Files
serai/networks/ethereum/schnorr/src/tests/premise.rs
2024-10-28 18:08:31 -04:00

109 lines
3.8 KiB
Rust

use rand_core::{RngCore, OsRng};
use sha3::{Digest, Keccak256};
use group::ff::{Field, PrimeField};
use k256::{
elliptic_curve::{ops::Reduce, point::AffineCoordinates, sec1::ToEncodedPoint},
ecdsa::{
self, hazmat::SignPrimitive, signature::hazmat::PrehashVerifier, SigningKey, VerifyingKey,
},
U256, Scalar, ProjectivePoint,
};
use alloy_core::primitives::Address;
use crate::{Signature, tests::test_key};
// The ecrecover opcode, yet with if the y is odd replacing v
fn ecrecover(message: Scalar, odd_y: bool, r: Scalar, s: Scalar) -> Option<[u8; 20]> {
let sig = ecdsa::Signature::from_scalars(r, s).ok()?;
let message: [u8; 32] = message.to_repr().into();
alloy_core::primitives::Signature::from_signature_and_parity(
sig,
alloy_core::primitives::Parity::Parity(odd_y),
)
.ok()?
.recover_address_from_prehash(&alloy_core::primitives::B256::from(message))
.ok()
.map(Into::into)
}
// Test ecrecover behaves as expected
#[test]
fn test_ecrecover() {
let private = SigningKey::random(&mut OsRng);
let public = VerifyingKey::from(&private);
// Sign the signature
const MESSAGE: &[u8] = b"Hello, World!";
let (sig, recovery_id) = private
.as_nonzero_scalar()
.try_sign_prehashed(Scalar::random(&mut OsRng), &Keccak256::digest(MESSAGE))
.unwrap();
// Sanity check the signature verifies
#[allow(clippy::unit_cmp)] // Intended to assert this wasn't changed to Result<bool>
{
assert_eq!(public.verify_prehash(&Keccak256::digest(MESSAGE), &sig).unwrap(), ());
}
// Perform the ecrecover
assert_eq!(
ecrecover(
<Scalar as Reduce<U256>>::reduce_bytes(&Keccak256::digest(MESSAGE)),
u8::from(recovery_id.unwrap().is_y_odd()) == 1,
*sig.r(),
*sig.s()
)
.unwrap(),
Address::from_raw_public_key(&public.to_encoded_point(false).as_ref()[1 ..]),
);
}
// Test that we can recover the nonce from a Schnorr signature via a call to ecrecover, the premise
// of efficiently verifying Schnorr signatures in an Ethereum contract
#[test]
fn nonce_recovery_via_ecrecover() {
let (key, public_key) = test_key();
let nonce = Scalar::random(&mut OsRng);
let R = ProjectivePoint::GENERATOR * nonce;
let mut message = vec![0; 1 + usize::try_from(OsRng.next_u32() % 256).unwrap()];
OsRng.fill_bytes(&mut message);
let c = Signature::challenge(R, &public_key, &message);
let s = nonce + (c * key);
/*
An ECDSA signature is `(r, s)` with `s = (m + (r * x)) / k`, where:
- `m` is the hash of the message
- `r` is the x-coordinate of the nonce, reduced into a scalar
- `x` is the private key
- `k` is the nonce
We fix the recovery ID to be for the even key with an x-coordinate < the order. Accordingly,
`k * G = Point::from(Even, r)`. This enables recovering the public key via
`((s * Point::from(Even, r)) - (m * G)) / r`.
We want to calculate `R` from `(c, s)` where `s = r + cx`. That means we need to calculate
`(s * G) - (c * X)`.
We can calculate `(s * G) - (c * X)` with `((s * Point::from(Even, r)) - (m * G)) / r` if:
- ECDSA `r` = `X.x`, the x-coordinate of the Schnorr public key
- ECDSA `s` = `c`, the Schnorr signature's challenge
- ECDSA `m` = Schnorr `s`
This gets us to `((c * X) - (s * G)) / X.x`. If we additionally scale the ECDSA `s, m` values
(the Schnorr `c, s` values) by `X.x`, we get `(c * X) - (s * G)`. This just requires negating
to achieve `(s * G) - (c * X)`.
With `R`, we can recalculate and compare the challenges to confirm the signature is valid.
*/
let x_scalar = <Scalar as Reduce<U256>>::reduce_bytes(&public_key.point().to_affine().x());
let sa = -(s * x_scalar);
let ca = -(c * x_scalar);
let q = ecrecover(sa, false, x_scalar, ca).unwrap();
assert_eq!(q, Address::from_raw_public_key(&R.to_encoded_point(false).as_ref()[1 ..]));
}