mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-14 06:59:24 +00:00
446 lines
17 KiB
Rust
446 lines
17 KiB
Rust
/*
|
|
We implement a DKG using an eVRF, as detailed in the eVRF paper. For the eVRF itself, we do not
|
|
use a Paillier-based construction, nor the detailed construction premised on a Bulletproof.
|
|
|
|
For reference, the detailed construction premised on a Bulletproof involves two curves, notated
|
|
here as `C` and `E`, where the scalar field of `C` is the field of `E`. Accordingly, Bulletproofs
|
|
over `C` can efficiently perform group operations of points of curve `E`. Each participant has a
|
|
private point (`P_i`) on curve `E` committed to over curve `C`. The eVRF selects a pair of
|
|
scalars `a, b`, where the participant proves in-Bulletproof the points `A_i, B_i` are
|
|
`a * P_i, b * P_i`. The eVRF proceeds to commit to `A_i.x + B_i.x` in a Pedersen Commitment.
|
|
|
|
Our eVRF uses
|
|
[Generalized Bulletproofs](https://repo.getmonero.org/monero-project/ccs-proposals/uploads/a9baa50c38c6312efc0fea5c6a188bb9/gbp.pdf).
|
|
This allows us much larger witnesses without growing the reference string, and enables us to
|
|
efficiently sample challenges off in-circuit variables (via placing the variables in a vector
|
|
commitment, then challenging from a transcript of the commitments). We proceed to use
|
|
[elliptic curve divisors](https://repo.getmonero.org/-/project/54/uploads/eb1bf5b4d4855a3480c38abf895bd8e8/Veridise_Divisor_Proofs.pdf)
|
|
(which require the ability to sample a challenge off in-circuit variables) to prove discrete
|
|
logarithms efficiently.
|
|
|
|
This is done via having a private scalar (`p_i`) on curve `E`, not a private point, and
|
|
publishing the public key for it (`P_i = p_i * G`, where `G` is a generator of `E`). The eVRF
|
|
samples two points with unknown discrete logarithms `A, B`, and the circuit proves a Pedersen
|
|
Commitment commits to `(p_i * A).x + (p_i * B).x`.
|
|
|
|
With the eVRF established, we now detail our other novel aspect. The eVRF paper expects secret
|
|
shares to be sent to the other parties yet does not detail a precise way to do so. If we
|
|
encrypted the secret shares with some stream cipher, each recipient would have to attest validity
|
|
or accuse the sender of impropriety. We want an encryption scheme where anyone can verify the
|
|
secret shares were encrypted properly, without additional info, efficiently.
|
|
|
|
Please note from the published commitments, it's possible to calculcate a commitment to the
|
|
secret share each party should receive (`V_i`).
|
|
|
|
We have the sender sample two scalars per recipient, denoted `x_i, y_i` (where `i` is the
|
|
recipient index). They perform the eVRF to prove a Pedersen Commitment commits to
|
|
`z_i = (x_i * P_i).x + (y_i * P_i).x`. They then publish the encrypted share `s_i + z_i` and
|
|
`X_i = x_i * G, Y_i = y_i * G`.
|
|
|
|
The recipient is able to decrypt the share via calculating
|
|
`s_i - ((p_i * X_i).x + (p_i * Y_i).x)`.
|
|
|
|
To verify the secret share, we have the `F` terms of the Pedersen Commitments revealed (where
|
|
`F, H` are generators of `C`, `F` is used for binding and `H` for blinding). This already needs
|
|
to be done for the eVRF outputs used within the DKG, in order to obtain thecommitments to the
|
|
coefficients. When we have the commitment `Z_i = ((p_i * A).x + (p_i * B).x) * F`, we simply
|
|
check `s_i * F = Z_i + V_i`.
|
|
|
|
In order to open the Pedersen Commitments to their `F` terms, we transcript the commitments and
|
|
the claimed openings, then assign random weights to each pair of `(commitment, opening). The
|
|
prover proves knowledge of the discrete logarithm of the sum weighted commitments, minus the sum
|
|
sum weighted openings, over `H`.
|
|
|
|
The benefit to this construction is that given an broadcast channel which is reliable and
|
|
ordered, only `t` messages must be broadcast from honest parties in order to create a `t`-of-`n`
|
|
multisig. If the encrypted secret shares were not verifiable, one would need at least `t + n`
|
|
messages to ensure every participant has a correct dealing and can participate in future
|
|
reconstructions of the secret. This would also require all `n` parties be online, whereas this is
|
|
robust to threshold `t`.
|
|
*/
|
|
|
|
use core::ops::Deref;
|
|
use std::{
|
|
io::{self, Read, Write},
|
|
collections::HashMap,
|
|
};
|
|
|
|
use rand_core::{RngCore, CryptoRng};
|
|
|
|
use zeroize::{Zeroize, Zeroizing};
|
|
|
|
use ciphersuite::{
|
|
group::ff::{Field, PrimeField},
|
|
Ciphersuite,
|
|
};
|
|
use multiexp::multiexp_vartime;
|
|
|
|
use generalized_bulletproofs::{Generators, BatchVerifier, arithmetic_circuit_proof::*};
|
|
use ec_divisors::DivisorCurve;
|
|
use evrf::*;
|
|
|
|
use crate::{
|
|
Participant, DkgError, ThresholdParams, ThresholdCore,
|
|
encryption::{ReadWrite, EncryptedMessage, Encryption, EncryptionKeyProof},
|
|
pedpop::SecretShare,
|
|
};
|
|
|
|
type EvrfError<C> = DkgError<EncryptionKeyProof<C>>;
|
|
|
|
/// The commitments message, intended to be broadcast to all other parties.
|
|
///
|
|
/// Every participant should only provide one set of commitments to all parties. If any
|
|
/// participant sends multiple sets of commitments, they are faulty and should be presumed
|
|
/// malicious. As this library does not handle networking, it is unable to detect if any
|
|
/// participant is so faulty. That responsibility lies with the caller.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
|
|
pub struct Commitments {
|
|
proof: Vec<u8>,
|
|
}
|
|
|
|
impl ReadWrite for Commitments {
|
|
fn read<R: Read>(reader: &mut R, _params: ThresholdParams) -> io::Result<Self> {
|
|
// TODO: Replace `len` with some calculcation deterministic to the params
|
|
let mut len = [0; 4];
|
|
reader.read_exact(&mut len)?;
|
|
let len = usize::try_from(u32::from_le_bytes(len)).expect("<32-bit platform?");
|
|
|
|
// Don't allocate a buffer for the claimed length
|
|
// Read chunks until we reach the claimed length
|
|
// This means if we were told to read GB, we must actually be sent GB before allocating as such
|
|
const CHUNK_SIZE: usize = 1024;
|
|
let mut proof = Vec::with_capacity(len.min(CHUNK_SIZE));
|
|
while proof.len() < len {
|
|
let next_chunk = (len - proof.len()).min(CHUNK_SIZE);
|
|
let old_proof_len = proof.len();
|
|
proof.resize(old_proof_len + next_chunk, 0);
|
|
reader.read_exact(&mut proof[old_proof_len ..])?;
|
|
}
|
|
|
|
Ok(Commitments { proof })
|
|
}
|
|
|
|
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
|
writer.write_all(&u32::try_from(self.proof.len()).unwrap().to_le_bytes())?;
|
|
writer.write_all(&self.proof)?;
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn polynomial<F: PrimeField + Zeroize>(
|
|
coefficients: &[Zeroizing<F>],
|
|
l: Participant,
|
|
) -> Zeroizing<F> {
|
|
let l = F::from(u64::from(u16::from(l)));
|
|
// This should never be reached since Participant is explicitly non-zero
|
|
assert!(l != F::ZERO, "zero participant passed to polynomial");
|
|
let mut share = Zeroizing::new(F::ZERO);
|
|
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
|
|
*share += coefficient.deref();
|
|
if idx != (coefficients.len() - 1) {
|
|
*share *= l;
|
|
}
|
|
}
|
|
share
|
|
}
|
|
|
|
/// Struct to perform/verify the DKG with.
|
|
#[derive(Debug, Zeroize)]
|
|
pub struct EvrfDkg;
|
|
|
|
enum AccumulationStrategy<C: EvrfCurve> {
|
|
#[rustfmt::skip]
|
|
WaitingForThreshold {
|
|
pending_verification: HashMap<Participant, (Commitments, Zeroizing<C::F>)>,
|
|
},
|
|
Incremental {
|
|
accumulated: HashMap<Participant, (Vec<C::G>, Zeroizing<C::F>)>,
|
|
},
|
|
}
|
|
|
|
struct EvrfAccumulatorCore<'a, C: EvrfCurve> {
|
|
generators: &'a Generators<C>,
|
|
evrf_public_keys: Vec<<C::EmbeddedCurve as Ciphersuite>::G>,
|
|
context: [u8; 32],
|
|
params: ThresholdParams,
|
|
}
|
|
|
|
pub struct EvrfAccumulator<'a, C: EvrfCurve> {
|
|
core: EvrfAccumulatorCore<'a, C>,
|
|
|
|
encryption: Encryption<C::EmbeddedCurve>,
|
|
|
|
our_commitments: Vec<C::G>,
|
|
accumulation: AccumulationStrategy<C>,
|
|
resulting_share: Zeroizing<C::F>,
|
|
}
|
|
|
|
pub struct EvrfShare<C: EvrfCurve> {
|
|
commitments: Commitments,
|
|
shares: HashMap<Participant, EncryptedMessage<C::EmbeddedCurve, SecretShare<C::F>>>,
|
|
}
|
|
|
|
impl EvrfDkg {
|
|
/// Participate in performing the DKG for the specified parameters.
|
|
///
|
|
/// The context MUST be unique across invocations. Reuse of context will lead to sharing
|
|
/// prior-shared secrets.
|
|
// TODO: Have this return an accumulator
|
|
pub fn share<'a, C: EvrfCurve>(
|
|
rng: &mut (impl RngCore + CryptoRng),
|
|
generators: &'a Generators<C>,
|
|
evrf_public_keys: Vec<<C::EmbeddedCurve as Ciphersuite>::G>,
|
|
context: [u8; 32],
|
|
params: ThresholdParams,
|
|
evrf_private_key: Zeroizing<<C::EmbeddedCurve as Ciphersuite>::F>,
|
|
) -> Result<(EvrfAccumulator<'a, C>, EvrfShare<C>), AcError>
|
|
where
|
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G:
|
|
DivisorCurve<FieldElement = <C as Ciphersuite>::F>,
|
|
{
|
|
// TODO: Confirm `n` == the amount of evrf_public_keys
|
|
// TODO: Confirm evrf_public_keys[i] == evrf_private_key * G
|
|
// TODO: Hash context to include the list of public keys
|
|
|
|
let EvrfProveResult { scalars, proof } =
|
|
Evrf::prove(rng, generators, evrf_private_key.clone(), context, usize::from(params.t()))?;
|
|
|
|
/*
|
|
We reuse the eVRF key for receiving encrypted messages.
|
|
|
|
For encrypting to other parties, we use a randomly generated ephemeral key, so there's no
|
|
risk there.
|
|
|
|
When decrypting, we calculcate the ECDH of our private key with the ephemeral public key. If
|
|
the decryption fails, we publish the ECDH with a proof. If the ephemeral public key is one
|
|
of the eVRF points, this would leak a secret. Since ephemeral public keys must be associated
|
|
with PoKs for their discrete logarithms, and the eVRF points have unknown discrete
|
|
logarithms, this is still secure.
|
|
*/
|
|
let mut encryption = Encryption::new(context, params.i(), evrf_private_key);
|
|
for (i, evrf_public_key) in evrf_public_keys.iter().enumerate() {
|
|
encryption
|
|
.register(Participant::new(u16::try_from(i + 1).unwrap()).unwrap(), *evrf_public_key);
|
|
}
|
|
|
|
let mut resulting_share = None;
|
|
let mut shares = HashMap::new();
|
|
for l in (1 ..= params.n()).map(Participant) {
|
|
let share = polynomial::<C::F>(&scalars, l);
|
|
|
|
// Don't insert our own share as we don't need to send out our own share
|
|
if l == params.i() {
|
|
resulting_share = Some(share);
|
|
continue;
|
|
}
|
|
|
|
let share_bytes = Zeroizing::new(SecretShare::<C::F>(share.to_repr()));
|
|
shares.insert(l, encryption.encrypt(rng, l, share_bytes));
|
|
}
|
|
|
|
let accumulator = EvrfAccumulator {
|
|
core: EvrfAccumulatorCore { generators, evrf_public_keys, context, params },
|
|
|
|
encryption,
|
|
|
|
our_commitments: scalars.iter().map(|scalar| C::generator() * **scalar).collect(),
|
|
accumulation: AccumulationStrategy::WaitingForThreshold {
|
|
pending_verification: HashMap::new(),
|
|
},
|
|
resulting_share: resulting_share.unwrap(),
|
|
};
|
|
Ok((accumulator, EvrfShare { commitments: Commitments { proof }, shares }))
|
|
}
|
|
}
|
|
|
|
fn exponential<C: Ciphersuite>(i: Participant, values: &[C::G]) -> C::G {
|
|
let i = C::F::from(u16::from(i).into());
|
|
let mut res = Vec::with_capacity(values.len());
|
|
(0 .. values.len()).fold(C::F::ONE, |exp, l| {
|
|
res.push((exp, values[l]));
|
|
exp * i
|
|
});
|
|
multiexp_vartime(&res)
|
|
}
|
|
|
|
struct Blame;
|
|
|
|
impl<'a, C: EvrfCurve> EvrfAccumulatorCore<'a, C>
|
|
where
|
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G:
|
|
DivisorCurve<FieldElement = <C as Ciphersuite>::F>,
|
|
{
|
|
fn verify_evrf(
|
|
&mut self,
|
|
rng: &mut (impl RngCore + CryptoRng),
|
|
verifier: &mut BatchVerifier<C>,
|
|
from: Participant,
|
|
commitments: &Commitments,
|
|
) -> Result<Vec<C::G>, ()> {
|
|
// TODO: Verify from is in-range and distinct from params.i()
|
|
let from_public_key = self.evrf_public_keys[usize::from(u16::from(from) - 1)];
|
|
Evrf::verify(
|
|
rng,
|
|
self.generators,
|
|
verifier,
|
|
from_public_key,
|
|
self.context,
|
|
usize::from(self.params.t()),
|
|
&commitments.proof,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl<'a, C: EvrfCurve> EvrfAccumulator<'a, C>
|
|
where
|
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G:
|
|
DivisorCurve<FieldElement = <C as Ciphersuite>::F>,
|
|
{
|
|
/// Verify a secret sharing.
|
|
pub fn accumulate(
|
|
&mut self,
|
|
rng: &mut (impl RngCore + CryptoRng),
|
|
from: Participant,
|
|
commitments: Commitments,
|
|
share: EncryptedMessage<C::EmbeddedCurve, SecretShare<C::F>>,
|
|
) -> Vec<Blame> {
|
|
// TODO: Confirm `n` == the amount of evrf_public_keys
|
|
// TODO: Confirm evrf_public_keys[i] == evrf_private_key * G
|
|
// TODO: Hash context to include the list of public keys
|
|
// TODO: Check not prior accumulated
|
|
|
|
// This uses an ephemeral BatchVerifier as if we verify an invalid proof, it'll corrupt the
|
|
// BatchVerifier. If we tried to form a BatchVerifier, it'd need reconstruction on such error,
|
|
// increasing complexity and opening potential DoS vectors
|
|
let mut ephemeral_verifier = self.core.generators.batch_verifier();
|
|
let Ok(actual_commitments) =
|
|
self.core.verify_evrf(rng, &mut ephemeral_verifier, from, &commitments)
|
|
else {
|
|
return vec![Blame];
|
|
};
|
|
|
|
// Decrypt the share
|
|
let mut batch = multiexp::BatchVerifier::new(1);
|
|
let (mut share_bytes, blame) = self.encryption.decrypt(rng, &mut batch, (), from, share);
|
|
let Some(share) = Option::<C::F>::from(C::F::from_repr(share_bytes.0)) else {
|
|
return vec![Blame];
|
|
};
|
|
let share = Zeroizing::new(share);
|
|
share_bytes.zeroize();
|
|
|
|
if exponential::<C>(self.core.params.i(), &actual_commitments) !=
|
|
(self.core.generators.g() * *share)
|
|
{
|
|
return vec![Blame];
|
|
}
|
|
|
|
match &mut self.accumulation {
|
|
AccumulationStrategy::WaitingForThreshold { ref mut pending_verification } => {
|
|
pending_verification.insert(from, (commitments, share));
|
|
|
|
// If we now have the necessary threshold to consider this DKG as having succeeded, verify
|
|
// the proofs with a batch verification
|
|
if pending_verification.len() == usize::from(self.core.params.t()) {
|
|
let mut batch_verifier = self.core.generators.batch_verifier();
|
|
let mut all_pending_verification = HashMap::new();
|
|
for (participant, (commitments, share)) in &mut *pending_verification {
|
|
let actual_commitments = self
|
|
.core
|
|
.verify_evrf(rng, &mut batch_verifier, *participant, commitments)
|
|
.expect("prior verified evrf proof now errors upon verification");
|
|
all_pending_verification.insert(*participant, (actual_commitments, share.clone()));
|
|
}
|
|
|
|
if self.core.generators.verify(batch_verifier) {
|
|
// If the verification succeeded, marked the proofs pending verification as accumulated
|
|
self.accumulation =
|
|
AccumulationStrategy::Incremental { accumulated: all_pending_verification };
|
|
} else {
|
|
// Find the faulty proof(s)
|
|
let mut accumulated = HashMap::new();
|
|
let mut blames = vec![];
|
|
for (participant, (commitments, share)) in &mut *pending_verification {
|
|
let mut verifier = self.core.generators.batch_verifier();
|
|
let actual_commitments = self
|
|
.core
|
|
.verify_evrf(rng, &mut verifier, *participant, commitments)
|
|
.expect("prior verified evrf proof now errors upon verification");
|
|
if self.core.generators.verify(verifier) {
|
|
accumulated.insert(*participant, (actual_commitments, share.clone()));
|
|
} else {
|
|
blames.push(Blame);
|
|
}
|
|
}
|
|
self.accumulation = AccumulationStrategy::Incremental { accumulated };
|
|
|
|
// Now that we've marked all proofs as accumulated/faulty, return the blame
|
|
return blames;
|
|
}
|
|
}
|
|
}
|
|
AccumulationStrategy::Incremental { ref mut accumulated } => {
|
|
if self.core.generators.verify(ephemeral_verifier) {
|
|
accumulated.insert(from, (actual_commitments, share));
|
|
} else {
|
|
return vec![Blame];
|
|
}
|
|
}
|
|
}
|
|
|
|
vec![]
|
|
}
|
|
|
|
#[allow(clippy::needless_pass_by_value)]
|
|
pub fn process_blame(&mut self, blame: Blame) {
|
|
todo!("TODO");
|
|
}
|
|
|
|
pub fn introspect_group_key(&self) -> Result<C::G, ()> {
|
|
let AccumulationStrategy::Incremental { accumulated } = &self.accumulation else { Err(())? };
|
|
if (1 + accumulated.len()) < usize::from(self.core.params.t()) {
|
|
Err(())?
|
|
}
|
|
Ok(
|
|
accumulated.values().map(|(commitments, _)| commitments[0]).sum::<C::G>() +
|
|
self.our_commitments[0],
|
|
)
|
|
}
|
|
|
|
/// Finish accumulation.
|
|
pub fn complete(mut self) -> Result<ThresholdCore<C>, ()> {
|
|
let AccumulationStrategy::Incremental { accumulated } = self.accumulation else { Err(())? };
|
|
|
|
if (1 + accumulated.len()) < usize::from(self.core.params.t()) {
|
|
Err(())?
|
|
}
|
|
|
|
let commitments = accumulated
|
|
.values()
|
|
.map(|(commitments, _)| commitments)
|
|
.chain(core::iter::once(&self.our_commitments));
|
|
// Stripe commitments per t and sum them in advance
|
|
// Calculating verification shares relies on these sums so preprocessing them is a massive
|
|
// speedup
|
|
let mut stripes = Vec::with_capacity(usize::from(self.core.params.t()));
|
|
for t in 0 .. usize::from(self.core.params.t()) {
|
|
stripes.push(commitments.clone().map(|commitments| commitments[t]).sum());
|
|
}
|
|
|
|
// Calculate each user's verification share
|
|
let mut verification_shares = HashMap::new();
|
|
for i in (1 ..= self.core.params.n()).map(Participant) {
|
|
verification_shares.insert(i, exponential::<C>(i, &stripes));
|
|
}
|
|
|
|
for (_, share) in accumulated.values() {
|
|
*self.resulting_share += **share;
|
|
}
|
|
Ok(ThresholdCore {
|
|
params: self.core.params,
|
|
secret_share: self.resulting_share,
|
|
group_key: stripes[0],
|
|
verification_shares,
|
|
})
|
|
}
|
|
}
|