Files
serai/networks/monero/wallet/src/send/tx.rs
Luke Parker a5f4c450c6 Response to usage of unwrap in non-test code
This commit replaces all usage of `unwrap` with `expect` within
`networks/monero`, clarifying why the panic risked is unreachable. This commit
also replaces some uses of `unwrap` with solutions which are guaranteed not to
fail.

Notably, compilation on 128-bit systems is prevented, ensuring
`u64::try_from(usize::MAX)` will never panic at runtime.

Slight breaking changes are additionally included as necessary to massage out
some avoidable panics.
2025-08-12 01:27:28 -04:00

339 lines
12 KiB
Rust

use std_shims::{vec, vec::Vec};
use curve25519_dalek::{
constants::{ED25519_BASEPOINT_POINT, ED25519_BASEPOINT_TABLE},
Scalar, EdwardsPoint,
};
use crate::{
io::{varint_len, write_varint},
primitives::Commitment,
ringct::{
clsag::Clsag, bulletproofs::Bulletproof, EncryptedAmount, RctType, RctBase, RctPrunable,
RctProofs,
},
transaction::{Input, Output, Timelock, TransactionPrefix, Transaction},
extra::{ARBITRARY_DATA_MARKER, PaymentId, Extra},
send::{InternalPayment, SignableTransaction, SignableTransactionWithKeyImages},
};
impl SignableTransaction {
// Output the inputs for this transaction.
pub(crate) fn inputs(&self, key_images: &[EdwardsPoint]) -> Vec<Input> {
debug_assert_eq!(self.inputs.len(), key_images.len());
let mut res = Vec::with_capacity(self.inputs.len());
for (input, key_image) in self.inputs.iter().zip(key_images) {
res.push(Input::ToKey {
amount: None,
key_offsets: input.decoys().offsets().to_vec(),
key_image: *key_image,
});
}
res
}
// Output the outputs for this transaction.
pub(crate) fn outputs(&self, key_images: &[EdwardsPoint]) -> Vec<Output> {
let shared_key_derivations = self.shared_key_derivations(key_images);
debug_assert_eq!(self.payments.len(), shared_key_derivations.len());
let mut res = Vec::with_capacity(self.payments.len());
for (payment, shared_key_derivations) in self.payments.iter().zip(&shared_key_derivations) {
let key =
(&shared_key_derivations.shared_key * ED25519_BASEPOINT_TABLE) + payment.address().spend();
res.push(Output {
key: key.compress(),
amount: None,
view_tag: (match self.rct_type {
RctType::ClsagBulletproof => false,
RctType::ClsagBulletproofPlus => true,
_ => panic!("unsupported RctType"),
})
.then_some(shared_key_derivations.view_tag),
});
}
res
}
// Calculate the TX extra for this transaction.
pub(crate) fn extra(&self) -> Vec<u8> {
let (tx_key, additional_keys) = self.transaction_keys_pub();
debug_assert!(additional_keys.is_empty() || (additional_keys.len() == self.payments.len()));
let payment_id_xors = self.payment_id_xors();
debug_assert_eq!(self.payments.len(), payment_id_xors.len());
let amount_of_keys = 1 + additional_keys.len();
let mut extra = Extra::new(tx_key, additional_keys);
if let Some((id, id_xor)) =
self.payments.iter().zip(&payment_id_xors).find_map(|(payment, payment_id_xor)| {
payment.address().payment_id().map(|id| (id, payment_id_xor))
})
{
let id = (u64::from_le_bytes(id) ^ u64::from_le_bytes(*id_xor)).to_le_bytes();
let mut id_vec = Vec::with_capacity(1 + 8);
PaymentId::Encrypted(id)
.write(&mut id_vec)
.expect("write failed but <Vec as io::Write> doesn't fail");
extra.push_nonce(id_vec);
} else {
/*
If there's no payment ID, we push a dummy (as wallet2 does) to the first payment.
This does cause a random payment ID for the other recipient (a documented fingerprint).
Functionally, random payment IDs should be fine as wallet2 will trigger this same behavior
(a random payment ID being seen by the recipient) with a batch send if one of the recipient
addresses has a payment ID.
The alternative would be to not include any payment ID, fingerprinting to the entire
blockchain this is non-standard wallet software (instead of just a single recipient).
*/
if self.payments.len() == 2 {
let (_, payment_id_xor) = self
.payments
.iter()
.zip(&payment_id_xors)
.find(|(payment, _)| matches!(payment, InternalPayment::Payment(_, _)))
.expect("multiple change outputs?");
let mut id_vec = Vec::with_capacity(1 + 8);
// The dummy payment ID is [0; 8], which when xor'd with the mask, is just the mask
PaymentId::Encrypted(*payment_id_xor)
.write(&mut id_vec)
.expect("write failed but <Vec as io::Write> doesn't fail");
extra.push_nonce(id_vec);
}
}
// Include data if present
for part in &self.data {
let mut arb = vec![ARBITRARY_DATA_MARKER];
arb.extend(part);
extra.push_nonce(arb);
}
let mut serialized = Vec::with_capacity(32 * amount_of_keys);
extra.write(&mut serialized).expect("write failed but <Vec as io::Write> doesn't fail");
serialized
}
pub(crate) fn weight_and_necessary_fee(&self) -> (usize, u64) {
/*
This transaction is variable length to:
- The decoy offsets (fixed)
- The TX extra (variable to key images, requiring an interactive protocol)
Thankfully, the TX extra *length* is fixed. Accordingly, we can calculate the inevitable TX's
weight at this time with a shimmed transaction.
*/
let base_weight = {
let mut key_images = Vec::with_capacity(self.inputs.len());
let mut clsags = Vec::with_capacity(self.inputs.len());
let mut pseudo_outs = Vec::with_capacity(self.inputs.len());
for _ in &self.inputs {
key_images.push(ED25519_BASEPOINT_POINT);
clsags.push(Clsag {
D: ED25519_BASEPOINT_POINT,
s: vec![
Scalar::ZERO;
match self.rct_type {
RctType::ClsagBulletproof => 11,
RctType::ClsagBulletproofPlus => 16,
_ => unreachable!("unsupported RCT type"),
}
],
c1: Scalar::ZERO,
});
pseudo_outs.push(ED25519_BASEPOINT_POINT);
}
let mut encrypted_amounts = Vec::with_capacity(self.payments.len());
let mut bp_commitments = Vec::with_capacity(self.payments.len());
let mut commitments = Vec::with_capacity(self.payments.len());
for _ in &self.payments {
encrypted_amounts.push(EncryptedAmount::Compact { amount: [0; 8] });
bp_commitments.push(Commitment::zero());
commitments.push(ED25519_BASEPOINT_POINT);
}
let padded_log2 = {
let mut log2_find = 0;
while (1 << log2_find) < self.payments.len() {
log2_find += 1;
}
log2_find
};
// This is log2 the padded amount of IPA rows
// We have 64 rows per commitment, so we need 64 * c IPA rows
// We rewrite this as 2**6 * c
// By finding the padded log2 of c, we get 2**6 * 2**p
// This declares the log2 to be 6 + p
let lr_len = 6 + padded_log2;
let bulletproof = match self.rct_type {
RctType::ClsagBulletproof => {
let mut bp = Vec::with_capacity(((9 + (2 * lr_len)) * 32) + 2);
let push_point = |bp: &mut Vec<u8>| {
bp.push(1);
bp.extend([0; 31]);
};
let push_scalar = |bp: &mut Vec<u8>| bp.extend([0; 32]);
for _ in 0 .. 4 {
push_point(&mut bp);
}
for _ in 0 .. 2 {
push_scalar(&mut bp);
}
for _ in 0 .. 2 {
write_varint(&lr_len, &mut bp)
.expect("write failed but <Vec as io::Write> doesn't fail");
for _ in 0 .. lr_len {
push_point(&mut bp);
}
}
for _ in 0 .. 3 {
push_scalar(&mut bp);
}
Bulletproof::read(&mut bp.as_slice()).expect("made an invalid dummy BP")
}
RctType::ClsagBulletproofPlus => {
let mut bp = Vec::with_capacity(((6 + (2 * lr_len)) * 32) + 2);
let push_point = |bp: &mut Vec<u8>| {
bp.push(1);
bp.extend([0; 31]);
};
let push_scalar = |bp: &mut Vec<u8>| bp.extend([0; 32]);
for _ in 0 .. 3 {
push_point(&mut bp);
}
for _ in 0 .. 3 {
push_scalar(&mut bp);
}
for _ in 0 .. 2 {
write_varint(&lr_len, &mut bp)
.expect("write failed but <Vec as io::Write> doesn't fail");
for _ in 0 .. lr_len {
push_point(&mut bp);
}
}
Bulletproof::read_plus(&mut bp.as_slice()).expect("made an invalid dummy BP+")
}
_ => panic!("unsupported RctType"),
};
// `- 1` to remove the one byte for the 0 fee
Transaction::V2 {
prefix: TransactionPrefix {
additional_timelock: Timelock::None,
inputs: self.inputs(&key_images),
outputs: self.outputs(&key_images),
extra: self.extra(),
},
proofs: Some(RctProofs {
base: RctBase { fee: 0, encrypted_amounts, pseudo_outs: vec![], commitments },
prunable: RctPrunable::Clsag { bulletproof, clsags, pseudo_outs },
}),
}
.weight() -
1
};
// We now have the base weight, without the fee encoded
// The fee itself will impact the weight as its encoding is [1, 9] bytes long
let mut possible_weights = Vec::with_capacity(9);
for i in 1 ..= 9 {
possible_weights.push(base_weight + i);
}
debug_assert_eq!(possible_weights.len(), 9);
// We now calculate the fee which would be used for each weight
let mut possible_fees = Vec::with_capacity(9);
for weight in possible_weights {
possible_fees.push(self.fee_rate.calculate_fee_from_weight(weight));
}
// We now look for the fee whose length matches the length used to derive it
let mut weight_and_fee = None;
for (fee_len, possible_fee) in possible_fees.into_iter().enumerate() {
let fee_len = 1 + fee_len;
debug_assert!(1 <= fee_len);
debug_assert!(fee_len <= 9);
// We use the first fee whose encoded length is not larger than the length used within this
// weight
// This should be because the lengths are equal, yet means if somehow none are equal, this
// will still terminate successfully
if varint_len(possible_fee) <= fee_len {
weight_and_fee = Some((base_weight + fee_len, possible_fee));
break;
}
}
weight_and_fee
.expect("length of highest possible fee was greater than highest possible fee length")
}
}
impl SignableTransactionWithKeyImages {
pub(crate) fn transaction_without_signatures(&self) -> Transaction {
let commitments_and_encrypted_amounts =
self.intent.commitments_and_encrypted_amounts(&self.key_images);
let mut commitments = Vec::with_capacity(self.intent.payments.len());
let mut bp_commitments = Vec::with_capacity(self.intent.payments.len());
let mut encrypted_amounts = Vec::with_capacity(self.intent.payments.len());
for (commitment, encrypted_amount) in commitments_and_encrypted_amounts {
commitments.push(commitment.calculate());
bp_commitments.push(commitment);
encrypted_amounts.push(encrypted_amount);
}
let bulletproof = {
let mut bp_rng = self.intent.seeded_rng(b"bulletproof");
(match self.intent.rct_type {
RctType::ClsagBulletproof => Bulletproof::prove(&mut bp_rng, bp_commitments),
RctType::ClsagBulletproofPlus => Bulletproof::prove_plus(&mut bp_rng, bp_commitments),
_ => panic!("unsupported RctType"),
})
.expect("couldn't prove BP(+)s for this many payments despite checking in constructor?")
};
Transaction::V2 {
prefix: TransactionPrefix {
additional_timelock: Timelock::None,
inputs: self.intent.inputs(&self.key_images),
outputs: self.intent.outputs(&self.key_images),
extra: self.intent.extra(),
},
proofs: Some(RctProofs {
base: RctBase {
fee: if self
.intent
.payments
.iter()
.any(|payment| matches!(payment, InternalPayment::Change(_)))
{
// The necessary fee is the fee
self.intent.weight_and_necessary_fee().1
} else {
// If we don't have a change output, the difference is the fee
let inputs =
self.intent.inputs.iter().map(|input| input.commitment().amount).sum::<u64>();
let payments = self
.intent
.payments
.iter()
.filter_map(|payment| match payment {
InternalPayment::Payment(_, amount) => Some(amount),
InternalPayment::Change(_) => None,
})
.sum::<u64>();
// Safe since the constructor checks inputs >= (payments + fee)
inputs - payments
},
encrypted_amounts,
pseudo_outs: vec![],
commitments,
},
prunable: RctPrunable::Clsag { bulletproof, clsags: vec![], pseudo_outs: vec![] },
}),
}
}
}