;
}
OutInstructionTarget::Calls(calls) => {
writer.write_all(&[1])?;
let call_len = u32::try_from(calls.len())
.map_err(|_| io::Error::other("amount of calls exceeded 2**32"))?;
writer.write_all(&call_len.to_le_bytes())?;
for call in calls {
call.write(writer)?;
}
}
}
Ok(())
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct OutInstruction {
pub target: OutInstructionTarget,
pub value: U256,
}
impl OutInstruction {
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let target = OutInstructionTarget::read(reader)?;
let value = {
let mut value_bytes = [0; 32];
reader.read_exact(&mut value_bytes)?;
U256::from_le_slice(&value_bytes)
};
Ok(OutInstruction { target, value })
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
self.target.write(writer)?;
writer.write_all(&self.value.as_le_bytes())
}
}
impl From<OutInstruction> for AbiOutInstruction {
fn from(instruction: OutInstruction) -> AbiOutInstruction {
match instruction.target {
OutInstructionTarget::Direct(addr) => {
AbiOutInstruction { to: addr.into(), calls: vec![], value: instruction.value }
}
OutInstructionTarget::Calls(calls) => AbiOutInstruction {
to: [0; 20].into(),
calls: calls.into_iter().map(Into::into).collect(),
value: instruction.value,
},
}
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum RouterCommand {
UpdateSeraiKey { chain_id: U256, nonce: U256, key: PublicKey },
Execute { chain_id: U256, nonce: U256, outs: Vec<OutInstruction> },
}
impl RouterCommand {
pub fn msg(&self) -> Vec<u8> {
match self {
RouterCommand::UpdateSeraiKey { chain_id, nonce, key } => {
Router::update_serai_key_message(*chain_id, *nonce, key)
}
RouterCommand::Execute { chain_id, nonce, outs } => Router::execute_message(
*chain_id,
*nonce,
outs.iter().map(|out| out.clone().into()).collect(),
),
}
}
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut kind = [0xff];
reader.read_exact(&mut kind)?;
match kind[0] {
0 => {
let mut chain_id = [0; 32];
reader.read_exact(&mut chain_id)?;
let mut nonce = [0; 32];
reader.read_exact(&mut nonce)?;
let key = PublicKey::new(Secp256k1::read_G(reader)?)
.ok_or(io::Error::other("key for RouterCommand doesn't have an eth representation"))?;
Ok(RouterCommand::UpdateSeraiKey {
chain_id: U256::from_le_slice(&chain_id),
nonce: U256::from_le_slice(&nonce),
key,
})
}
1 => {
let mut chain_id = [0; 32];
reader.read_exact(&mut chain_id)?;
let chain_id = U256::from_le_slice(&chain_id);
let mut nonce = [0; 32];
reader.read_exact(&mut nonce)?;
let nonce = U256::from_le_slice(&nonce);
let mut outs_len = [0; 4];
reader.read_exact(&mut outs_len)?;
let outs_len = u32::from_le_bytes(outs_len);
let mut outs = vec![];
for _ in 0 .. outs_len {
outs.push(OutInstruction::read(reader)?);
}
Ok(RouterCommand::Execute { chain_id, nonce, outs })
}
_ => Err(io::Error::other("reading unknown type of RouterCommand"))?,
}
}
pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
match self {
RouterCommand::UpdateSeraiKey { chain_id, nonce, key } => {
writer.write_all(&[0])?;
writer.write_all(&chain_id.as_le_bytes())?;
writer.write_all(&nonce.as_le_bytes())?;
writer.write_all(&key.A.to_bytes())
}
RouterCommand::Execute { chain_id, nonce, outs } => {
writer.write_all(&[1])?;
writer.write_all(&chain_id.as_le_bytes())?;
writer.write_all(&nonce.as_le_bytes())?;
writer.write_all(&u32::try_from(outs.len()).unwrap().to_le_bytes())?;
for out in outs {
out.write(writer)?;
}
Ok(())
}
}
}
pub fn serialize(&self) -> Vec<u8> {
let mut res = vec![];
self.write(&mut res).unwrap();
res
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct SignedRouterCommand {
command: RouterCommand,
signature: Signature,
}
impl SignedRouterCommand {
pub fn new(key: &PublicKey, command: RouterCommand, signature: &[u8; 64]) -> Option<Self> {
let c = Secp256k1::read_F(&mut &signature[.. 32]).ok()?;
let s = Secp256k1::read_F(&mut &signature[32 ..]).ok()?;
let signature = Signature { c, s };
if !signature.verify(key, &command.msg()) {
None?
}
Some(SignedRouterCommand { command, signature })
}
pub fn command(&self) -> &RouterCommand {
&self.command
}
pub fn signature(&self) -> &Signature {
&self.signature
}
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let command = RouterCommand::read(reader)?;
let mut sig = [0; 64];
reader.read_exact(&mut sig)?;
let signature = Signature::from_bytes(sig)?;
Ok(SignedRouterCommand { command, signature })
}
pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
self.command.write(writer)?;
writer.write_all(&self.signature.to_bytes())
}
}
pub struct RouterCommandMachine {
key: PublicKey,
command: RouterCommand,
machine: AlgorithmMachine<Secp256k1, Schnorr<Secp256k1, RecommendedTranscript, EthereumHram>>,
}
impl RouterCommandMachine {
pub fn new(keys: ThresholdKeys<Secp256k1>, command: RouterCommand) -> Option<Self> {
// The Schnorr algorithm should be fine without this, even when using the IETF variant
// If this is better and more comprehensive, we should do it, even if not necessary
let mut transcript = RecommendedTranscript::new(b"ethereum-serai RouterCommandMachine v0.1");
let key = keys.group_key();
transcript.append_message(b"key", key.to_bytes());
transcript.append_message(b"command", command.serialize());
Some(Self {
key: PublicKey::new(key)?,
command,
machine: AlgorithmMachine::new(Schnorr::new(transcript), keys),
})
}
}
impl PreprocessMachine for RouterCommandMachine {
type Preprocess = Preprocess<Secp256k1, ()>;
type Signature = SignedRouterCommand;
type SignMachine = RouterCommandSignMachine;
fn preprocess<R: RngCore + CryptoRng>(
self,
rng: &mut R,
) -> (Self::SignMachine, Self::Preprocess) {
let (machine, preprocess) = self.machine.preprocess(rng);
(RouterCommandSignMachine { key: self.key, command: self.command, machine }, preprocess)
}
}
pub struct RouterCommandSignMachine {
key: PublicKey,
command: RouterCommand,
machine: AlgorithmSignMachine<Secp256k1, Schnorr<Secp256k1, RecommendedTranscript, EthereumHram>>,
}
impl SignMachine<SignedRouterCommand> for RouterCommandSignMachine {
type Params = ();
type Keys = ThresholdKeys<Secp256k1>;
type Preprocess = Preprocess<Secp256k1, ()>;
type SignatureShare = SignatureShare<Secp256k1>;
type SignatureMachine = RouterCommandSignatureMachine;
fn cache(self) -> CachedPreprocess {
unimplemented!(
"RouterCommand machines don't support caching their preprocesses due to {}",
"being already bound to a specific command"
);
}
fn from_cache(
(): (),
_: ThresholdKeys<Secp256k1>,
_: CachedPreprocess,
) -> (Self, Self::Preprocess) {
unimplemented!(
"RouterCommand machines don't support caching their preprocesses due to {}",
"being already bound to a specific command"
);
}
fn read_preprocess<R: Read>(&self, reader: &mut R) -> io::Result<Self::Preprocess> {
self.machine.read_preprocess(reader)
}
fn sign(
self,
commitments: HashMap<Participant, Self::Preprocess>,
msg: &[u8],
) -> Result<(RouterCommandSignatureMachine, Self::SignatureShare), FrostError> {
if !msg.is_empty() {
panic!("message was passed to a RouterCommand machine when it generates its own");
}
let (machine, share) = self.machine.sign(commitments, &self.command.msg())?;
Ok((RouterCommandSignatureMachine { key: self.key, command: self.command, machine }, share))
}
}
pub struct RouterCommandSignatureMachine {
key: PublicKey,
command: RouterCommand,
machine:
AlgorithmSignatureMachine<Secp256k1, Schnorr<Secp256k1, RecommendedTranscript, EthereumHram>>,
}
impl SignatureMachine<SignedRouterCommand> for RouterCommandSignatureMachine {
type SignatureShare = SignatureShare<Secp256k1>;
fn read_share<R: Read>(&self, reader: &mut R) -> io::Result<Self::SignatureShare> {
self.machine.read_share(reader)
}
fn complete(
self,
shares: HashMap<Participant, Self::SignatureShare>,
) -> Result<SignedRouterCommand, FrostError> {
let sig = self.machine.complete(shares)?;
let signature = Signature::new(&self.key, &self.command.msg(), sig)
.expect("machine produced an invalid signature");
Ok(SignedRouterCommand { command: self.command, signature })
}
}

View File

@@ -0,0 +1,443 @@
use std::{sync::Arc, io, collections::HashSet};
use k256::{
elliptic_curve::{group::GroupEncoding, sec1},
ProjectivePoint,
};
use alloy_core::primitives::{hex::FromHex, Address, U256, Bytes, TxKind};
#[cfg(test)]
use alloy_core::primitives::B256;
use alloy_consensus::TxLegacy;
use alloy_sol_types::{SolValue, SolConstructor, SolCall, SolEvent};
use alloy_rpc_types::Filter;
#[cfg(test)]
use alloy_rpc_types::{BlockId, TransactionRequest, TransactionInput};
use alloy_simple_request_transport::SimpleRequest;
use alloy_provider::{Provider, RootProvider};
pub use crate::{
Error,
crypto::{PublicKey, Signature},
abi::{erc20::Transfer, router as abi},
};
use abi::{SeraiKeyUpdated, InInstruction as InInstructionEvent, Executed as ExecutedEvent};
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Coin {
Ether,
Erc20([u8; 20]),
}
impl Coin {
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut kind = [0xff];
reader.read_exact(&mut kind)?;
Ok(match kind[0] {
0 => Coin::Ether,
1 => {
let mut address = [0; 20];
reader.read_exact(&mut address)?;
Coin::Erc20(address)
}
_ => Err(io::Error::other("unrecognized Coin type"))?,
})
}
pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
match self {
Coin::Ether => writer.write_all(&[0]),
Coin::Erc20(token) => {
writer.write_all(&[1])?;
writer.write_all(token)
}
}
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct InInstruction {
pub id: ([u8; 32], u64),
pub from: [u8; 20],
pub coin: Coin,
pub amount: U256,
pub data: Vec<u8>,
pub key_at_end_of_block: ProjectivePoint,
}
impl InInstruction {
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let id = {
let mut id_hash = [0; 32];
reader.read_exact(&mut id_hash)?;
let mut id_pos = [0; 8];
reader.read_exact(&mut id_pos)?;
let id_pos = u64::from_le_bytes(id_pos);
(id_hash, id_pos)
};
let mut from = [0; 20];
reader.read_exact(&mut from)?;
let coin = Coin::read(reader)?;
let mut amount = [0; 32];
reader.read_exact(&mut amount)?;
let amount = U256::from_le_slice(&amount);
let mut data_len = [0; 4];
reader.read_exact(&mut data_len)?;
let data_len = usize::try_from(u32::from_le_bytes(data_len))
.map_err(|_| io::Error::other("InInstruction data exceeded 2**32 in length"))?;
let mut data = vec![0; data_len];
reader.read_exact(&mut data)?;
let mut key_at_end_of_block = <ProjectivePoint as GroupEncoding>::Repr::default();
reader.read_exact(&mut key_at_end_of_block)?;
let key_at_end_of_block = Option::from(ProjectivePoint::from_bytes(&key_at_end_of_block))
.ok_or(io::Error::other("InInstruction had key at end of block which wasn't valid"))?;
Ok(InInstruction { id, from, coin, amount, data, key_at_end_of_block })
}
pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&self.id.0)?;
writer.write_all(&self.id.1.to_le_bytes())?;
writer.write_all(&self.from)?;
self.coin.write(writer)?;
writer.write_all(&self.amount.as_le_bytes())?;
writer.write_all(
&u32::try_from(self.data.len())
.map_err(|_| {
io::Error::other("InInstruction being written had data exceeding 2**32 in length")
})?
.to_le_bytes(),
)?;
writer.write_all(&self.data)?;
writer.write_all(&self.key_at_end_of_block.to_bytes())
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Executed {
pub tx_id: [u8; 32],
pub nonce: u64,
pub signature: [u8; 64],
}
/// The contract Serai uses to manage its state.
#[derive(Clone, Debug)]
pub struct Router(Arc<RootProvider<SimpleRequest>>, Address);
impl Router {
pub(crate) fn code() -> Vec<u8> {
let bytecode = include_str!("../artifacts/Router.bin");
Bytes::from_hex(bytecode).expect("compiled-in Router bytecode wasn't valid hex").to_vec()
}
pub(crate) fn init_code(key: &PublicKey) -> Vec<u8> {
let mut bytecode = Self::code();
// Append the constructor arguments
bytecode.extend((abi::constructorCall { _seraiKey: key.eth_repr().into() }).abi_encode());
bytecode
}
// This isn't pub in order to force users to use `Deployer::find_router`.
pub(crate) fn new(provider: Arc<RootProvider<SimpleRequest>>, address: Address) -> Self {
Self(provider, address)
}
pub fn address(&self) -> [u8; 20] {
**self.1
}
/// Get the key for Serai at the specified block.
#[cfg(test)]
pub async fn serai_key(&self, at: [u8; 32]) -> Result<PublicKey, Error> {
let call = TransactionRequest::default()
.to(self.1)
.input(TransactionInput::new(abi::seraiKeyCall::new(()).abi_encode().into()));
let bytes = self
.0
.call(&call)
.block(BlockId::Hash(B256::from(at).into()))
.await
.map_err(|_| Error::ConnectionError)?;
let res =
abi::seraiKeyCall::abi_decode_returns(&bytes, true).map_err(|_| Error::ConnectionError)?;
PublicKey::from_eth_repr(res._0.0).ok_or(Error::ConnectionError)
}
/// Get the message to be signed in order to update the key for Serai.
pub(crate) fn update_serai_key_message(chain_id: U256, nonce: U256, key: &PublicKey) -> Vec<u8> {
let mut buffer = b"updateSeraiKey".to_vec();
buffer.extend(&chain_id.to_be_bytes::<32>());
buffer.extend(&nonce.to_be_bytes::<32>());
buffer.extend(&key.eth_repr());
buffer
}
/// Update the key representing Serai.
pub fn update_serai_key(&self, public_key: &PublicKey, sig: &Signature) -> TxLegacy {
// TODO: Set a more accurate gas
TxLegacy {
to: TxKind::Call(self.1),
input: abi::updateSeraiKeyCall::new((public_key.eth_repr().into(), sig.into()))
.abi_encode()
.into(),
gas_limit: 100_000,
..Default::default()
}
}
/// Get the current nonce for the published batches.
#[cfg(test)]
pub async fn nonce(&self, at: [u8; 32]) -> Result<U256, Error> {
let call = TransactionRequest::default()
.to(self.1)
.input(TransactionInput::new(abi::nonceCall::new(()).abi_encode().into()));
let bytes = self
.0
.call(&call)
.block(BlockId::Hash(B256::from(at).into()))
.await
.map_err(|_| Error::ConnectionError)?;
let res =
abi::nonceCall::abi_decode_returns(&bytes, true).map_err(|_| Error::ConnectionError)?;
Ok(res._0)
}
/// Get the message to be signed in order to update the key for Serai.
pub(crate) fn execute_message(
chain_id: U256,
nonce: U256,
outs: Vec<abi::OutInstruction>,
) -> Vec<u8> {
("execute".to_string(), chain_id, nonce, outs).abi_encode_params()
}
/// Execute a batch of `OutInstruction`s.
pub fn execute(&self, outs: &[abi::OutInstruction], sig: &Signature) -> TxLegacy {
TxLegacy {
to: TxKind::Call(self.1),
input: abi::executeCall::new((outs.to_vec(), sig.into())).abi_encode().into(),
// TODO
gas_limit: 100_000 + ((200_000 + 10_000) * u128::try_from(outs.len()).unwrap()),
..Default::default()
}
}
pub async fn key_at_end_of_block(&self, block: u64) -> Result<Option<ProjectivePoint>, Error> {
let filter = Filter::new().from_block(0).to_block(block).address(self.1);
let filter = filter.event_signature(SeraiKeyUpdated::SIGNATURE_HASH);
let all_keys = self.0.get_logs(&filter).await.map_err(|_| Error::ConnectionError)?;
if all_keys.is_empty() {
return Ok(None);
};
let last_key_x_coordinate_log = all_keys.last().ok_or(Error::ConnectionError)?;
let last_key_x_coordinate = last_key_x_coordinate_log
.log_decode::<SeraiKeyUpdated>()
.map_err(|_| Error::ConnectionError)?
.inner
.data
.key;
let mut compressed_point = <ProjectivePoint as GroupEncoding>::Repr::default();
compressed_point[0] = u8::from(sec1::Tag::CompressedEvenY);
compressed_point[1 ..].copy_from_slice(last_key_x_coordinate.as_slice());
let key =
Option::from(ProjectivePoint::from_bytes(&compressed_point)).ok_or(Error::ConnectionError)?;
Ok(Some(key))
}
pub async fn in_instructions(
&self,
block: u64,
allowed_tokens: &HashSet<[u8; 20]>,
) -> Result<Vec<InInstruction>, Error> {
let Some(key_at_end_of_block) = self.key_at_end_of_block(block).await? else {
return Ok(vec![]);
};
let filter = Filter::new().from_block(block).to_block(block).address(self.1);
let filter = filter.event_signature(InInstructionEvent::SIGNATURE_HASH);
let logs = self.0.get_logs(&filter).await.map_err(|_| Error::ConnectionError)?;
let mut transfer_check = HashSet::new();
let mut in_instructions = vec![];
for log in logs {
// Double check the address which emitted this log
if log.address() != self.1 {
Err(Error::ConnectionError)?;
}
let id = (
log.block_hash.ok_or(Error::ConnectionError)?.into(),
log.log_index.ok_or(Error::ConnectionError)?,
);
let tx_hash = log.transaction_hash.ok_or(Error::ConnectionError)?;
let tx = self
.0
.get_transaction_by_hash(tx_hash)
.await
.ok()
.flatten()
.ok_or(Error::ConnectionError)?;
let log =
log.log_decode::<InInstructionEvent>().map_err(|_| Error::ConnectionError)?.inner.data;
let coin = if log.coin.0 == [0; 20] {
Coin::Ether
} else {
let token = *log.coin.0;
if !allowed_tokens.contains(&token) {
continue;
}
// If this also counts as a top-level transfer via the token, drop it
//
// Necessary in order to handle a potential edge case with some theoretical token
// implementations
//
// This will either let it be handled by the top-level transfer hook or will drop it
// entirely on the side of caution
if tx.to == Some(token.into()) {
continue;
}
// Get all logs for this TX
let receipt = self
.0
.get_transaction_receipt(tx_hash)
.await
.map_err(|_| Error::ConnectionError)?
.ok_or(Error::ConnectionError)?;
let tx_logs = receipt.inner.logs();
// Find a matching transfer log
let mut found_transfer = false;
for tx_log in tx_logs {
let log_index = tx_log.log_index.ok_or(Error::ConnectionError)?;
// Ensure we didn't already use this transfer to check a distinct InInstruction event
if transfer_check.contains(&log_index) {
continue;
}
// Check if this log is from the token we expected to be transferred
if tx_log.address().0 != token {
continue;
}
// Check if this is a transfer log
// https://github.com/alloy-rs/core/issues/589
if tx_log.topics()[0] != Transfer::SIGNATURE_HASH {
continue;
}
let Ok(transfer) = Transfer::decode_log(&tx_log.inner.clone(), true) else { continue };
// Check if this is a transfer to us for the expected amount
if (transfer.to == self.1) && (transfer.value == log.amount) {
transfer_check.insert(log_index);
found_transfer = true;
break;
}
}
if !found_transfer {
// This shouldn't be a ConnectionError
// This is an exploit, a non-conforming ERC20, or an invalid connection
// This should halt the process which is sufficient, yet this is sub-optimal
// TODO
Err(Error::ConnectionError)?;
}
Coin::Erc20(token)
};
in_instructions.push(InInstruction {
id,
from: *log.from.0,
coin,
amount: log.amount,
data: log.instruction.as_ref().to_vec(),
key_at_end_of_block,
});
}
Ok(in_instructions)
}
pub async fn executed_commands(&self, block: u64) -> Result<Vec<Executed>, Error> {
let mut res = vec![];
{
let filter = Filter::new().from_block(block).to_block(block).address(self.1);
let filter = filter.event_signature(SeraiKeyUpdated::SIGNATURE_HASH);
let logs = self.0.get_logs(&filter).await.map_err(|_| Error::ConnectionError)?;
for log in logs {
// Double check the address which emitted this log
if log.address() != self.1 {
Err(Error::ConnectionError)?;
}
let tx_id = log.transaction_hash.ok_or(Error::ConnectionError)?.into();
let log =
log.log_decode::<SeraiKeyUpdated>().map_err(|_| Error::ConnectionError)?.inner.data;
let mut signature = [0; 64];
signature[.. 32].copy_from_slice(log.signature.c.as_ref());
signature[32 ..].copy_from_slice(log.signature.s.as_ref());
res.push(Executed {
tx_id,
nonce: log.nonce.try_into().map_err(|_| Error::ConnectionError)?,
signature,
});
}
}
{
let filter = Filter::new().from_block(block).to_block(block).address(self.1);
let filter = filter.event_signature(ExecutedEvent::SIGNATURE_HASH);
let logs = self.0.get_logs(&filter).await.map_err(|_| Error::ConnectionError)?;
for log in logs {
// Double check the address which emitted this log
if log.address() != self.1 {
Err(Error::ConnectionError)?;
}
let tx_id = log.transaction_hash.ok_or(Error::ConnectionError)?.into();
let log = log.log_decode::<ExecutedEvent>().map_err(|_| Error::ConnectionError)?.inner.data;
let mut signature = [0; 64];
signature[.. 32].copy_from_slice(log.signature.c.as_ref());
signature[32 ..].copy_from_slice(log.signature.s.as_ref());
res.push(Executed {
tx_id,
nonce: log.nonce.try_into().map_err(|_| Error::ConnectionError)?,
signature,
});
}
}
Ok(res)
}
#[cfg(feature = "tests")]
pub fn key_updated_filter(&self) -> Filter {
Filter::new().address(self.1).event_signature(SeraiKeyUpdated::SIGNATURE_HASH)
}
#[cfg(feature = "tests")]
pub fn executed_filter(&self) -> Filter {
Filter::new().address(self.1).event_signature(ExecutedEvent::SIGNATURE_HASH)
}
}

View File

@@ -0,0 +1,13 @@
use alloy_sol_types::sol;
#[rustfmt::skip]
#[allow(warnings)]
#[allow(needless_pass_by_value)]
#[allow(clippy::all)]
#[allow(clippy::ignored_unit_patterns)]
#[allow(clippy::redundant_closure_for_method_calls)]
mod schnorr_container {
use super::*;
sol!("src/tests/contracts/Schnorr.sol");
}
pub(crate) use schnorr_container::TestSchnorr as schnorr;

View File

@@ -0,0 +1,51 @@
// SPDX-License-Identifier: AGPLv3
pragma solidity ^0.8.0;
contract TestERC20 {
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
function name() public pure returns (string memory) {
return "Test ERC20";
}
function symbol() public pure returns (string memory) {
return "TEST";
}
function decimals() public pure returns (uint8) {
return 18;
}
function totalSupply() public pure returns (uint256) {
return 1_000_000 * 10e18;
}
mapping(address => uint256) balances;
mapping(address => mapping(address => uint256)) allowances;
constructor() {
balances[msg.sender] = totalSupply();
}
function balanceOf(address owner) public view returns (uint256) {
return balances[owner];
}
function transfer(address to, uint256 value) public returns (bool) {
balances[msg.sender] -= value;
balances[to] += value;
return true;
}
function transferFrom(address from, address to, uint256 value) public returns (bool) {
allowances[from][msg.sender] -= value;
balances[from] -= value;
balances[to] += value;
return true;
}
function approve(address spender, uint256 value) public returns (bool) {
allowances[msg.sender][spender] = value;
return true;
}
function allowance(address owner, address spender) public view returns (uint256) {
return allowances[owner][spender];
}
}

View File

@@ -0,0 +1,15 @@
// SPDX-License-Identifier: AGPLv3
pragma solidity ^0.8.0;
import "../../../contracts/Schnorr.sol";
contract TestSchnorr {
function verify(
bytes32 px,
bytes calldata message,
bytes32 c,
bytes32 s
) external pure returns (bool) {
return Schnorr.verify(px, message, c, s);
}
}

View File

@@ -0,0 +1,105 @@
use rand_core::OsRng;
use group::ff::{Field, PrimeField};
use k256::{
ecdsa::{
self, hazmat::SignPrimitive, signature::hazmat::PrehashVerifier, SigningKey, VerifyingKey,
},
Scalar, ProjectivePoint,
};
use frost::{
curve::{Ciphersuite, Secp256k1},
algorithm::{Hram, IetfSchnorr},
tests::{algorithm_machines, sign},
};
use crate::{crypto::*, tests::key_gen};
// The ecrecover opcode, yet with parity replacing v
pub(crate) fn ecrecover(message: Scalar, odd_y: bool, r: Scalar, s: Scalar) -> Option<[u8; 20]> {
let sig = ecdsa::Signature::from_scalars(r, s).ok()?;
let message: [u8; 32] = message.to_repr().into();
alloy_core::primitives::Signature::from_signature_and_parity(
sig,
alloy_core::primitives::Parity::Parity(odd_y),
)
.ok()?
.recover_address_from_prehash(&alloy_core::primitives::B256::from(message))
.ok()
.map(Into::into)
}
#[test]
fn test_ecrecover() {
let private = SigningKey::random(&mut OsRng);
let public = VerifyingKey::from(&private);
// Sign the signature
const MESSAGE: &[u8] = b"Hello, World!";
let (sig, recovery_id) = private
.as_nonzero_scalar()
.try_sign_prehashed(
<Secp256k1 as Ciphersuite>::F::random(&mut OsRng),
&keccak256(MESSAGE).into(),
)
.unwrap();
// Sanity check the signature verifies
#[allow(clippy::unit_cmp)] // Intended to assert this wasn't changed to Result<bool>
{
assert_eq!(public.verify_prehash(&keccak256(MESSAGE), &sig).unwrap(), ());
}
// Perform the ecrecover
assert_eq!(
ecrecover(
hash_to_scalar(MESSAGE),
u8::from(recovery_id.unwrap().is_y_odd()) == 1,
*sig.r(),
*sig.s()
)
.unwrap(),
address(&ProjectivePoint::from(public.as_affine()))
);
}
// Run the sign test with the EthereumHram
#[test]
fn test_signing() {
let (keys, _) = key_gen();
const MESSAGE: &[u8] = b"Hello, World!";
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let _sig =
sign(&mut OsRng, &algo, keys.clone(), algorithm_machines(&mut OsRng, &algo, &keys), MESSAGE);
}
#[allow(non_snake_case)]
pub fn preprocess_signature_for_ecrecover(
R: ProjectivePoint,
public_key: &PublicKey,
m: &[u8],
s: Scalar,
) -> (Scalar, Scalar) {
let c = EthereumHram::hram(&R, &public_key.A, m);
let sa = -(s * public_key.px);
let ca = -(c * public_key.px);
(sa, ca)
}
#[test]
fn test_ecrecover_hack() {
let (keys, public_key) = key_gen();
const MESSAGE: &[u8] = b"Hello, World!";
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let sig =
sign(&mut OsRng, &algo, keys.clone(), algorithm_machines(&mut OsRng, &algo, &keys), MESSAGE);
let (sa, ca) = preprocess_signature_for_ecrecover(sig.R, &public_key, MESSAGE, sig.s);
let q = ecrecover(sa, false, public_key.px, ca).unwrap();
assert_eq!(q, address(&sig.R));
}

View File

@@ -0,0 +1,131 @@
use std::{sync::Arc, collections::HashMap};
use rand_core::OsRng;
use k256::{Scalar, ProjectivePoint};
use frost::{curve::Secp256k1, Participant, ThresholdKeys, tests::key_gen as frost_key_gen};
use alloy_core::{
primitives::{Address, U256, Bytes, TxKind},
hex::FromHex,
};
use alloy_consensus::{SignableTransaction, TxLegacy};
use alloy_rpc_types::TransactionReceipt;
use alloy_simple_request_transport::SimpleRequest;
use alloy_provider::{Provider, RootProvider};
use crate::crypto::{address, deterministically_sign, PublicKey};
#[cfg(test)]
mod crypto;
#[cfg(test)]
mod abi;
#[cfg(test)]
mod schnorr;
#[cfg(test)]
mod router;
pub fn key_gen() -> (HashMap<Participant, ThresholdKeys<Secp256k1>>, PublicKey) {
let mut keys = frost_key_gen::<_, Secp256k1>(&mut OsRng);
let mut group_key = keys[&Participant::new(1).unwrap()].group_key();
let mut offset = Scalar::ZERO;
while PublicKey::new(group_key).is_none() {
offset += Scalar::ONE;
group_key += ProjectivePoint::GENERATOR;
}
for keys in keys.values_mut() {
*keys = keys.offset(offset);
}
let public_key = PublicKey::new(group_key).unwrap();
(keys, public_key)
}
// TODO: Use a proper error here
pub async fn send(
provider: &RootProvider<SimpleRequest>,
wallet: &k256::ecdsa::SigningKey,
mut tx: TxLegacy,
) -> Option<TransactionReceipt> {
let verifying_key = *wallet.verifying_key().as_affine();
let address = Address::from(address(&verifying_key.into()));
// https://github.com/alloy-rs/alloy/issues/539
// let chain_id = provider.get_chain_id().await.unwrap();
// tx.chain_id = Some(chain_id);
tx.chain_id = None;
tx.nonce = provider.get_transaction_count(address).await.unwrap();
// 100 gwei
tx.gas_price = 100_000_000_000u128;
let sig = wallet.sign_prehash_recoverable(tx.signature_hash().as_ref()).unwrap();
assert_eq!(address, tx.clone().into_signed(sig.into()).recover_signer().unwrap());
assert!(
provider.get_balance(address).await.unwrap() >
((U256::from(tx.gas_price) * U256::from(tx.gas_limit)) + tx.value)
);
let mut bytes = vec![];
tx.encode_with_signature_fields(&sig.into(), &mut bytes);
let pending_tx = provider.send_raw_transaction(&bytes).await.ok()?;
pending_tx.get_receipt().await.ok()
}
pub async fn fund_account(
provider: &RootProvider<SimpleRequest>,
wallet: &k256::ecdsa::SigningKey,
to_fund: Address,
value: U256,
) -> Option<()> {
let funding_tx =
TxLegacy { to: TxKind::Call(to_fund), gas_limit: 21_000, value, ..Default::default() };
assert!(send(provider, wallet, funding_tx).await.unwrap().status());
Some(())
}
// TODO: Use a proper error here
pub async fn deploy_contract(
client: Arc<RootProvider<SimpleRequest>>,
wallet: &k256::ecdsa::SigningKey,
name: &str,
) -> Option<Address> {
let hex_bin_buf = std::fs::read_to_string(format!("./artifacts/{name}.bin")).unwrap();
let hex_bin =
if let Some(stripped) = hex_bin_buf.strip_prefix("0x") { stripped } else { &hex_bin_buf };
let bin = Bytes::from_hex(hex_bin).unwrap();
let deployment_tx = TxLegacy {
chain_id: None,
nonce: 0,
// 100 gwei
gas_price: 100_000_000_000u128,
gas_limit: 1_000_000,
to: TxKind::Create,
value: U256::ZERO,
input: bin,
};
let deployment_tx = deterministically_sign(&deployment_tx);
// Fund the deployer address
fund_account(
&client,
wallet,
deployment_tx.recover_signer().unwrap(),
U256::from(deployment_tx.tx().gas_limit) * U256::from(deployment_tx.tx().gas_price),
)
.await?;
let (deployment_tx, sig, _) = deployment_tx.into_parts();
let mut bytes = vec![];
deployment_tx.encode_with_signature_fields(&sig, &mut bytes);
let pending_tx = client.send_raw_transaction(&bytes).await.ok()?;
let receipt = pending_tx.get_receipt().await.ok()?;
assert!(receipt.status());
Some(receipt.contract_address.unwrap())
}

View File

@@ -0,0 +1,183 @@
use std::{convert::TryFrom, sync::Arc, collections::HashMap};
use rand_core::OsRng;
use group::Group;
use k256::ProjectivePoint;
use frost::{
curve::Secp256k1,
Participant, ThresholdKeys,
algorithm::IetfSchnorr,
tests::{algorithm_machines, sign},
};
use alloy_core::primitives::{Address, U256};
use alloy_simple_request_transport::SimpleRequest;
use alloy_rpc_client::ClientBuilder;
use alloy_provider::{Provider, RootProvider};
use alloy_node_bindings::{Anvil, AnvilInstance};
use crate::{
crypto::*,
deployer::Deployer,
router::{Router, abi as router},
tests::{key_gen, send, fund_account},
};
async fn setup_test() -> (
AnvilInstance,
Arc<RootProvider<SimpleRequest>>,
u64,
Router,
HashMap<Participant, ThresholdKeys<Secp256k1>>,
PublicKey,
) {
let anvil = Anvil::new().spawn();
let provider = RootProvider::new(
ClientBuilder::default().transport(SimpleRequest::new(anvil.endpoint()), true),
);
let chain_id = provider.get_chain_id().await.unwrap();
let wallet = anvil.keys()[0].clone().into();
let client = Arc::new(provider);
// Make sure the Deployer constructor returns None, as it doesn't exist yet
assert!(Deployer::new(client.clone()).await.unwrap().is_none());
// Deploy the Deployer
let tx = Deployer::deployment_tx();
fund_account(
&client,
&wallet,
tx.recover_signer().unwrap(),
U256::from(tx.tx().gas_limit) * U256::from(tx.tx().gas_price),
)
.await
.unwrap();
let (tx, sig, _) = tx.into_parts();
let mut bytes = vec![];
tx.encode_with_signature_fields(&sig, &mut bytes);
let pending_tx = client.send_raw_transaction(&bytes).await.unwrap();
let receipt = pending_tx.get_receipt().await.unwrap();
assert!(receipt.status());
let deployer =
Deployer::new(client.clone()).await.expect("network error").expect("deployer wasn't deployed");
let (keys, public_key) = key_gen();
// Verify the Router constructor returns None, as it doesn't exist yet
assert!(deployer.find_router(client.clone(), &public_key).await.unwrap().is_none());
// Deploy the router
let receipt = send(&client, &anvil.keys()[0].clone().into(), deployer.deploy_router(&public_key))
.await
.unwrap();
assert!(receipt.status());
let contract = deployer.find_router(client.clone(), &public_key).await.unwrap().unwrap();
(anvil, client, chain_id, contract, keys, public_key)
}
async fn latest_block_hash(client: &RootProvider<SimpleRequest>) -> [u8; 32] {
client
.get_block(client.get_block_number().await.unwrap().into(), false)
.await
.unwrap()
.unwrap()
.header
.hash
.unwrap()
.0
}
#[tokio::test]
async fn test_deploy_contract() {
let (_anvil, client, _, router, _, public_key) = setup_test().await;
let block_hash = latest_block_hash(&client).await;
assert_eq!(router.serai_key(block_hash).await.unwrap(), public_key);
assert_eq!(router.nonce(block_hash).await.unwrap(), U256::try_from(1u64).unwrap());
// TODO: Check it emitted SeraiKeyUpdated(public_key) at its genesis
}
pub fn hash_and_sign(
keys: &HashMap<Participant, ThresholdKeys<Secp256k1>>,
public_key: &PublicKey,
message: &[u8],
) -> Signature {
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let sig =
sign(&mut OsRng, &algo, keys.clone(), algorithm_machines(&mut OsRng, &algo, keys), message);
Signature::new(public_key, message, sig).unwrap()
}
#[tokio::test]
async fn test_router_update_serai_key() {
let (anvil, client, chain_id, contract, keys, public_key) = setup_test().await;
let next_key = loop {
let point = ProjectivePoint::random(&mut OsRng);
let Some(next_key) = PublicKey::new(point) else { continue };
break next_key;
};
let message = Router::update_serai_key_message(
U256::try_from(chain_id).unwrap(),
U256::try_from(1u64).unwrap(),
&next_key,
);
let sig = hash_and_sign(&keys, &public_key, &message);
let first_block_hash = latest_block_hash(&client).await;
assert_eq!(contract.serai_key(first_block_hash).await.unwrap(), public_key);
let receipt =
send(&client, &anvil.keys()[0].clone().into(), contract.update_serai_key(&next_key, &sig))
.await
.unwrap();
assert!(receipt.status());
let second_block_hash = latest_block_hash(&client).await;
assert_eq!(contract.serai_key(second_block_hash).await.unwrap(), next_key);
// Check this does still offer the historical state
assert_eq!(contract.serai_key(first_block_hash).await.unwrap(), public_key);
// TODO: Check logs
println!("gas used: {:?}", receipt.gas_used);
// println!("logs: {:?}", receipt.logs);
}
#[tokio::test]
async fn test_router_execute() {
let (anvil, client, chain_id, contract, keys, public_key) = setup_test().await;
let to = Address::from([0; 20]);
let value = U256::ZERO;
let tx = router::OutInstruction { to, value, calls: vec![] };
let txs = vec![tx];
let first_block_hash = latest_block_hash(&client).await;
let nonce = contract.nonce(first_block_hash).await.unwrap();
assert_eq!(nonce, U256::try_from(1u64).unwrap());
let message = Router::execute_message(U256::try_from(chain_id).unwrap(), nonce, txs.clone());
let sig = hash_and_sign(&keys, &public_key, &message);
let receipt =
send(&client, &anvil.keys()[0].clone().into(), contract.execute(&txs, &sig)).await.unwrap();
assert!(receipt.status());
let second_block_hash = latest_block_hash(&client).await;
assert_eq!(contract.nonce(second_block_hash).await.unwrap(), U256::try_from(2u64).unwrap());
// Check this does still offer the historical state
assert_eq!(contract.nonce(first_block_hash).await.unwrap(), U256::try_from(1u64).unwrap());
// TODO: Check logs
println!("gas used: {:?}", receipt.gas_used);
// println!("logs: {:?}", receipt.logs);
}

View File

@@ -0,0 +1,93 @@
use std::sync::Arc;
use rand_core::OsRng;
use group::ff::PrimeField;
use k256::Scalar;
use frost::{
curve::Secp256k1,
algorithm::IetfSchnorr,
tests::{algorithm_machines, sign},
};
use alloy_core::primitives::Address;
use alloy_sol_types::SolCall;
use alloy_rpc_types::{TransactionInput, TransactionRequest};
use alloy_simple_request_transport::SimpleRequest;
use alloy_rpc_client::ClientBuilder;
use alloy_provider::{Provider, RootProvider};
use alloy_node_bindings::{Anvil, AnvilInstance};
use crate::{
Error,
crypto::*,
tests::{key_gen, deploy_contract, abi::schnorr as abi},
};
async fn setup_test() -> (AnvilInstance, Arc<RootProvider<SimpleRequest>>, Address) {
let anvil = Anvil::new().spawn();
let provider = RootProvider::new(
ClientBuilder::default().transport(SimpleRequest::new(anvil.endpoint()), true),
);
let wallet = anvil.keys()[0].clone().into();
let client = Arc::new(provider);
let address = deploy_contract(client.clone(), &wallet, "TestSchnorr").await.unwrap();
(anvil, client, address)
}
#[tokio::test]
async fn test_deploy_contract() {
setup_test().await;
}
pub async fn call_verify(
provider: &RootProvider<SimpleRequest>,
contract: Address,
public_key: &PublicKey,
message: &[u8],
signature: &Signature,
) -> Result<(), Error> {
let px: [u8; 32] = public_key.px.to_repr().into();
let c_bytes: [u8; 32] = signature.c.to_repr().into();
let s_bytes: [u8; 32] = signature.s.to_repr().into();
let call = TransactionRequest::default().to(contract).input(TransactionInput::new(
abi::verifyCall::new((px.into(), message.to_vec().into(), c_bytes.into(), s_bytes.into()))
.abi_encode()
.into(),
));
let bytes = provider.call(&call).await.map_err(|_| Error::ConnectionError)?;
let res =
abi::verifyCall::abi_decode_returns(&bytes, true).map_err(|_| Error::ConnectionError)?;
if res._0 {
Ok(())
} else {
Err(Error::InvalidSignature)
}
}
#[tokio::test]
async fn test_ecrecover_hack() {
let (_anvil, client, contract) = setup_test().await;
let (keys, public_key) = key_gen();
const MESSAGE: &[u8] = b"Hello, World!";
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let sig =
sign(&mut OsRng, &algo, keys.clone(), algorithm_machines(&mut OsRng, &algo, &keys), MESSAGE);
let sig = Signature::new(&public_key, MESSAGE, sig).unwrap();
call_verify(&client, contract, &public_key, MESSAGE, &sig).await.unwrap();
// Test an invalid signature fails
let mut sig = sig;
sig.s += Scalar::ONE;
assert!(call_verify(&client, contract, &public_key, MESSAGE, &sig).await.is_err());
}

View File

@@ -1,128 +0,0 @@
use std::{convert::TryFrom, sync::Arc, time::Duration, fs::File};
use rand_core::OsRng;
use ::k256::{
elliptic_curve::{bigint::ArrayEncoding, PrimeField},
U256,
};
use ethers_core::{
types::Signature,
abi::Abi,
utils::{keccak256, Anvil, AnvilInstance},
};
use ethers_contract::ContractFactory;
use ethers_providers::{Middleware, Provider, Http};
use frost::{
curve::Secp256k1,
Participant,
algorithm::IetfSchnorr,
tests::{key_gen, algorithm_machines, sign},
};
use ethereum_serai::{
crypto,
contract::{Schnorr, call_verify},
};
// TODO: Replace with a contract deployment from an unknown account, so the environment solely has
// to fund the deployer, not create/pass a wallet
pub async fn deploy_schnorr_verifier_contract(
chain_id: u32,
client: Arc<Provider<Http>>,
wallet: &k256::ecdsa::SigningKey,
) -> eyre::Result<Schnorr<Provider<Http>>> {
let abi: Abi = serde_json::from_reader(File::open("./artifacts/Schnorr.abi").unwrap()).unwrap();
let hex_bin_buf = std::fs::read_to_string("./artifacts/Schnorr.bin").unwrap();
let hex_bin =
if let Some(stripped) = hex_bin_buf.strip_prefix("0x") { stripped } else { &hex_bin_buf };
let bin = hex::decode(hex_bin).unwrap();
let factory = ContractFactory::new(abi, bin.into(), client.clone());
let mut deployment_tx = factory.deploy(())?.tx;
deployment_tx.set_chain_id(chain_id);
deployment_tx.set_gas(500_000);
let (max_fee_per_gas, max_priority_fee_per_gas) = client.estimate_eip1559_fees(None).await?;
deployment_tx.as_eip1559_mut().unwrap().max_fee_per_gas = Some(max_fee_per_gas);
deployment_tx.as_eip1559_mut().unwrap().max_priority_fee_per_gas = Some(max_priority_fee_per_gas);
let sig_hash = deployment_tx.sighash();
let (sig, rid) = wallet.sign_prehash_recoverable(sig_hash.as_ref()).unwrap();
// EIP-155 v
let mut v = u64::from(rid.to_byte());
assert!((v == 0) || (v == 1));
v += u64::from((chain_id * 2) + 35);
let r = sig.r().to_repr();
let r_ref: &[u8] = r.as_ref();
let s = sig.s().to_repr();
let s_ref: &[u8] = s.as_ref();
let deployment_tx = deployment_tx.rlp_signed(&Signature { r: r_ref.into(), s: s_ref.into(), v });
let pending_tx = client.send_raw_transaction(deployment_tx).await?;
let mut receipt;
while {
receipt = client.get_transaction_receipt(pending_tx.tx_hash()).await?;
receipt.is_none()
} {
tokio::time::sleep(Duration::from_secs(6)).await;
}
let receipt = receipt.unwrap();
assert!(receipt.status == Some(1.into()));
let contract = Schnorr::new(receipt.contract_address.unwrap(), client.clone());
Ok(contract)
}
async fn deploy_test_contract() -> (u32, AnvilInstance, Schnorr<Provider<Http>>) {
let anvil = Anvil::new().spawn();
let provider =
Provider::<Http>::try_from(anvil.endpoint()).unwrap().interval(Duration::from_millis(10u64));
let chain_id = provider.get_chainid().await.unwrap().as_u32();
let wallet = anvil.keys()[0].clone().into();
let client = Arc::new(provider);
(chain_id, anvil, deploy_schnorr_verifier_contract(chain_id, client, &wallet).await.unwrap())
}
#[tokio::test]
async fn test_deploy_contract() {
deploy_test_contract().await;
}
#[tokio::test]
async fn test_ecrecover_hack() {
let (chain_id, _anvil, contract) = deploy_test_contract().await;
let chain_id = U256::from(chain_id);
let keys = key_gen::<_, Secp256k1>(&mut OsRng);
let group_key = keys[&Participant::new(1).unwrap()].group_key();
const MESSAGE: &[u8] = b"Hello, World!";
let hashed_message = keccak256(MESSAGE);
let full_message = &[chain_id.to_be_byte_array().as_slice(), &hashed_message].concat();
let algo = IetfSchnorr::<Secp256k1, crypto::EthereumHram>::ietf();
let sig = sign(
&mut OsRng,
&algo,
keys.clone(),
algorithm_machines(&mut OsRng, &algo, &keys),
full_message,
);
let mut processed_sig =
crypto::process_signature_for_contract(hashed_message, &sig.R, sig.s, &group_key, chain_id);
call_verify(&contract, &processed_sig).await.unwrap();
// test invalid signature fails
processed_sig.message[0] = 0;
assert!(call_verify(&contract, &processed_sig).await.is_err());
}

View File

@@ -1,87 +0,0 @@
use k256::{
elliptic_curve::{bigint::ArrayEncoding, ops::Reduce, sec1::ToEncodedPoint},
ProjectivePoint, Scalar, U256,
};
use frost::{curve::Secp256k1, Participant};
use ethereum_serai::crypto::*;
#[test]
fn test_ecrecover() {
use rand_core::OsRng;
use sha2::Sha256;
use sha3::{Digest, Keccak256};
use k256::ecdsa::{hazmat::SignPrimitive, signature::DigestVerifier, SigningKey, VerifyingKey};
let private = SigningKey::random(&mut OsRng);
let public = VerifyingKey::from(&private);
const MESSAGE: &[u8] = b"Hello, World!";
let (sig, recovery_id) = private
.as_nonzero_scalar()
.try_sign_prehashed_rfc6979::<Sha256>(&Keccak256::digest(MESSAGE), b"")
.unwrap();
#[allow(clippy::unit_cmp)] // Intended to assert this wasn't changed to Result<bool>
{
assert_eq!(public.verify_digest(Keccak256::new_with_prefix(MESSAGE), &sig).unwrap(), ());
}
assert_eq!(
ecrecover(hash_to_scalar(MESSAGE), recovery_id.unwrap().is_y_odd().into(), *sig.r(), *sig.s())
.unwrap(),
address(&ProjectivePoint::from(public.as_affine()))
);
}
#[test]
fn test_signing() {
use frost::{
algorithm::IetfSchnorr,
tests::{algorithm_machines, key_gen, sign},
};
use rand_core::OsRng;
let keys = key_gen::<_, Secp256k1>(&mut OsRng);
let _group_key = keys[&Participant::new(1).unwrap()].group_key();
const MESSAGE: &[u8] = b"Hello, World!";
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let _sig =
sign(&mut OsRng, &algo, keys.clone(), algorithm_machines(&mut OsRng, &algo, &keys), MESSAGE);
}
#[test]
fn test_ecrecover_hack() {
use frost::{
algorithm::IetfSchnorr,
tests::{algorithm_machines, key_gen, sign},
};
use rand_core::OsRng;
let keys = key_gen::<_, Secp256k1>(&mut OsRng);
let group_key = keys[&Participant::new(1).unwrap()].group_key();
let group_key_encoded = group_key.to_encoded_point(true);
let group_key_compressed = group_key_encoded.as_ref();
let group_key_x = Scalar::reduce(U256::from_be_slice(&group_key_compressed[1 .. 33]));
const MESSAGE: &[u8] = b"Hello, World!";
let hashed_message = keccak256(MESSAGE);
let chain_id = U256::ONE;
let full_message = &[chain_id.to_be_byte_array().as_slice(), &hashed_message].concat();
let algo = IetfSchnorr::<Secp256k1, EthereumHram>::ietf();
let sig = sign(
&mut OsRng,
&algo,
keys.clone(),
algorithm_machines(&mut OsRng, &algo, &keys),
full_message,
);
let (sr, er) =
preprocess_signature_for_ecrecover(hashed_message, &sig.R, sig.s, &group_key, chain_id);
let q = ecrecover(sr, group_key_compressed[0] - 2, group_key_x, er).unwrap();
assert_eq!(q, address(&sig.R));
}

View File

@@ -1,2 +0,0 @@
mod contract;
mod crypto;

View File

@@ -43,7 +43,6 @@ multiexp = { path = "../../crypto/multiexp", version = "0.4", default-features =
# Needed for multisig
transcript = { package = "flexible-transcript", path = "../../crypto/transcript", version = "0.3", default-features = false, features = ["recommended"], optional = true }
dleq = { path = "../../crypto/dleq", version = "0.4", default-features = false, features = ["serialize"], optional = true }
frost = { package = "modular-frost", path = "../../crypto/frost", version = "0.8", default-features = false, features = ["ed25519"], optional = true }
monero-generators = { path = "generators", version = "0.4", default-features = false }
@@ -91,7 +90,6 @@ std = [
"multiexp/std",
"transcript/std",
"dleq/std",
"monero-generators/std",
@@ -106,7 +104,7 @@ std = [
cache-distribution = ["async-lock"]
http-rpc = ["digest_auth", "simple-request", "tokio"]
multisig = ["transcript", "frost", "dleq", "std"]
multisig = ["transcript", "frost", "std"]
binaries = ["tokio/rt-multi-thread", "tokio/macros", "http-rpc"]
experimental = []

View File

@@ -14,7 +14,12 @@ use zeroize::{Zeroize, ZeroizeOnDrop};
use sha3::{Digest, Keccak256};
use curve25519_dalek::{constants::ED25519_BASEPOINT_TABLE, scalar::Scalar, edwards::EdwardsPoint};
use curve25519_dalek::{
constants::{ED25519_BASEPOINT_TABLE, ED25519_BASEPOINT_POINT},
scalar::Scalar,
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation},
traits::VartimePrecomputedMultiscalarMul,
};
pub use monero_generators::{H, decompress_point};
@@ -56,6 +61,13 @@ pub(crate) fn INV_EIGHT() -> Scalar {
*INV_EIGHT_CELL.get_or_init(|| Scalar::from(8u8).invert())
}
static BASEPOINT_PRECOMP_CELL: OnceLock<VartimeEdwardsPrecomputation> = OnceLock::new();
#[allow(non_snake_case)]
pub(crate) fn BASEPOINT_PRECOMP() -> &'static VartimeEdwardsPrecomputation {
BASEPOINT_PRECOMP_CELL
.get_or_init(|| VartimeEdwardsPrecomputation::new([ED25519_BASEPOINT_POINT]))
}
/// Monero protocol version.
///
/// v15 is omitted as v15 was simply v14 and v16 being active at the same time, with regards to the

View File

@@ -91,7 +91,7 @@ impl Bulletproofs {
Bulletproofs::Plus(
AggregateRangeStatement::new(outputs.iter().map(|com| DfgPoint(com.calculate())).collect())
.unwrap()
.prove(rng, &Zeroizing::new(AggregateRangeWitness::new(outputs).unwrap()))
.prove(rng, &Zeroizing::new(AggregateRangeWitness::new(outputs.to_vec()).unwrap()))
.unwrap(),
)
})

View File

@@ -9,7 +9,7 @@ use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as D
use group::{ff::Field, Group};
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
use multiexp::BatchVerifier;
use multiexp::{BatchVerifier, multiexp};
use crate::{Commitment, ringct::bulletproofs::core::*};
@@ -17,7 +17,20 @@ include!(concat!(env!("OUT_DIR"), "/generators.rs"));
static IP12_CELL: OnceLock<Scalar> = OnceLock::new();
pub(crate) fn IP12() -> Scalar {
*IP12_CELL.get_or_init(|| inner_product(&ScalarVector(vec![Scalar::ONE; N]), TWO_N()))
*IP12_CELL.get_or_init(|| ScalarVector(vec![Scalar::ONE; N]).inner_product(TWO_N()))
}
pub(crate) fn hadamard_fold(
l: &[EdwardsPoint],
r: &[EdwardsPoint],
a: Scalar,
b: Scalar,
) -> Vec<EdwardsPoint> {
let mut res = Vec::with_capacity(l.len() / 2);
for i in 0 .. l.len() {
res.push(multiexp(&[(a, l[i]), (b, r[i])]));
}
res
}
#[derive(Clone, PartialEq, Eq, Debug)]
@@ -57,7 +70,7 @@ impl OriginalStruct {
let mut cache = hash_to_scalar(&y.to_bytes());
let z = cache;
let l0 = &aL - z;
let l0 = aL - z;
let l1 = sL;
let mut zero_twos = Vec::with_capacity(MN);
@@ -69,12 +82,12 @@ impl OriginalStruct {
}
let yMN = ScalarVector::powers(y, MN);
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
let r1 = yMN * sR;
let r0 = ((aR + z) * &yMN) + &ScalarVector(zero_twos);
let r1 = yMN * &sR;
let (T1, T2, x, mut taux) = {
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
let t2 = inner_product(&l1, &r1);
let t1 = l0.clone().inner_product(&r1) + r0.clone().inner_product(&l1);
let t2 = l1.clone().inner_product(&r1);
let mut tau1 = Scalar::random(&mut *rng);
let mut tau2 = Scalar::random(&mut *rng);
@@ -100,10 +113,10 @@ impl OriginalStruct {
taux += zpow[i + 2] * gamma;
}
let l = &l0 + &(l1 * x);
let r = &r0 + &(r1 * x);
let l = l0 + &(l1 * x);
let r = r0 + &(r1 * x);
let t = inner_product(&l, &r);
let t = l.clone().inner_product(&r);
let x_ip =
hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
@@ -126,8 +139,8 @@ impl OriginalStruct {
let (aL, aR) = a.split();
let (bL, bR) = b.split();
let cL = inner_product(&aL, &bR);
let cR = inner_product(&aR, &bL);
let cL = aL.clone().inner_product(&bR);
let cR = aR.clone().inner_product(&bL);
let (G_L, G_R) = G_proof.split_at(aL.len());
let (H_L, H_R) = H_proof.split_at(aL.len());
@@ -140,8 +153,8 @@ impl OriginalStruct {
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
let winv = w.invert().unwrap();
a = (aL * w) + (aR * winv);
b = (bL * winv) + (bR * w);
a = (aL * w) + &(aR * winv);
b = (bL * winv) + &(bR * w);
if a.len() != 1 {
G_proof = hadamard_fold(G_L, G_R, winv, w);

View File

@@ -24,7 +24,7 @@ use crate::{
},
};
// Figure 3
// Figure 3 of the Bulletproofs+ Paper
#[derive(Clone, Debug)]
pub(crate) struct AggregateRangeStatement {
generators: Generators,
@@ -38,24 +38,15 @@ impl Zeroize for AggregateRangeStatement {
}
#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
pub(crate) struct AggregateRangeWitness {
values: Vec<u64>,
gammas: Vec<Scalar>,
}
pub(crate) struct AggregateRangeWitness(Vec<Commitment>);
impl AggregateRangeWitness {
pub(crate) fn new(commitments: &[Commitment]) -> Option<Self> {
pub(crate) fn new(commitments: Vec<Commitment>) -> Option<Self> {
if commitments.is_empty() || (commitments.len() > MAX_M) {
return None;
}
let mut values = Vec::with_capacity(commitments.len());
let mut gammas = Vec::with_capacity(commitments.len());
for commitment in commitments {
values.push(commitment.amount);
gammas.push(Scalar(commitment.mask));
}
Some(AggregateRangeWitness { values, gammas })
Some(AggregateRangeWitness(commitments))
}
}
@@ -112,7 +103,7 @@ impl AggregateRangeStatement {
let mut d = ScalarVector::new(mn);
for j in 1 ..= V.len() {
z_pow.push(z.pow(Scalar::from(2 * u64::try_from(j).unwrap()))); // TODO: Optimize this
d = d.add_vec(&Self::d_j(j, V.len()).mul(z_pow[j - 1]));
d = d + &(Self::d_j(j, V.len()) * (z_pow[j - 1]));
}
let mut ascending_y = ScalarVector(vec![y]);
@@ -124,7 +115,8 @@ impl AggregateRangeStatement {
let mut descending_y = ascending_y.clone();
descending_y.0.reverse();
let d_descending_y = d.mul_vec(&descending_y);
let d_descending_y = d.clone() * &descending_y;
let d_descending_y_plus_z = d_descending_y + z;
let y_mn_plus_one = descending_y[0] * y;
@@ -135,9 +127,9 @@ impl AggregateRangeStatement {
let neg_z = -z;
let mut A_terms = Vec::with_capacity((generators.len() * 2) + 2);
for (i, d_y_z) in d_descending_y.add(z).0.drain(..).enumerate() {
for (i, d_y_z) in d_descending_y_plus_z.0.iter().enumerate() {
A_terms.push((neg_z, generators.generator(GeneratorsList::GBold1, i)));
A_terms.push((d_y_z, generators.generator(GeneratorsList::HBold1, i)));
A_terms.push((*d_y_z, generators.generator(GeneratorsList::HBold1, i)));
}
A_terms.push((y_mn_plus_one, commitment_accum));
A_terms.push((
@@ -145,7 +137,14 @@ impl AggregateRangeStatement {
Generators::g(),
));
(y, d_descending_y, y_mn_plus_one, z, ScalarVector(z_pow), A + multiexp_vartime(&A_terms))
(
y,
d_descending_y_plus_z,
y_mn_plus_one,
z,
ScalarVector(z_pow),
A + multiexp_vartime(&A_terms),
)
}
pub(crate) fn prove<R: RngCore + CryptoRng>(
@@ -154,13 +153,11 @@ impl AggregateRangeStatement {
witness: &AggregateRangeWitness,
) -> Option<AggregateRangeProof> {
// Check for consistency with the witness
if self.V.len() != witness.values.len() {
if self.V.len() != witness.0.len() {
return None;
}
for (commitment, (value, gamma)) in
self.V.iter().zip(witness.values.iter().zip(witness.gammas.iter()))
{
if Commitment::new(**gamma, *value).calculate() != **commitment {
for (commitment, witness) in self.V.iter().zip(witness.0.iter()) {
if witness.calculate() != **commitment {
return None;
}
}
@@ -188,10 +185,16 @@ impl AggregateRangeStatement {
let mut a_l = ScalarVector(Vec::with_capacity(V.len() * N));
for j in 1 ..= V.len() {
d_js.push(Self::d_j(j, V.len()));
a_l.0.append(&mut u64_decompose(*witness.values.get(j - 1).unwrap_or(&0)).0);
#[allow(clippy::map_unwrap_or)]
a_l.0.append(
&mut u64_decompose(
*witness.0.get(j - 1).map(|commitment| &commitment.amount).unwrap_or(&0),
)
.0,
);
}
let a_r = a_l.sub(Scalar::ONE);
let a_r = a_l.clone() - Scalar::ONE;
let alpha = Scalar::random(&mut *rng);
@@ -209,14 +212,14 @@ impl AggregateRangeStatement {
// Multiply by INV_EIGHT per earlier commentary
A.0 *= crate::INV_EIGHT();
let (y, d_descending_y, y_mn_plus_one, z, z_pow, A_hat) =
let (y, d_descending_y_plus_z, y_mn_plus_one, z, z_pow, A_hat) =
Self::compute_A_hat(PointVector(V), &generators, &mut transcript, A);
let a_l = a_l.sub(z);
let a_r = a_r.add_vec(&d_descending_y).add(z);
let a_l = a_l - z;
let a_r = a_r + &d_descending_y_plus_z;
let mut alpha = alpha;
for j in 1 ..= witness.gammas.len() {
alpha += z_pow[j - 1] * witness.gammas[j - 1] * y_mn_plus_one;
for j in 1 ..= witness.0.len() {
alpha += z_pow[j - 1] * Scalar(witness.0[j - 1].mask) * y_mn_plus_one;
}
Some(AggregateRangeProof {

View File

@@ -3,8 +3,7 @@
use group::Group;
use dalek_ff_group::{Scalar, EdwardsPoint};
mod scalar_vector;
pub(crate) use scalar_vector::{ScalarVector, weighted_inner_product};
pub(crate) use crate::ringct::bulletproofs::scalar_vector::ScalarVector;
mod point_vector;
pub(crate) use point_vector::PointVector;

View File

@@ -1,114 +0,0 @@
use core::{
borrow::Borrow,
ops::{Index, IndexMut},
};
use std_shims::vec::Vec;
use zeroize::Zeroize;
use group::ff::Field;
use dalek_ff_group::Scalar;
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub(crate) struct ScalarVector(pub(crate) Vec<Scalar>);
impl Index<usize> for ScalarVector {
type Output = Scalar;
fn index(&self, index: usize) -> &Scalar {
&self.0[index]
}
}
impl IndexMut<usize> for ScalarVector {
fn index_mut(&mut self, index: usize) -> &mut Scalar {
&mut self.0[index]
}
}
impl ScalarVector {
pub(crate) fn new(len: usize) -> Self {
ScalarVector(vec![Scalar::ZERO; len])
}
pub(crate) fn add(&self, scalar: impl Borrow<Scalar>) -> Self {
let mut res = self.clone();
for val in &mut res.0 {
*val += scalar.borrow();
}
res
}
pub(crate) fn sub(&self, scalar: impl Borrow<Scalar>) -> Self {
let mut res = self.clone();
for val in &mut res.0 {
*val -= scalar.borrow();
}
res
}
pub(crate) fn mul(&self, scalar: impl Borrow<Scalar>) -> Self {
let mut res = self.clone();
for val in &mut res.0 {
*val *= scalar.borrow();
}
res
}
pub(crate) fn add_vec(&self, vector: &Self) -> Self {
debug_assert_eq!(self.len(), vector.len());
let mut res = self.clone();
for (i, val) in res.0.iter_mut().enumerate() {
*val += vector.0[i];
}
res
}
pub(crate) fn mul_vec(&self, vector: &Self) -> Self {
debug_assert_eq!(self.len(), vector.len());
let mut res = self.clone();
for (i, val) in res.0.iter_mut().enumerate() {
*val *= vector.0[i];
}
res
}
pub(crate) fn inner_product(&self, vector: &Self) -> Scalar {
self.mul_vec(vector).sum()
}
pub(crate) fn powers(x: Scalar, len: usize) -> Self {
debug_assert!(len != 0);
let mut res = Vec::with_capacity(len);
res.push(Scalar::ONE);
res.push(x);
for i in 2 .. len {
res.push(res[i - 1] * x);
}
res.truncate(len);
ScalarVector(res)
}
pub(crate) fn sum(mut self) -> Scalar {
self.0.drain(..).sum()
}
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn split(mut self) -> (Self, Self) {
debug_assert!(self.len() > 1);
let r = self.0.split_off(self.0.len() / 2);
debug_assert_eq!(self.len(), r.len());
(self, ScalarVector(r))
}
}
pub(crate) fn weighted_inner_product(
a: &ScalarVector,
b: &ScalarVector,
y: &ScalarVector,
) -> Scalar {
a.inner_product(&b.mul_vec(y))
}

View File

@@ -4,7 +4,7 @@ use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop};
use multiexp::{multiexp, multiexp_vartime, BatchVerifier};
use multiexp::{BatchVerifier, multiexp, multiexp_vartime};
use group::{
ff::{Field, PrimeField},
GroupEncoding,
@@ -12,11 +12,10 @@ use group::{
use dalek_ff_group::{Scalar, EdwardsPoint};
use crate::ringct::bulletproofs::plus::{
ScalarVector, PointVector, GeneratorsList, Generators, padded_pow_of_2, weighted_inner_product,
transcript::*,
ScalarVector, PointVector, GeneratorsList, Generators, padded_pow_of_2, transcript::*,
};
// Figure 1
// Figure 1 of the Bulletproofs+ paper
#[derive(Clone, Debug)]
pub(crate) struct WipStatement {
generators: Generators,
@@ -219,7 +218,7 @@ impl WipStatement {
.zip(g_bold.0.iter().copied())
.chain(witness.b.0.iter().copied().zip(h_bold.0.iter().copied()))
.collect::<Vec<_>>();
P_terms.push((weighted_inner_product(&witness.a, &witness.b, &y), g));
P_terms.push((witness.a.clone().weighted_inner_product(&witness.b, &y), g));
P_terms.push((witness.alpha, h));
debug_assert_eq!(multiexp(&P_terms), P);
P_terms.zeroize();
@@ -258,14 +257,13 @@ impl WipStatement {
let d_l = Scalar::random(&mut *rng);
let d_r = Scalar::random(&mut *rng);
let c_l = weighted_inner_product(&a1, &b2, &y);
let c_r = weighted_inner_product(&(a2.mul(y_n_hat)), &b1, &y);
let c_l = a1.clone().weighted_inner_product(&b2, &y);
let c_r = (a2.clone() * y_n_hat).weighted_inner_product(&b1, &y);
// TODO: Calculate these with a batch inversion
let y_inv_n_hat = y_n_hat.invert().unwrap();
let mut L_terms = a1
.mul(y_inv_n_hat)
let mut L_terms = (a1.clone() * y_inv_n_hat)
.0
.drain(..)
.zip(g_bold2.0.iter().copied())
@@ -277,8 +275,7 @@ impl WipStatement {
L_vec.push(L);
L_terms.zeroize();
let mut R_terms = a2
.mul(y_n_hat)
let mut R_terms = (a2.clone() * y_n_hat)
.0
.drain(..)
.zip(g_bold1.0.iter().copied())
@@ -294,8 +291,8 @@ impl WipStatement {
(e, inv_e, e_square, inv_e_square, g_bold, h_bold) =
Self::next_G_H(&mut transcript, g_bold1, g_bold2, h_bold1, h_bold2, L, R, y_inv_n_hat);
a = a1.mul(e).add_vec(&a2.mul(y_n_hat * inv_e));
b = b1.mul(inv_e).add_vec(&b2.mul(e));
a = (a1 * e) + &(a2 * (y_n_hat * inv_e));
b = (b1 * inv_e) + &(b2 * e);
alpha += (d_l * e_square) + (d_r * inv_e_square);
debug_assert_eq!(g_bold.len(), a.len());

View File

@@ -1,85 +1,17 @@
use core::ops::{Add, Sub, Mul, Index};
use core::{
borrow::Borrow,
ops::{Index, IndexMut, Add, Sub, Mul},
};
use std_shims::vec::Vec;
use zeroize::{Zeroize, ZeroizeOnDrop};
use group::ff::Field;
use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::multiexp;
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub(crate) struct ScalarVector(pub(crate) Vec<Scalar>);
macro_rules! math_op {
($Op: ident, $op: ident, $f: expr) => {
#[allow(clippy::redundant_closure_call)]
impl $Op<Scalar> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
#[allow(clippy::redundant_closure_call)]
impl $Op<Scalar> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
#[allow(clippy::redundant_closure_call)]
impl $Op<ScalarVector> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
#[allow(clippy::redundant_closure_call)]
impl $Op<&ScalarVector> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: &ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
};
}
math_op!(Add, add, |(a, b): (&Scalar, &Scalar)| *a + *b);
math_op!(Sub, sub, |(a, b): (&Scalar, &Scalar)| *a - *b);
math_op!(Mul, mul, |(a, b): (&Scalar, &Scalar)| *a * *b);
impl ScalarVector {
pub(crate) fn new(len: usize) -> ScalarVector {
ScalarVector(vec![Scalar::ZERO; len])
}
pub(crate) fn powers(x: Scalar, len: usize) -> ScalarVector {
debug_assert!(len != 0);
let mut res = Vec::with_capacity(len);
res.push(Scalar::ONE);
for i in 1 .. len {
res.push(res[i - 1] * x);
}
ScalarVector(res)
}
pub(crate) fn sum(mut self) -> Scalar {
self.0.drain(..).sum()
}
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn split(self) -> (ScalarVector, ScalarVector) {
let (l, r) = self.0.split_at(self.0.len() / 2);
(ScalarVector(l.to_vec()), ScalarVector(r.to_vec()))
}
}
impl Index<usize> for ScalarVector {
type Output = Scalar;
@@ -87,28 +19,120 @@ impl Index<usize> for ScalarVector {
&self.0[index]
}
}
impl IndexMut<usize> for ScalarVector {
fn index_mut(&mut self, index: usize) -> &mut Scalar {
&mut self.0[index]
}
}
pub(crate) fn inner_product(a: &ScalarVector, b: &ScalarVector) -> Scalar {
(a * b).sum()
impl<S: Borrow<Scalar>> Add<S> for ScalarVector {
type Output = ScalarVector;
fn add(mut self, scalar: S) -> ScalarVector {
for s in &mut self.0 {
*s += scalar.borrow();
}
self
}
}
impl<S: Borrow<Scalar>> Sub<S> for ScalarVector {
type Output = ScalarVector;
fn sub(mut self, scalar: S) -> ScalarVector {
for s in &mut self.0 {
*s -= scalar.borrow();
}
self
}
}
impl<S: Borrow<Scalar>> Mul<S> for ScalarVector {
type Output = ScalarVector;
fn mul(mut self, scalar: S) -> ScalarVector {
for s in &mut self.0 {
*s *= scalar.borrow();
}
self
}
}
impl Add<&ScalarVector> for ScalarVector {
type Output = ScalarVector;
fn add(mut self, other: &ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), other.len());
for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
*s += o;
}
self
}
}
impl Sub<&ScalarVector> for ScalarVector {
type Output = ScalarVector;
fn sub(mut self, other: &ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), other.len());
for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
*s -= o;
}
self
}
}
impl Mul<&ScalarVector> for ScalarVector {
type Output = ScalarVector;
fn mul(mut self, other: &ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), other.len());
for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
*s *= o;
}
self
}
}
impl Mul<&[EdwardsPoint]> for &ScalarVector {
type Output = EdwardsPoint;
fn mul(self, b: &[EdwardsPoint]) -> EdwardsPoint {
debug_assert_eq!(self.len(), b.len());
multiexp(&self.0.iter().copied().zip(b.iter().copied()).collect::<Vec<_>>())
let mut multiexp_args = self.0.iter().copied().zip(b.iter().copied()).collect::<Vec<_>>();
let res = multiexp(&multiexp_args);
multiexp_args.zeroize();
res
}
}
pub(crate) fn hadamard_fold(
l: &[EdwardsPoint],
r: &[EdwardsPoint],
a: Scalar,
b: Scalar,
) -> Vec<EdwardsPoint> {
let mut res = Vec::with_capacity(l.len() / 2);
for i in 0 .. l.len() {
res.push(multiexp(&[(a, l[i]), (b, r[i])]));
impl ScalarVector {
pub(crate) fn new(len: usize) -> Self {
ScalarVector(vec![Scalar::ZERO; len])
}
pub(crate) fn powers(x: Scalar, len: usize) -> Self {
debug_assert!(len != 0);
let mut res = Vec::with_capacity(len);
res.push(Scalar::ONE);
res.push(x);
for i in 2 .. len {
res.push(res[i - 1] * x);
}
res.truncate(len);
ScalarVector(res)
}
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn sum(mut self) -> Scalar {
self.0.drain(..).sum()
}
pub(crate) fn inner_product(self, vector: &Self) -> Scalar {
(self * vector).sum()
}
pub(crate) fn weighted_inner_product(self, vector: &Self, y: &Self) -> Scalar {
(self * vector * y).sum()
}
pub(crate) fn split(mut self) -> (Self, Self) {
debug_assert!(self.len() > 1);
let r = self.0.split_off(self.0.len() / 2);
debug_assert_eq!(self.len(), r.len());
(self, ScalarVector(r))
}
res
}

View File

@@ -9,17 +9,17 @@ use std_shims::{
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use subtle::{ConstantTimeEq, Choice, CtOption};
use subtle::{ConstantTimeEq, ConditionallySelectable};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
constants::{ED25519_BASEPOINT_TABLE, ED25519_BASEPOINT_POINT},
scalar::Scalar,
traits::{IsIdentity, VartimePrecomputedMultiscalarMul},
traits::{IsIdentity, MultiscalarMul, VartimePrecomputedMultiscalarMul},
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation},
};
use crate::{
INV_EIGHT, Commitment, random_scalar, hash_to_scalar, wallet::decoys::Decoys,
INV_EIGHT, BASEPOINT_PRECOMP, Commitment, random_scalar, hash_to_scalar, wallet::decoys::Decoys,
ringct::hash_to_point, serialize::*,
};
@@ -27,8 +27,6 @@ use crate::{
mod multisig;
#[cfg(feature = "multisig")]
pub use multisig::{ClsagDetails, ClsagAddendum, ClsagMultisig};
#[cfg(feature = "multisig")]
pub(crate) use multisig::add_key_image_share;
/// Errors returned when CLSAG signing fails.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
@@ -100,8 +98,11 @@ fn core(
) -> ((EdwardsPoint, Scalar, Scalar), Scalar) {
let n = ring.len();
let images_precomp = VartimeEdwardsPrecomputation::new([I, D]);
let D = D * INV_EIGHT();
let images_precomp = match A_c1 {
Mode::Sign(..) => None,
Mode::Verify(..) => Some(VartimeEdwardsPrecomputation::new([I, D])),
};
let D_INV_EIGHT = D * INV_EIGHT();
// Generate the transcript
// Instead of generating multiple, a single transcript is created and then edited as needed
@@ -130,7 +131,7 @@ fn core(
}
to_hash.extend(I.compress().to_bytes());
to_hash.extend(D.compress().to_bytes());
to_hash.extend(D_INV_EIGHT.compress().to_bytes());
to_hash.extend(pseudo_out.compress().to_bytes());
// mu_P with agg_0
let mu_P = hash_to_scalar(&to_hash);
@@ -169,29 +170,44 @@ fn core(
}
// Perform the core loop
let mut c1 = CtOption::new(Scalar::ZERO, Choice::from(0));
let mut c1 = c;
for i in (start .. end).map(|i| i % n) {
// This will only execute once and shouldn't need to be constant time. Making it constant time
// removes the risk of branch prediction creating timing differences depending on ring index
// however
c1 = c1.or_else(|| CtOption::new(c, i.ct_eq(&0)));
let c_p = mu_P * c;
let c_c = mu_C * c;
let L = (&s[i] * ED25519_BASEPOINT_TABLE) + (c_p * P[i]) + (c_c * C[i]);
// (s_i * G) + (c_p * P_i) + (c_c * C_i)
let L = match A_c1 {
Mode::Sign(..) => {
EdwardsPoint::multiscalar_mul([s[i], c_p, c_c], [ED25519_BASEPOINT_POINT, P[i], C[i]])
}
Mode::Verify(..) => {
BASEPOINT_PRECOMP().vartime_mixed_multiscalar_mul([s[i]], [c_p, c_c], [P[i], C[i]])
}
};
let PH = hash_to_point(&P[i]);
// Shouldn't be an issue as all of the variables in this vartime statement are public
let R = (s[i] * PH) + images_precomp.vartime_multiscalar_mul([c_p, c_c]);
// (c_p * I) + (c_c * D) + (s_i * PH)
let R = match A_c1 {
Mode::Sign(..) => EdwardsPoint::multiscalar_mul([c_p, c_c, s[i]], [I, D, &PH]),
Mode::Verify(..) => {
images_precomp.as_ref().unwrap().vartime_mixed_multiscalar_mul([c_p, c_c], [s[i]], [PH])
}
};
to_hash.truncate(((2 * n) + 3) * 32);
to_hash.extend(L.compress().to_bytes());
to_hash.extend(R.compress().to_bytes());
c = hash_to_scalar(&to_hash);
// This will only execute once and shouldn't need to be constant time. Making it constant time
// removes the risk of branch prediction creating timing differences depending on ring index
// however
c1.conditional_assign(&c, i.ct_eq(&(n - 1)));
}
// This first tuple is needed to continue signing, the latter is the c to be tested/worked with
((D, c * mu_P, c * mu_C), c1.unwrap_or(c))
((D_INV_EIGHT, c * mu_P, c * mu_C), c1)
}
/// CLSAG signature, as used in Monero.
@@ -261,8 +277,10 @@ impl Clsag {
nonce.deref() *
hash_to_point(&inputs[i].2.decoys.ring[usize::from(inputs[i].2.decoys.i)][0]),
);
clsag.s[usize::from(inputs[i].2.decoys.i)] =
(-((p * inputs[i].0.deref()) + c)) + nonce.deref();
// Effectively r - cx, except cx is (c_p x) + (c_c z), where z is the delta between a ring
// member's commitment and our input commitment (which will only have a known discrete log
// over G if the amounts cancel out)
clsag.s[usize::from(inputs[i].2.decoys.i)] = nonce.deref() - ((p * inputs[i].0.deref()) + c);
inputs[i].0.zeroize();
nonce.zeroize();

View File

@@ -1,5 +1,8 @@
use core::{ops::Deref, fmt::Debug};
use std_shims::io::{self, Read, Write};
use std_shims::{
io::{self, Read, Write},
collections::HashMap,
};
use std::sync::{Arc, RwLock};
use rand_core::{RngCore, CryptoRng, SeedableRng};
@@ -9,11 +12,13 @@ use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
use group::{ff::Field, Group, GroupEncoding};
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
};
use transcript::{Transcript, RecommendedTranscript};
use dalek_ff_group as dfg;
use dleq::DLEqProof;
use frost::{
dkg::lagrange,
curve::Ed25519,
@@ -26,10 +31,6 @@ use crate::ringct::{
clsag::{ClsagInput, Clsag},
};
fn dleq_transcript() -> RecommendedTranscript {
RecommendedTranscript::new(b"monero_key_image_dleq")
}
impl ClsagInput {
fn transcript<T: Transcript>(&self, transcript: &mut T) {
// Doesn't domain separate as this is considered part of the larger CLSAG proof
@@ -43,6 +44,7 @@ impl ClsagInput {
// They're just a unreliable reference to this data which will be included in the message
// if in use
transcript.append_message(b"member", [u8::try_from(i).expect("ring size exceeded 255")]);
// This also transcripts the key image generator since it's derived from this key
transcript.append_message(b"key", pair[0].compress().to_bytes());
transcript.append_message(b"commitment", pair[1].compress().to_bytes())
}
@@ -70,13 +72,11 @@ impl ClsagDetails {
#[derive(Clone, PartialEq, Eq, Zeroize, Debug)]
pub struct ClsagAddendum {
pub(crate) key_image: dfg::EdwardsPoint,
dleq: DLEqProof<dfg::EdwardsPoint>,
}
impl WriteAddendum for ClsagAddendum {
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.key_image.compress().to_bytes().as_ref())?;
self.dleq.write(writer)
writer.write_all(self.key_image.compress().to_bytes().as_ref())
}
}
@@ -97,9 +97,8 @@ pub struct ClsagMultisig {
transcript: RecommendedTranscript,
pub(crate) H: EdwardsPoint,
// Merged here as CLSAG needs it, passing it would be a mess, yet having it beforehand requires
// an extra round
image: EdwardsPoint,
key_image_shares: HashMap<[u8; 32], dfg::EdwardsPoint>,
image: Option<dfg::EdwardsPoint>,
details: Arc<RwLock<Option<ClsagDetails>>>,
@@ -117,7 +116,8 @@ impl ClsagMultisig {
transcript,
H: hash_to_point(&output_key),
image: EdwardsPoint::identity(),
key_image_shares: HashMap::new(),
image: None,
details,
@@ -135,20 +135,6 @@ impl ClsagMultisig {
}
}
pub(crate) fn add_key_image_share(
image: &mut EdwardsPoint,
generator: EdwardsPoint,
offset: Scalar,
included: &[Participant],
participant: Participant,
share: EdwardsPoint,
) {
if image.is_identity().into() {
*image = generator * offset;
}
*image += share * lagrange::<dfg::Scalar>(participant, included).0;
}
impl Algorithm<Ed25519> for ClsagMultisig {
type Transcript = RecommendedTranscript;
type Addendum = ClsagAddendum;
@@ -160,23 +146,10 @@ impl Algorithm<Ed25519> for ClsagMultisig {
fn preprocess_addendum<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
_rng: &mut R,
keys: &ThresholdKeys<Ed25519>,
) -> ClsagAddendum {
ClsagAddendum {
key_image: dfg::EdwardsPoint(self.H) * keys.secret_share().deref(),
dleq: DLEqProof::prove(
rng,
// Doesn't take in a larger transcript object due to the usage of this
// Every prover would immediately write their own DLEq proof, when they can only do so in
// the proper order if they want to reach consensus
// It'd be a poor API to have CLSAG define a new transcript solely to pass here, just to
// try to merge later in some form, when it should instead just merge xH (as it does)
&mut dleq_transcript(),
&[dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(self.H)],
keys.secret_share(),
),
}
ClsagAddendum { key_image: dfg::EdwardsPoint(self.H) * keys.secret_share().deref() }
}
fn read_addendum<R: Read>(&self, reader: &mut R) -> io::Result<ClsagAddendum> {
@@ -190,7 +163,7 @@ impl Algorithm<Ed25519> for ClsagMultisig {
Err(io::Error::other("non-canonical key image"))?;
}
Ok(ClsagAddendum { key_image: xH, dleq: DLEqProof::<dfg::EdwardsPoint>::read(reader)? })
Ok(ClsagAddendum { key_image: xH })
}
fn process_addendum(
@@ -199,32 +172,29 @@ impl Algorithm<Ed25519> for ClsagMultisig {
l: Participant,
addendum: ClsagAddendum,
) -> Result<(), FrostError> {
if self.image.is_identity().into() {
if self.image.is_none() {
self.transcript.domain_separate(b"CLSAG");
// Transcript the ring
self.input().transcript(&mut self.transcript);
// Transcript the mask
self.transcript.append_message(b"mask", self.mask().to_bytes());
// Init the image to the offset
self.image = Some(dfg::EdwardsPoint(self.H) * view.offset());
}
// Transcript this participant's contribution
self.transcript.append_message(b"participant", l.to_bytes());
addendum
.dleq
.verify(
&mut dleq_transcript(),
&[dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(self.H)],
&[view.original_verification_share(l), addendum.key_image],
)
.map_err(|_| FrostError::InvalidPreprocess(l))?;
self.transcript.append_message(b"key_image_share", addendum.key_image.compress().to_bytes());
add_key_image_share(
&mut self.image,
self.H,
view.offset().0,
view.included(),
l,
addendum.key_image.0,
);
// Accumulate the interpolated share
let interpolated_key_image_share =
addendum.key_image * lagrange::<dfg::Scalar>(l, view.included());
*self.image.as_mut().unwrap() += interpolated_key_image_share;
self
.key_image_shares
.insert(view.verification_share(l).to_bytes(), interpolated_key_image_share);
Ok(())
}
@@ -252,7 +222,7 @@ impl Algorithm<Ed25519> for ClsagMultisig {
#[allow(non_snake_case)]
let (clsag, pseudo_out, p, c) = Clsag::sign_core(
&mut rng,
&self.image,
&self.image.expect("verifying a share despite never processing any addendums").0,
&self.input(),
self.mask(),
self.msg.as_ref().unwrap(),
@@ -261,7 +231,8 @@ impl Algorithm<Ed25519> for ClsagMultisig {
);
self.interim = Some(Interim { p, c, clsag, pseudo_out });
(-(dfg::Scalar(p) * view.secret_share().deref())) + nonces[0].deref()
// r - p x, where p is the challenge for the keys
*nonces[0] - dfg::Scalar(p) * view.secret_share().deref()
}
#[must_use]
@@ -273,11 +244,13 @@ impl Algorithm<Ed25519> for ClsagMultisig {
) -> Option<Self::Signature> {
let interim = self.interim.as_ref().unwrap();
let mut clsag = interim.clsag.clone();
// We produced shares as `r - p x`, yet the signature is `r - p x - c x`
// Substract `c x` (saved as `c`) now
clsag.s[usize::from(self.input().decoys.i)] = sum.0 - interim.c;
if clsag
.verify(
&self.input().decoys.ring,
&self.image,
&self.image.expect("verifying a signature despite never processing any addendums").0,
&interim.pseudo_out,
self.msg.as_ref().unwrap(),
)
@@ -295,10 +268,61 @@ impl Algorithm<Ed25519> for ClsagMultisig {
share: dfg::Scalar,
) -> Result<Vec<(dfg::Scalar, dfg::EdwardsPoint)>, ()> {
let interim = self.interim.as_ref().unwrap();
Ok(vec![
// For a share `r - p x`, the following two equalities should hold:
// - `(r - p x)G == R.0 - pV`, where `V = xG`
// - `(r - p x)H == R.1 - pK`, where `K = xH` (the key image share)
//
// This is effectively a discrete log equality proof for:
// V, K over G, H
// with nonces
// R.0, R.1
// and solution
// s
//
// Which is a batch-verifiable rewrite of the traditional CP93 proof
// (and also writable as Generalized Schnorr Protocol)
//
// That means that given a proper challenge, this alone can be certainly argued to prove the
// key image share is well-formed and the provided signature so proves for that.
// This is a bit funky as it doesn't prove the nonces are well-formed however. They're part of
// the prover data/transcript for a CP93/GSP proof, not part of the statement. This practically
// is fine, for a variety of reasons (given a consistent `x`, a consistent `r` can be
// extracted, and the nonces as used in CLSAG are also part of its prover data/transcript).
let key_image_share = self.key_image_shares[&verification_share.to_bytes()];
// Hash every variable relevant here, using the hahs output as the random weight
let mut weight_transcript =
RecommendedTranscript::new(b"monero-serai v0.1 ClsagMultisig::verify_share");
weight_transcript.append_message(b"G", dfg::EdwardsPoint::generator().to_bytes());
weight_transcript.append_message(b"H", self.H.to_bytes());
weight_transcript.append_message(b"xG", verification_share.to_bytes());
weight_transcript.append_message(b"xH", key_image_share.to_bytes());
weight_transcript.append_message(b"rG", nonces[0][0].to_bytes());
weight_transcript.append_message(b"rH", nonces[0][1].to_bytes());
weight_transcript.append_message(b"c", dfg::Scalar(interim.p).to_repr());
weight_transcript.append_message(b"s", share.to_repr());
let weight = weight_transcript.challenge(b"weight");
let weight = dfg::Scalar(Scalar::from_bytes_mod_order_wide(&weight.into()));
let part_one = vec![
(share, dfg::EdwardsPoint::generator()),
(dfg::Scalar(interim.p), verification_share),
// -(R.0 - pV) == -R.0 + pV
(-dfg::Scalar::ONE, nonces[0][0]),
])
(dfg::Scalar(interim.p), verification_share),
];
let mut part_two = vec![
(weight * share, dfg::EdwardsPoint(self.H)),
// -(R.1 - pK) == -R.1 + pK
(-weight, nonces[0][1]),
(weight * dfg::Scalar(interim.p), key_image_share),
];
let mut all = part_one;
all.append(&mut part_two);
Ok(all)
}
}

View File

@@ -21,7 +21,7 @@ fn test_aggregate_range_proof() {
}
let commitment_points = commitments.iter().map(|com| EdwardsPoint(com.calculate())).collect();
let statement = AggregateRangeStatement::new(commitment_points).unwrap();
let witness = AggregateRangeWitness::new(&commitments).unwrap();
let witness = AggregateRangeWitness::new(commitments).unwrap();
let proof = statement.clone().prove(&mut OsRng, &witness).unwrap();
statement.verify(&mut OsRng, &mut verifier, (), proof);

View File

@@ -9,7 +9,6 @@ use dalek_ff_group::{Scalar, EdwardsPoint};
use crate::ringct::bulletproofs::plus::{
ScalarVector, PointVector, GeneratorsList, Generators,
weighted_inner_product::{WipStatement, WipWitness},
weighted_inner_product,
};
#[test]
@@ -68,7 +67,7 @@ fn test_weighted_inner_product() {
#[allow(non_snake_case)]
let P = g_bold.multiexp(&a) +
h_bold.multiexp(&b) +
(g * weighted_inner_product(&a, &b, &y_vec)) +
(g * a.clone().weighted_inner_product(&b, &y_vec)) +
(h * alpha);
let statement = WipStatement::new(generators, P, y);

View File

@@ -57,7 +57,7 @@ fn clsag() {
}
let image = generate_key_image(&secrets.0);
let (clsag, pseudo_out) = Clsag::sign(
let (mut clsag, pseudo_out) = Clsag::sign(
&mut OsRng,
vec![(
secrets.0,
@@ -76,7 +76,12 @@ fn clsag() {
msg,
)
.swap_remove(0);
clsag.verify(&ring, &image, &pseudo_out, &msg).unwrap();
// make sure verification fails if we throw a random `c1` at it.
clsag.c1 = random_scalar(&mut OsRng);
assert!(clsag.verify(&ring, &image, &pseudo_out, &msg).is_err());
}
}

View File

@@ -1,5 +1,5 @@
use core::{marker::PhantomData, fmt::Debug};
use std_shims::string::{String, ToString};
use core::{marker::PhantomData, fmt};
use std_shims::string::ToString;
use zeroize::Zeroize;
@@ -81,7 +81,7 @@ impl AddressType {
}
/// A type which returns the byte for a given address.
pub trait AddressBytes: Clone + Copy + PartialEq + Eq + Debug {
pub trait AddressBytes: Clone + Copy + PartialEq + Eq + fmt::Debug {
fn network_bytes(network: Network) -> (u8, u8, u8, u8);
}
@@ -191,8 +191,8 @@ pub struct Address<B: AddressBytes> {
pub view: EdwardsPoint,
}
impl<B: AddressBytes> core::fmt::Debug for Address<B> {
fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
impl<B: AddressBytes> fmt::Debug for Address<B> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
fmt
.debug_struct("Address")
.field("meta", &self.meta)
@@ -212,8 +212,8 @@ impl<B: AddressBytes> Zeroize for Address<B> {
}
}
impl<B: AddressBytes> ToString for Address<B> {
fn to_string(&self) -> String {
impl<B: AddressBytes> fmt::Display for Address<B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut data = vec![self.meta.to_byte()];
data.extend(self.spend.compress().to_bytes());
data.extend(self.view.compress().to_bytes());
@@ -226,7 +226,7 @@ impl<B: AddressBytes> ToString for Address<B> {
if let Some(id) = self.meta.kind.payment_id() {
data.extend(id);
}
encode_check(&data).unwrap()
write!(f, "{}", encode_check(&data).unwrap())
}
}

View File

@@ -105,13 +105,13 @@ pub struct Metadata {
/// but the payment ID will be returned here anyway:
///
/// 1) If the payment ID is tied to an output received by a subaddress account
/// that spent Monero in the transaction (the received output is considered
/// "change" and is not considered a "payment" in this case). If there are multiple
/// spending subaddress accounts in a transaction, the highest index spent key image
/// is used to determine the spending subaddress account.
/// that spent Monero in the transaction (the received output is considered
/// "change" and is not considered a "payment" in this case). If there are multiple
/// spending subaddress accounts in a transaction, the highest index spent key image
/// is used to determine the spending subaddress account.
///
/// 2) If the payment ID is the unencrypted variant and the block's hf version is
/// v12 or higher (https://github.com/serai-dex/serai/issues/512)
/// v12 or higher (https://github.com/serai-dex/serai/issues/512)
pub payment_id: Option<PaymentId>,
/// Arbitrary data encoded in TX extra.
pub arbitrary_data: Vec<Vec<u8>>,

View File

@@ -364,8 +364,8 @@ impl Change {
/// 1) The change in the tx is shunted to the fee (fingerprintable fee).
///
/// 2) If there are 2 outputs in the tx, there would be no payment ID as is the case when the
/// reference wallet creates 2 output txs, since monero-serai doesn't know which output
/// to tie the dummy payment ID to.
/// reference wallet creates 2 output txs, since monero-serai doesn't know which output
/// to tie the dummy payment ID to.
pub fn fingerprintable(address: Option<MoneroAddress>) -> Change {
Change { address, view: None }
}

View File

@@ -18,6 +18,7 @@ use transcript::{Transcript, RecommendedTranscript};
use frost::{
curve::Ed25519,
Participant, FrostError, ThresholdKeys,
dkg::lagrange,
sign::{
Writable, Preprocess, CachedPreprocess, SignatureShare, PreprocessMachine, SignMachine,
SignatureMachine, AlgorithmMachine, AlgorithmSignMachine, AlgorithmSignatureMachine,
@@ -27,7 +28,7 @@ use frost::{
use crate::{
random_scalar,
ringct::{
clsag::{ClsagInput, ClsagDetails, ClsagAddendum, ClsagMultisig, add_key_image_share},
clsag::{ClsagInput, ClsagDetails, ClsagAddendum, ClsagMultisig},
RctPrunable,
},
transaction::{Input, Transaction},
@@ -261,8 +262,13 @@ impl SignMachine<Transaction> for TransactionSignMachine {
included.push(self.i);
included.sort_unstable();
// Convert the unified commitments to a Vec of the individual commitments
// Start calculating the key images, as needed on the TX level
let mut images = vec![EdwardsPoint::identity(); self.clsags.len()];
for (image, (generator, offset)) in images.iter_mut().zip(&self.key_images) {
*image = generator * offset;
}
// Convert the serialized nonces commitments to a parallelized Vec
let mut commitments = (0 .. self.clsags.len())
.map(|c| {
included
@@ -291,14 +297,7 @@ impl SignMachine<Transaction> for TransactionSignMachine {
// provides the easiest API overall, as this is where the TX is (which needs the key
// images in its message), along with where the outputs are determined (where our
// outputs may need these in order to guarantee uniqueness)
add_key_image_share(
&mut images[c],
self.key_images[c].0,
self.key_images[c].1,
&included,
*l,
preprocess.addendum.key_image.0,
);
images[c] += preprocess.addendum.key_image.0 * lagrange::<dfg::Scalar>(*l, &included).0;
Ok((*l, preprocess))
})

View File

@@ -88,7 +88,7 @@ async fn from_wallet_rpc_to_self(spec: AddressSpec) {
.unwrap();
let tx_hash = hex::decode(tx.tx_hash).unwrap().try_into().unwrap();
// TODO: Needs https://github.com/monero-project/monero/pull/8882
// TODO: Needs https://github.com/monero-project/monero/pull/9260
// let fee_rate = daemon_rpc
// .get_fee(daemon_rpc.get_protocol().await.unwrap(), FeePriority::Unimportant)
// .await
@@ -107,7 +107,7 @@ async fn from_wallet_rpc_to_self(spec: AddressSpec) {
let tx = daemon_rpc.get_transaction(tx_hash).await.unwrap();
let output = scanner.scan_transaction(&tx).not_locked().swap_remove(0);
// TODO: Needs https://github.com/monero-project/monero/pull/8882
// TODO: Needs https://github.com/monero-project/monero/pull/9260
// runner::check_weight_and_fee(&tx, fee_rate);
match spec {

View File

@@ -18,7 +18,7 @@ workspace = true
[dependencies]
parity-db = { version = "0.4", default-features = false, optional = true }
rocksdb = { version = "0.21", default-features = false, features = ["lz4"], optional = true }
rocksdb = { version = "0.21", default-features = false, features = ["zstd"], optional = true }
[features]
parity-db = ["dep:parity-db"]

View File

@@ -11,7 +11,7 @@ impl Get for Transaction<'_> {
let mut res = self.0.get(&key);
for change in &self.1 {
if change.1 == key.as_ref() {
res = change.2.clone();
res.clone_from(&change.2);
}
}
res

View File

@@ -1,42 +1,65 @@
use std::sync::Arc;
use rocksdb::{DBCompressionType, ThreadMode, SingleThreaded, Options, Transaction, TransactionDB};
use rocksdb::{
DBCompressionType, ThreadMode, SingleThreaded, LogLevel, WriteOptions,
Transaction as RocksTransaction, Options, OptimisticTransactionDB,
};
use crate::*;
impl<T: ThreadMode> Get for Transaction<'_, TransactionDB<T>> {
pub struct Transaction<'a, T: ThreadMode>(
RocksTransaction<'a, OptimisticTransactionDB<T>>,
&'a OptimisticTransactionDB<T>,
);
impl<T: ThreadMode> Get for Transaction<'_, T> {
fn get(&self, key: impl AsRef<[u8]>) -> Option<Vec<u8>> {
self.get(key).expect("couldn't read from RocksDB via transaction")
self.0.get(key).expect("couldn't read from RocksDB via transaction")
}
}
impl<T: ThreadMode> DbTxn for Transaction<'_, TransactionDB<T>> {
impl<T: ThreadMode> DbTxn for Transaction<'_, T> {
fn put(&mut self, key: impl AsRef<[u8]>, value: impl AsRef<[u8]>) {
Transaction::put(self, key, value).expect("couldn't write to RocksDB via transaction")
self.0.put(key, value).expect("couldn't write to RocksDB via transaction")
}
fn del(&mut self, key: impl AsRef<[u8]>) {
self.delete(key).expect("couldn't delete from RocksDB via transaction")
self.0.delete(key).expect("couldn't delete from RocksDB via transaction")
}
fn commit(self) {
Transaction::commit(self).expect("couldn't commit to RocksDB via transaction")
self.0.commit().expect("couldn't commit to RocksDB via transaction");
self.1.flush_wal(true).expect("couldn't flush RocksDB WAL");
self.1.flush().expect("couldn't flush RocksDB");
}
}
impl<T: ThreadMode> Get for Arc<TransactionDB<T>> {
impl<T: ThreadMode> Get for Arc<OptimisticTransactionDB<T>> {
fn get(&self, key: impl AsRef<[u8]>) -> Option<Vec<u8>> {
TransactionDB::get(self, key).expect("couldn't read from RocksDB")
OptimisticTransactionDB::get(self, key).expect("couldn't read from RocksDB")
}
}
impl<T: ThreadMode + 'static> Db for Arc<TransactionDB<T>> {
type Transaction<'a> = Transaction<'a, TransactionDB<T>>;
impl<T: Send + ThreadMode + 'static> Db for Arc<OptimisticTransactionDB<T>> {
type Transaction<'a> = Transaction<'a, T>;
fn txn(&mut self) -> Self::Transaction<'_> {
self.transaction()
let mut opts = WriteOptions::default();
opts.set_sync(true);
Transaction(self.transaction_opt(&opts, &Default::default()), &**self)
}
}
pub type RocksDB = Arc<TransactionDB<SingleThreaded>>;
pub type RocksDB = Arc<OptimisticTransactionDB<SingleThreaded>>;
pub fn new_rocksdb(path: &str) -> RocksDB {
let mut options = Options::default();
options.create_if_missing(true);
options.set_compression_type(DBCompressionType::Lz4);
Arc::new(TransactionDB::open(&options, &Default::default(), path).unwrap())
options.set_compression_type(DBCompressionType::Zstd);
options.set_wal_compression_type(DBCompressionType::Zstd);
// 10 MB
options.set_max_total_wal_size(10 * 1024 * 1024);
options.set_wal_size_limit_mb(10);
options.set_log_level(LogLevel::Warn);
// 1 MB
options.set_max_log_file_size(1024 * 1024);
options.set_recycle_log_file_num(1);
Arc::new(OptimisticTransactionDB::open(&options, path).unwrap())
}

View File

@@ -23,7 +23,7 @@ hyper-util = { version = "0.1", default-features = false, features = ["http1", "
http-body-util = { version = "0.1", default-features = false }
tokio = { version = "1", default-features = false }
hyper-rustls = { version = "0.26", default-features = false, features = ["http1", "ring", "rustls-native-certs", "native-tokio"], optional = true }
hyper-rustls = { version = "0.27", default-features = false, features = ["http1", "ring", "rustls-native-certs", "native-tokio"], optional = true }
zeroize = { version = "1", optional = true }
base64ct = { version = "1", features = ["alloc"], optional = true }

View File

@@ -55,6 +55,8 @@ impl Client {
fn connector() -> Connector {
let mut res = HttpConnector::new();
res.set_keepalive(Some(core::time::Duration::from_secs(60)));
res.set_nodelay(true);
res.set_reuse_address(true);
#[cfg(feature = "tls")]
let res = HttpsConnectorBuilder::new()
.with_native_roots()
@@ -68,7 +70,9 @@ impl Client {
pub fn with_connection_pool() -> Client {
Client {
connection: Connection::ConnectionPool(
HyperClient::builder(TokioExecutor::new()).build(Self::connector()),
HyperClient::builder(TokioExecutor::new())
.pool_idle_timeout(core::time::Duration::from_secs(60))
.build(Self::connector()),
),
}
}

View File

@@ -7,7 +7,7 @@ repository = "https://github.com/serai-dex/serai/tree/develop/common/zalloc"
authors = ["Luke Parker <lukeparker5132@gmail.com>"]
keywords = []
edition = "2021"
rust-version = "1.60"
rust-version = "1.77.0"
[package.metadata.docs.rs]
all-features = true
@@ -19,8 +19,10 @@ workspace = true
[dependencies]
zeroize = { version = "^1.5", default-features = false }
[build-dependencies]
rustversion = { version = "1", default-features = false }
[features]
std = ["zeroize/std"]
default = ["std"]
# Commented for now as it requires nightly and we don't use nightly
# allocator = []
allocator = []

10
common/zalloc/build.rs Normal file
View File

@@ -0,0 +1,10 @@
#[rustversion::nightly]
fn main() {
println!("cargo::rustc-check-cfg=cfg(zalloc_rustc_nightly)");
println!("cargo::rustc-cfg=zalloc_rustc_nightly");
}
#[rustversion::not(nightly)]
fn main() {
println!("cargo::rustc-check-cfg=cfg(zalloc_rustc_nightly)");
}

View File

@@ -1,6 +1,6 @@
#![cfg_attr(docsrs, feature(doc_cfg))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(feature = "allocator", feature(allocator_api))]
#![cfg_attr(all(zalloc_rustc_nightly, feature = "allocator"), feature(allocator_api))]
//! Implementation of a Zeroizing Allocator, enabling zeroizing memory on deallocation.
//! This can either be used with Box (requires nightly and the "allocator" feature) to provide the
@@ -17,12 +17,12 @@ use zeroize::Zeroize;
/// An allocator wrapper which zeroizes its memory on dealloc.
pub struct ZeroizingAlloc<T>(pub T);
#[cfg(feature = "allocator")]
#[cfg(all(zalloc_rustc_nightly, feature = "allocator"))]
use core::{
ptr::NonNull,
alloc::{AllocError, Allocator},
};
#[cfg(feature = "allocator")]
#[cfg(all(zalloc_rustc_nightly, feature = "allocator"))]
unsafe impl<T: Allocator> Allocator for ZeroizingAlloc<T> {
fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
self.0.allocate(layout)

View File

@@ -51,7 +51,7 @@ env_logger = { version = "0.10", default-features = false, features = ["humantim
futures-util = { version = "0.3", default-features = false, features = ["std"] }
tokio = { version = "1", default-features = false, features = ["rt-multi-thread", "sync", "time", "macros"] }
libp2p = { version = "0.52", default-features = false, features = ["tokio", "tcp", "noise", "yamux", "gossipsub", "macros"] }
libp2p = { version = "0.52", default-features = false, features = ["tokio", "tcp", "noise", "yamux", "request-response", "gossipsub", "macros"] }
[dev-dependencies]
tributary = { package = "tributary-chain", path = "./tributary", features = ["tests"] }

View File

@@ -22,7 +22,7 @@ use serai_db::{Get, DbTxn, Db, create_db};
use processor_messages::coordinator::cosign_block_msg;
use crate::{
p2p::{CosignedBlock, P2pMessageKind, P2p},
p2p::{CosignedBlock, GossipMessageKind, P2p},
substrate::LatestCosignedBlock,
};
@@ -323,7 +323,7 @@ impl<D: Db> CosignEvaluator<D> {
for cosign in cosigns {
let mut buf = vec![];
cosign.serialize(&mut buf).unwrap();
P2p::broadcast(&p2p, P2pMessageKind::CosignedBlock, buf).await;
P2p::broadcast(&p2p, GossipMessageKind::CosignedBlock, buf).await;
}
sleep(Duration::from_secs(60)).await;
}

View File

@@ -122,7 +122,7 @@ impl QueuedBatchesDb {
pub fn take(txn: &mut impl DbTxn, set: ValidatorSet) -> Vec<Transaction> {
let batches_vec = Self::get(txn, set).unwrap_or_default();
txn.del(&Self::key(set));
txn.del(Self::key(set));
let mut batches: &[u8] = &batches_vec;
let mut res = vec![];

View File

@@ -260,7 +260,7 @@ async fn handle_processor_message<D: Db, P: P2p>(
cosign_channel.send(cosigned_block).unwrap();
let mut buf = vec![];
cosigned_block.serialize(&mut buf).unwrap();
P2p::broadcast(p2p, P2pMessageKind::CosignedBlock, buf).await;
P2p::broadcast(p2p, GossipMessageKind::CosignedBlock, buf).await;
None
}
// This causes an action on Substrate yet not on any Tributary
@@ -836,8 +836,8 @@ async fn handle_cosigns_and_batch_publication<D: Db, P: P2p>(
) {
let mut tributaries = HashMap::new();
'outer: loop {
// TODO: Create a better async flow for this, as this does still hammer this task
tokio::task::yield_now().await;
// TODO: Create a better async flow for this
tokio::time::sleep(core::time::Duration::from_millis(100)).await;
match tributary_event.try_recv() {
Ok(event) => match event {

File diff suppressed because it is too large Load Diff

View File

@@ -41,8 +41,9 @@ enum HasEvents {
create_db!(
SubstrateCosignDb {
ScanCosignFrom: () -> u64,
IntendedCosign: () -> (u64, Option<u64>),
BlockHasEvents: (block: u64) -> HasEvents,
BlockHasEventsCache: (block: u64) -> HasEvents,
LatestCosignedBlock: () -> u64,
}
);
@@ -85,7 +86,7 @@ async fn block_has_events(
serai: &Serai,
block: u64,
) -> Result<HasEvents, SeraiError> {
let cached = BlockHasEvents::get(txn, block);
let cached = BlockHasEventsCache::get(txn, block);
match cached {
None => {
let serai = serai.as_of(
@@ -107,8 +108,8 @@ async fn block_has_events(
let has_events = if has_no_events { HasEvents::No } else { HasEvents::Yes };
BlockHasEvents::set(txn, block, &has_events);
Ok(HasEvents::Yes)
BlockHasEventsCache::set(txn, block, &has_events);
Ok(has_events)
}
Some(code) => Ok(code),
}
@@ -135,6 +136,7 @@ async fn potentially_cosign_block(
if (block_has_events == HasEvents::No) &&
(LatestCosignedBlock::latest_cosigned_block(txn) == (block - 1))
{
log::debug!("automatically co-signing next block ({block}) since it has no events");
LatestCosignedBlock::set(txn, &block);
}
@@ -178,7 +180,7 @@ async fn potentially_cosign_block(
which should be cosigned). Accordingly, it is necessary to call multiple times even if
`latest_number` doesn't change.
*/
pub async fn advance_cosign_protocol(
async fn advance_cosign_protocol_inner(
db: &mut impl Db,
key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
serai: &Serai,
@@ -203,16 +205,23 @@ pub async fn advance_cosign_protocol(
let mut window_end_exclusive = last_intended_to_cosign_block + COSIGN_DISTANCE;
// If we've never triggered a cosign, don't skip any cosigns based on proximity
if last_intended_to_cosign_block == INITIAL_INTENDED_COSIGN {
window_end_exclusive = 0;
window_end_exclusive = 1;
}
// The consensus rules for this are `last_intended_to_cosign_block + 1`
let scan_start_block = last_intended_to_cosign_block + 1;
// As a practical optimization, we don't re-scan old blocks since old blocks are independent to
// new state
let scan_start_block = scan_start_block.max(ScanCosignFrom::get(&txn).unwrap_or(1));
// Check all blocks within the window to see if they should be cosigned
// If so, we're skipping them and need to flag them as skipped so that once the window closes, we
// do cosign them
// We only perform this check if we haven't already marked a block as skipped since the cosign
// the skipped block will cause will cosign all other blocks within this window
if skipped_block.is_none() {
for b in (last_intended_to_cosign_block + 1) .. window_end_exclusive.min(latest_number) {
let window_end_inclusive = window_end_exclusive - 1;
for b in scan_start_block ..= window_end_inclusive.min(latest_number) {
if block_has_events(&mut txn, serai, b).await? == HasEvents::Yes {
skipped_block = Some(b);
log::debug!("skipping cosigning {b} due to proximity to prior cosign");
@@ -227,7 +236,7 @@ pub async fn advance_cosign_protocol(
// A list of sets which are cosigning, along with a boolean of if we're in the set
let mut cosigning = vec![];
for block in (last_intended_to_cosign_block + 1) ..= latest_number {
for block in scan_start_block ..= latest_number {
let actual_block = serai
.finalized_block_by_number(block)
.await?
@@ -276,6 +285,11 @@ pub async fn advance_cosign_protocol(
break;
}
// If this TX is committed, always start future scanning from the next block
ScanCosignFrom::set(&mut txn, &(block + 1));
// Since we're scanning *from* the next block, tidy the cache
BlockHasEventsCache::del(&mut txn, block);
}
if let Some((number, hash)) = to_cosign {
@@ -297,3 +311,22 @@ pub async fn advance_cosign_protocol(
Ok(())
}
pub async fn advance_cosign_protocol(
db: &mut impl Db,
key: &Zeroizing<<Ristretto as Ciphersuite>::F>,
serai: &Serai,
latest_number: u64,
) -> Result<(), SeraiError> {
loop {
let scan_from = ScanCosignFrom::get(db).unwrap_or(1);
// Only scan 1000 blocks at a time to limit a massive txn from forming
let scan_to = latest_number.min(scan_from + 1000);
advance_cosign_protocol_inner(db, key, serai, scan_to).await?;
// If we didn't limit the scan_to, break
if scan_to == latest_number {
break;
}
}
Ok(())
}

View File

@@ -11,10 +11,7 @@ use ciphersuite::{group::GroupEncoding, Ciphersuite, Ristretto};
use serai_client::{
SeraiError, Block, Serai, TemporalSerai,
primitives::{BlockHash, NetworkId},
validator_sets::{
primitives::{ValidatorSet, amortize_excess_key_shares},
ValidatorSetsEvent,
},
validator_sets::{primitives::ValidatorSet, ValidatorSetsEvent},
in_instructions::InInstructionsEvent,
coins::CoinsEvent,
};
@@ -69,12 +66,7 @@ async fn handle_new_set<D: Db>(
let set_participants =
serai.participants(set.network).await?.expect("NewSet for set which doesn't exist");
let mut set_data = set_participants
.into_iter()
.map(|(k, w)| (k, u16::try_from(w).unwrap()))
.collect::<Vec<_>>();
amortize_excess_key_shares(&mut set_data);
set_data
set_participants.into_iter().map(|(k, w)| (k, u16::try_from(w).unwrap())).collect::<Vec<_>>()
};
let time = if let Ok(time) = block.time() {

View File

@@ -14,7 +14,7 @@ use tokio::sync::RwLock;
use crate::{
processors::{Message, Processors},
TributaryP2p, P2pMessageKind, P2p,
TributaryP2p, ReqResMessageKind, GossipMessageKind, P2pMessageKind, Message as P2pMessage, P2p,
};
pub mod tributary;
@@ -45,7 +45,10 @@ impl Processors for MemProcessors {
#[allow(clippy::type_complexity)]
#[derive(Clone, Debug)]
pub struct LocalP2p(usize, pub Arc<RwLock<(HashSet<Vec<u8>>, Vec<VecDeque<(usize, Vec<u8>)>>)>>);
pub struct LocalP2p(
usize,
pub Arc<RwLock<(HashSet<Vec<u8>>, Vec<VecDeque<(usize, P2pMessageKind, Vec<u8>)>>)>>,
);
impl LocalP2p {
pub fn new(validators: usize) -> Vec<LocalP2p> {
@@ -65,11 +68,13 @@ impl P2p for LocalP2p {
async fn subscribe(&self, _set: ValidatorSet, _genesis: [u8; 32]) {}
async fn unsubscribe(&self, _set: ValidatorSet, _genesis: [u8; 32]) {}
async fn send_raw(&self, to: Self::Id, _genesis: Option<[u8; 32]>, msg: Vec<u8>) {
self.1.write().await.1[to].push_back((self.0, msg));
async fn send_raw(&self, to: Self::Id, msg: Vec<u8>) {
let mut msg_ref = msg.as_slice();
let kind = ReqResMessageKind::read(&mut msg_ref).unwrap();
self.1.write().await.1[to].push_back((self.0, P2pMessageKind::ReqRes(kind), msg_ref.to_vec()));
}
async fn broadcast_raw(&self, _genesis: Option<[u8; 32]>, msg: Vec<u8>) {
async fn broadcast_raw(&self, kind: P2pMessageKind, msg: Vec<u8>) {
// Content-based deduplication
let mut lock = self.1.write().await;
{
@@ -81,19 +86,26 @@ impl P2p for LocalP2p {
}
let queues = &mut lock.1;
let kind_len = (match kind {
P2pMessageKind::ReqRes(kind) => kind.serialize(),
P2pMessageKind::Gossip(kind) => kind.serialize(),
})
.len();
let msg = msg[kind_len ..].to_vec();
for (i, msg_queue) in queues.iter_mut().enumerate() {
if i == self.0 {
continue;
}
msg_queue.push_back((self.0, msg.clone()));
msg_queue.push_back((self.0, kind, msg.clone()));
}
}
async fn receive_raw(&self) -> (Self::Id, Vec<u8>) {
async fn receive(&self) -> P2pMessage<Self> {
// This is a cursed way to implement an async read from a Vec
loop {
if let Some(res) = self.1.write().await.1[self.0].pop_front() {
return res;
if let Some((sender, kind, msg)) = self.1.write().await.1[self.0].pop_front() {
return P2pMessage { sender, kind, msg };
}
tokio::time::sleep(std::time::Duration::from_millis(100)).await;
}
@@ -103,6 +115,11 @@ impl P2p for LocalP2p {
#[async_trait]
impl TributaryP2p for LocalP2p {
async fn broadcast(&self, genesis: [u8; 32], msg: Vec<u8>) {
<Self as P2p>::broadcast(self, P2pMessageKind::Tributary(genesis), msg).await
<Self as P2p>::broadcast(
self,
P2pMessageKind::Gossip(GossipMessageKind::Tributary(genesis)),
msg,
)
.await
}
}

View File

@@ -26,7 +26,7 @@ use serai_db::MemDb;
use tributary::Tributary;
use crate::{
P2pMessageKind, P2p,
GossipMessageKind, P2pMessageKind, P2p,
tributary::{Transaction, TributarySpec},
tests::LocalP2p,
};
@@ -98,7 +98,7 @@ pub async fn run_tributaries(
for (p2p, tributary) in &mut tributaries {
while let Poll::Ready(msg) = poll!(p2p.receive()) {
match msg.kind {
P2pMessageKind::Tributary(genesis) => {
P2pMessageKind::Gossip(GossipMessageKind::Tributary(genesis)) => {
assert_eq!(genesis, tributary.genesis());
if tributary.handle_message(&msg.msg).await {
p2p.broadcast(msg.kind, msg.msg).await;
@@ -173,7 +173,7 @@ async fn tributary_test() {
for (p2p, tributary) in &mut tributaries {
while let Poll::Ready(msg) = poll!(p2p.receive()) {
match msg.kind {
P2pMessageKind::Tributary(genesis) => {
P2pMessageKind::Gossip(GossipMessageKind::Tributary(genesis)) => {
assert_eq!(genesis, tributary.genesis());
tributary.handle_message(&msg.msg).await;
}
@@ -199,7 +199,7 @@ async fn tributary_test() {
for (p2p, tributary) in &mut tributaries {
while let Poll::Ready(msg) = poll!(p2p.receive()) {
match msg.kind {
P2pMessageKind::Tributary(genesis) => {
P2pMessageKind::Gossip(GossipMessageKind::Tributary(genesis)) => {
assert_eq!(genesis, tributary.genesis());
tributary.handle_message(&msg.msg).await;
}

View File

@@ -116,8 +116,8 @@ async fn sync_test() {
.map_err(|_| "failed to send ActiveTributary to heartbeat")
.unwrap();
// The heartbeat is once every 10 blocks
sleep(Duration::from_secs(10 * block_time)).await;
// The heartbeat is once every 10 blocks, with some limitations
sleep(Duration::from_secs(20 * block_time)).await;
assert!(syncer_tributary.tip().await != spec.genesis());
// Verify it synced to the tip

View File

@@ -1,5 +1,5 @@
use core::{marker::PhantomData, fmt::Debug};
use std::{sync::Arc, io};
use std::{sync::Arc, io, collections::VecDeque};
use async_trait::async_trait;
@@ -59,8 +59,7 @@ pub const ACCOUNT_MEMPOOL_LIMIT: u32 = 50;
pub const BLOCK_SIZE_LIMIT: usize = 3_001_000;
pub(crate) const TENDERMINT_MESSAGE: u8 = 0;
pub(crate) const BLOCK_MESSAGE: u8 = 1;
pub(crate) const TRANSACTION_MESSAGE: u8 = 2;
pub(crate) const TRANSACTION_MESSAGE: u8 = 1;
#[allow(clippy::large_enum_variant)]
#[derive(Clone, PartialEq, Eq, Debug)]
@@ -194,7 +193,7 @@ impl<D: Db, T: TransactionTrait, P: P2p> Tributary<D, T, P> {
);
let blockchain = Arc::new(RwLock::new(blockchain));
let to_rebroadcast = Arc::new(RwLock::new(vec![]));
let to_rebroadcast = Arc::new(RwLock::new(VecDeque::new()));
// Actively rebroadcast consensus messages to ensure they aren't prematurely dropped from the
// P2P layer
let p2p_meta_task_handle = Arc::new(
@@ -207,7 +206,7 @@ impl<D: Db, T: TransactionTrait, P: P2p> Tributary<D, T, P> {
for msg in to_rebroadcast {
p2p.broadcast(genesis, msg).await;
}
tokio::time::sleep(core::time::Duration::from_secs(1)).await;
tokio::time::sleep(core::time::Duration::from_secs(60)).await;
}
}
})
@@ -218,7 +217,15 @@ impl<D: Db, T: TransactionTrait, P: P2p> Tributary<D, T, P> {
TendermintNetwork { genesis, signer, validators, blockchain, to_rebroadcast, p2p };
let TendermintHandle { synced_block, synced_block_result, messages, machine } =
TendermintMachine::new(network.clone(), block_number, start_time, proposal).await;
TendermintMachine::new(
db.clone(),
network.clone(),
genesis,
block_number,
start_time,
proposal,
)
.await;
tokio::spawn(machine.run());
Some(Self {
@@ -328,9 +335,6 @@ impl<D: Db, T: TransactionTrait, P: P2p> Tributary<D, T, P> {
// Return true if the message should be rebroadcasted.
pub async fn handle_message(&self, msg: &[u8]) -> bool {
// Acquire the lock now to prevent sync_block from being run at the same time
let mut sync_block = self.synced_block_result.write().await;
match msg.first() {
Some(&TRANSACTION_MESSAGE) => {
let Ok(tx) = Transaction::read::<&[u8]>(&mut &msg[1 ..]) else {
@@ -362,19 +366,6 @@ impl<D: Db, T: TransactionTrait, P: P2p> Tributary<D, T, P> {
false
}
Some(&BLOCK_MESSAGE) => {
let mut msg_ref = &msg[1 ..];
let Ok(block) = Block::<T>::read(&mut msg_ref) else {
log::error!("received invalid block message");
return false;
};
let commit = msg[(msg.len() - msg_ref.len()) ..].to_vec();
if self.sync_block_internal(block, commit, &mut sync_block).await {
log::debug!("synced block over p2p net instead of building the commit ourselves");
}
false
}
_ => false,
}
}

View File

@@ -74,7 +74,7 @@ impl<D: Db, T: Transaction> ProvidedTransactions<D, T> {
panic!("provided transaction saved to disk wasn't provided");
};
if res.transactions.get(order).is_none() {
if !res.transactions.contains_key(order) {
res.transactions.insert(order, VecDeque::new());
}
res.transactions.get_mut(order).unwrap().push_back(tx);
@@ -135,7 +135,7 @@ impl<D: Db, T: Transaction> ProvidedTransactions<D, T> {
txn.put(current_provided_key, currently_provided);
txn.commit();
if self.transactions.get(order).is_none() {
if !self.transactions.contains_key(order) {
self.transactions.insert(order, VecDeque::new());
}
self.transactions.get_mut(order).unwrap().push_back(tx);

View File

@@ -1,5 +1,8 @@
use core::ops::Deref;
use std::{sync::Arc, collections::HashMap};
use std::{
sync::Arc,
collections::{VecDeque, HashMap},
};
use async_trait::async_trait;
@@ -38,9 +41,8 @@ use tendermint::{
use tokio::sync::RwLock;
use crate::{
TENDERMINT_MESSAGE, TRANSACTION_MESSAGE, BLOCK_MESSAGE, ReadWrite,
transaction::Transaction as TransactionTrait, Transaction, BlockHeader, Block, BlockError,
Blockchain, P2p,
TENDERMINT_MESSAGE, TRANSACTION_MESSAGE, ReadWrite, transaction::Transaction as TransactionTrait,
Transaction, BlockHeader, Block, BlockError, Blockchain, P2p,
};
pub mod tx;
@@ -268,7 +270,7 @@ pub struct TendermintNetwork<D: Db, T: TransactionTrait, P: P2p> {
pub(crate) validators: Arc<Validators>,
pub(crate) blockchain: Arc<RwLock<Blockchain<D, T>>>,
pub(crate) to_rebroadcast: Arc<RwLock<Vec<Vec<u8>>>>,
pub(crate) to_rebroadcast: Arc<RwLock<VecDeque<Vec<u8>>>>,
pub(crate) p2p: P,
}
@@ -277,31 +279,10 @@ pub const BLOCK_PROCESSING_TIME: u32 = 999;
pub const LATENCY_TIME: u32 = 1667;
pub const TARGET_BLOCK_TIME: u32 = BLOCK_PROCESSING_TIME + (3 * LATENCY_TIME);
#[test]
fn assert_target_block_time() {
use serai_db::MemDb;
#[derive(Clone, Debug)]
pub struct DummyP2p;
#[async_trait::async_trait]
impl P2p for DummyP2p {
async fn broadcast(&self, _: [u8; 32], _: Vec<u8>) {
unimplemented!()
}
}
// Type paremeters don't matter here since we only need to call the block_time()
// and it only relies on the constants of the trait implementation. block_time() is in seconds,
// TARGET_BLOCK_TIME is in milliseconds.
assert_eq!(
<TendermintNetwork<MemDb, TendermintTx, DummyP2p> as Network>::block_time(),
TARGET_BLOCK_TIME / 1000
)
}
#[async_trait]
impl<D: Db, T: TransactionTrait, P: P2p> Network for TendermintNetwork<D, T, P> {
type Db = D;
type ValidatorId = [u8; 32];
type SignatureScheme = Arc<Validators>;
type Weights = Arc<Validators>;
@@ -325,19 +306,28 @@ impl<D: Db, T: TransactionTrait, P: P2p> Network for TendermintNetwork<D, T, P>
}
async fn broadcast(&mut self, msg: SignedMessageFor<Self>) {
let mut to_broadcast = vec![TENDERMINT_MESSAGE];
to_broadcast.extend(msg.encode());
// Since we're broadcasting a Tendermint message, set it to be re-broadcasted every second
// until the block it's trying to build is complete
// If the P2P layer drops a message before all nodes obtained access, or a node had an
// intermittent failure, this will ensure reconcilliation
// Resolves halts caused by timing discrepancies, which technically are violations of
// Tendermint as a BFT protocol, and shouldn't occur yet have in low-powered testing
// environments
// This is atrocious if there's no content-based deduplication protocol for messages actively
// being gossiped
// LibP2p, as used by Serai, is configured to content-based deduplicate
let mut to_broadcast = vec![TENDERMINT_MESSAGE];
to_broadcast.extend(msg.encode());
self.to_rebroadcast.write().await.push(to_broadcast.clone());
{
let mut to_rebroadcast_lock = self.to_rebroadcast.write().await;
to_rebroadcast_lock.push_back(to_broadcast.clone());
// We should have, ideally, 3 * validators messages within a round
// Therefore, this should keep the most recent 2-rounds
// TODO: This isn't perfect. Each participant should just rebroadcast their latest round of
// messages
while to_rebroadcast_lock.len() > (6 * self.validators.weights.len()) {
to_rebroadcast_lock.pop_front();
}
}
self.p2p.broadcast(self.genesis, to_broadcast).await
}
@@ -423,12 +413,7 @@ impl<D: Db, T: TransactionTrait, P: P2p> Network for TendermintNetwork<D, T, P>
);
match block_res {
Ok(()) => {
// If we successfully added this block, broadcast it
// TODO: Move this under the coordinator once we set up on new block notifications?
let mut msg = serialized_block.0;
msg.insert(0, BLOCK_MESSAGE);
msg.extend(encoded_commit);
self.p2p.broadcast(self.genesis, msg).await;
// If we successfully added this block, break
break;
}
Err(BlockError::NonLocalProvided(hash)) => {
@@ -437,13 +422,14 @@ impl<D: Db, T: TransactionTrait, P: P2p> Network for TendermintNetwork<D, T, P>
hex::encode(hash),
hex::encode(self.genesis)
);
tokio::time::sleep(core::time::Duration::from_secs(5)).await;
}
_ => return invalid_block(),
}
}
// Since we've added a valid block, clear to_rebroadcast
*self.to_rebroadcast.write().await = vec![];
*self.to_rebroadcast.write().await = VecDeque::new();
Some(TendermintBlock(
self.blockchain.write().await.build_block::<Self>(&self.signature_scheme()).serialize(),

View File

@@ -1,3 +1,6 @@
#[cfg(test)]
mod tendermint;
mod transaction;
pub use transaction::*;

View File

@@ -0,0 +1,28 @@
use tendermint::ext::Network;
use crate::{
P2p, TendermintTx,
tendermint::{TARGET_BLOCK_TIME, TendermintNetwork},
};
#[test]
fn assert_target_block_time() {
use serai_db::MemDb;
#[derive(Clone, Debug)]
pub struct DummyP2p;
#[async_trait::async_trait]
impl P2p for DummyP2p {
async fn broadcast(&self, _: [u8; 32], _: Vec<u8>) {
unimplemented!()
}
}
// Type paremeters don't matter here since we only need to call the block_time()
// and it only relies on the constants of the trait implementation. block_time() is in seconds,
// TARGET_BLOCK_TIME is in milliseconds.
assert_eq!(
<TendermintNetwork<MemDb, TendermintTx, DummyP2p> as Network>::block_time(),
TARGET_BLOCK_TIME / 1000
)
}

View File

@@ -27,5 +27,7 @@ futures-util = { version = "0.3", default-features = false, features = ["std", "
futures-channel = { version = "0.3", default-features = false, features = ["std", "sink"] }
tokio = { version = "1", default-features = false, features = ["time"] }
serai-db = { path = "../../../common/db", version = "0.1", default-features = false }
[dev-dependencies]
tokio = { version = "1", features = ["sync", "rt-multi-thread", "macros"] }

Some files were not shown because too many files have changed in this diff Show More