Files
serai/coins/monero/src/wallet/send/multisig.rs
Luke Parker d611300adb Error when the wrong spend key is used to sign a transaction
Moves decoy selection to being the last step in the multisig process so 
the RPC is only polled to continue valid transactions.
2022-06-09 04:05:57 -04:00

334 lines
12 KiB
Rust

use std::{sync::{Arc, RwLock}, collections::HashMap};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha12Rng;
use curve25519_dalek::{traits::Identity, scalar::Scalar, edwards::{EdwardsPoint, CompressedEdwardsY}};
use transcript::Transcript as TranscriptTrait;
use frost::{FrostError, MultisigKeys, MultisigParams, sign::{State, StateMachine, AlgorithmMachine}};
use crate::{
frost::{Transcript, Ed25519},
random_scalar, ringct::{clsag::{ClsagInput, ClsagDetails, ClsagMultisig}, bulletproofs::Bulletproofs, RctPrunable},
transaction::{Input, Transaction},
rpc::Rpc,
wallet::{TransactionError, SignableTransaction, Decoys, key_image_sort, uniqueness}
};
pub struct TransactionMachine {
signable: SignableTransaction,
i: u16,
included: Vec<u16>,
transcript: Transcript,
decoys: Vec<Decoys>,
our_preprocess: Vec<u8>,
images: Vec<EdwardsPoint>,
output_masks: Option<Scalar>,
inputs: Vec<Arc<RwLock<Option<ClsagDetails>>>>,
clsags: Vec<AlgorithmMachine<Ed25519, ClsagMultisig>>,
tx: Option<Transaction>
}
impl SignableTransaction {
pub async fn multisig<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
rpc: &Rpc,
keys: MultisigKeys<Ed25519>,
mut transcript: Transcript,
height: usize,
mut included: Vec<u16>
) -> Result<TransactionMachine, TransactionError> {
let mut images = vec![];
images.resize(self.inputs.len(), EdwardsPoint::identity());
let mut inputs = vec![];
for _ in 0 .. self.inputs.len() {
// Doesn't resize as that will use a single Rc for the entire Vec
inputs.push(Arc::new(RwLock::new(None)));
}
let mut clsags = vec![];
// Create a RNG out of the input shared keys, which either requires the view key or being every
// sender, and the payments (address and amount), which a passive adversary may be able to know
// depending on how these transactions are coordinated
// Being every sender would already let you note rings which happen to use your transactions
// multiple times, already breaking privacy there
transcript.domain_separate(b"monero_transaction");
// Include the height we're using for our data
// The data itself will be included, making this unnecessary, yet a lot of this is technically
// unnecessary. Anything which further increases security at almost no cost should be followed
transcript.append_message(b"height", &u64::try_from(height).unwrap().to_le_bytes());
// Also include the spend_key as below only the key offset is included, so this confirms the sum product
// Useful as confirming the sum product confirms the key image, further guaranteeing the one time
// properties noted below
transcript.append_message(b"spend_key", &keys.group_key().0.compress().to_bytes());
for input in &self.inputs {
// These outputs can only be spent once. Therefore, it forces all RNGs derived from this
// transcript (such as the one used to create one time keys) to be unique
transcript.append_message(b"input_hash", &input.tx);
transcript.append_message(b"input_output_index", &[input.o]);
// Not including this, with a doxxed list of payments, would allow brute forcing the inputs
// to determine RNG seeds and therefore the true spends
transcript.append_message(b"input_shared_key", &input.key_offset.to_bytes());
}
for payment in &self.payments {
transcript.append_message(b"payment_address", &payment.0.as_bytes());
transcript.append_message(b"payment_amount", &payment.1.to_le_bytes());
}
transcript.append_message(b"change", &self.change.as_bytes());
// Sort included before cloning it around
included.sort_unstable();
for (i, input) in self.inputs.iter().enumerate() {
// Check this the right set of keys
let offset = keys.offset(dalek_ff_group::Scalar(input.key_offset));
if offset.group_key().0 != input.key {
Err(TransactionError::WrongPrivateKey)?;
}
clsags.push(
AlgorithmMachine::new(
ClsagMultisig::new(
transcript.clone(),
inputs[i].clone()
).map_err(|e| TransactionError::MultisigError(e))?,
Arc::new(offset),
&included
).map_err(|e| TransactionError::FrostError(e))?
);
}
// Verify these outputs by a dummy prep
self.prepare_outputs(rng, [0; 32])?;
// Select decoys
// Ideally, this would be done post entropy, instead of now, yet doing so would require sign
// to be async which isn't preferable. This should be suitably competent though
// While this inability means we can immediately create the input, moving it out of the
// Arc RwLock, keeping it within an Arc RwLock keeps our options flexible
let decoys = Decoys::select(
// Using a seeded RNG with a specific height, committed to above, should make these decoys
// committed to. They'll also be committed to later via the TX message as a whole
&mut ChaCha12Rng::from_seed(transcript.rng_seed(b"decoys")),
rpc,
height,
&self.inputs
).await.map_err(|e| TransactionError::RpcError(e))?;
Ok(TransactionMachine {
signable: self,
i: keys.params().i(),
included,
transcript,
decoys,
our_preprocess: vec![],
images,
output_masks: None,
inputs,
clsags,
tx: None
})
}
}
impl StateMachine for TransactionMachine {
type Signature = Transaction;
fn preprocess<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R
) -> Result<Vec<u8>, FrostError> {
if self.state() != State::Fresh {
Err(FrostError::InvalidSignTransition(State::Fresh, self.state()))?;
}
// Iterate over each CLSAG calling preprocess
let mut serialized = Vec::with_capacity(self.clsags.len() * (64 + ClsagMultisig::serialized_len()));
for clsag in self.clsags.iter_mut() {
serialized.extend(&clsag.preprocess(rng)?);
}
self.our_preprocess = serialized.clone();
// We could add further entropy here, and previous versions of this library did so
// As of right now, the multisig's key, the inputs being spent, and the FROST data itself
// will be used for RNG seeds. In order to recreate these RNG seeds, breaking privacy,
// counterparties must have knowledge of the multisig, either the view key or access to the
// coordination layer, and then access to the actual FROST signing process
// If the commitments are sent in plain text, then entropy here also would be, making it not
// increase privacy. If they're not sent in plain text, or are otherwise inaccessible, they
// already offer sufficient entropy. That's why further entropy is not included
Ok(serialized)
}
fn sign(
&mut self,
mut commitments: HashMap<u16, Vec<u8>>,
// Drop FROST's 'msg' since we calculate the actual message in this function
_: &[u8]
) -> Result<Vec<u8>, FrostError> {
if self.state() != State::Preprocessed {
Err(FrostError::InvalidSignTransition(State::Preprocessed, self.state()))?;
}
// Add all commitments to the transcript for their entropy
// While each CLSAG will do this as they need to for security, they have their own transcripts
// cloned from this TX's initial premise's transcript. For our TX transcript to have the CLSAG
// data for entropy, it'll have to be added ourselves
commitments.insert(self.i, self.our_preprocess.clone());
for l in &self.included {
self.transcript.append_message(b"participant", &(*l).to_be_bytes());
// FROST itself will error if this is None, so let it
if let Some(preprocess) = commitments.get(l) {
self.transcript.append_message(b"preprocess", preprocess);
}
}
// FROST commitments, image, H commitments, and their proofs
let clsag_len = 64 + ClsagMultisig::serialized_len();
let mut commitments = (0 .. self.clsags.len()).map(|c| commitments.iter().map(
|(l, commitments)| (*l, commitments[(c * clsag_len) .. ((c + 1) * clsag_len)].to_vec())
).collect::<HashMap<_, _>>()).collect::<Vec<_>>();
for c in 0 .. self.clsags.len() {
// Calculate the key images
// Multisig will parse/calculate/validate this as needed, yet doing so here as well provides
// the easiest API overall, as this is where the TX is (which needs the key images in its
// message), along with where the outputs are determined (where our change output needs these
// to be unique)
for (l, preprocess) in &commitments[c] {
self.images[c] += CompressedEdwardsY(
preprocess[64 .. 96].try_into().map_err(|_| FrostError::InvalidCommitment(*l))?
).decompress().ok_or(FrostError::InvalidCommitment(*l))?;
}
}
// Create the actual transaction
let mut tx = {
// Calculate uniqueness
let mut images = self.images.clone();
images.sort_by(key_image_sort);
// Not invalid outputs due to already doing a dummy prep
let (commitments, output_masks) = self.signable.prepare_outputs(
&mut ChaCha12Rng::from_seed(self.transcript.rng_seed(b"tx_keys")),
uniqueness(
&images.iter().map(|image| Input::ToKey {
amount: 0,
key_offsets: vec![],
key_image: *image
}).collect::<Vec<_>>()
)
).expect("Couldn't prepare outputs despite already doing a dummy prep");
self.output_masks = Some(output_masks);
self.signable.prepare_transaction(
&commitments,
Bulletproofs::new(
&mut ChaCha12Rng::from_seed(self.transcript.rng_seed(b"bulletproofs")),
&commitments
).unwrap()
)
};
let mut sorted = Vec::with_capacity(self.decoys.len());
while self.decoys.len() != 0 {
sorted.push((
self.signable.inputs.swap_remove(0),
self.decoys.swap_remove(0),
self.images.swap_remove(0),
self.inputs.swap_remove(0),
self.clsags.swap_remove(0),
commitments.swap_remove(0)
));
}
sorted.sort_by(|x, y| x.2.compress().to_bytes().cmp(&y.2.compress().to_bytes()).reverse());
let mut rng = ChaCha12Rng::from_seed(self.transcript.rng_seed(b"pseudo_out_masks"));
let mut sum_pseudo_outs = Scalar::zero();
while sorted.len() != 0 {
let value = sorted.remove(0);
let mut mask = random_scalar(&mut rng);
if sorted.len() == 0 {
mask = self.output_masks.unwrap() - sum_pseudo_outs;
} else {
sum_pseudo_outs += mask;
}
tx.prefix.inputs.push(
Input::ToKey {
amount: 0,
key_offsets: value.1.offsets.clone(),
key_image: value.2
}
);
*value.3.write().unwrap() = Some(
ClsagDetails::new(
ClsagInput::new(
value.0.commitment,
value.1
).map_err(|_| panic!("Signing an input which isn't present in the ring we created for it"))?,
mask
)
);
self.clsags.push(value.4);
commitments.push(value.5);
}
let msg = tx.signature_hash();
self.tx = Some(tx);
// Iterate over each CLSAG calling sign
let mut serialized = Vec::with_capacity(self.clsags.len() * 32);
for clsag in self.clsags.iter_mut() {
serialized.extend(&clsag.sign(commitments.remove(0), &msg)?);
}
Ok(serialized)
}
fn complete(&mut self, shares: HashMap<u16, Vec<u8>>) -> Result<Transaction, FrostError> {
if self.state() != State::Signed {
Err(FrostError::InvalidSignTransition(State::Signed, self.state()))?;
}
let mut tx = self.tx.take().unwrap();
match tx.rct_signatures.prunable {
RctPrunable::Null => panic!("Signing for RctPrunable::Null"),
RctPrunable::Clsag { ref mut clsags, ref mut pseudo_outs, .. } => {
for (c, clsag) in self.clsags.iter_mut().enumerate() {
let (clsag, pseudo_out) = clsag.complete(shares.iter().map(
|(l, shares)| (*l, shares[(c * 32) .. ((c + 1) * 32)].to_vec())
).collect::<HashMap<_, _>>())?;
clsags.push(clsag);
pseudo_outs.push(pseudo_out);
}
}
}
Ok(tx)
}
fn multisig_params(&self) -> MultisigParams {
self.clsags[0].multisig_params()
}
fn state(&self) -> State {
self.clsags[0].state()
}
}