Files
serai/coins/monero/src/ringct/clsag/mod.rs
Luke Parker a25e6330bd Remove DLEq proofs from CLSAG multisig
1) Removes the key image DLEq on the Monero side of things, as the produced
   signature share serves as a DLEq for it.
2) Removes the nonce DLEqs from modular-frost as they're unnecessary for
   monero-serai. Updates documentation accordingly.

Without the proof the nonces are internally consistent, the produced signatures
from modular-frost can be argued as a batch-verifiable CP93 DLEq (R0, R1, s),
or as a GSP for the CP93 DLEq statement (which naturally produces (R0, R1, s)).

The lack of proving the nonces consistent does make the process weaker, yet
it's also unnecessary for the class of protocols this is intended to service.
To provide DLEqs for the nonces would be to provide PoKs for the nonce
commitments (in the traditional Schnorr case).
2024-04-21 23:01:32 -04:00

343 lines
10 KiB
Rust

#![allow(non_snake_case)]
use core::ops::Deref;
use std_shims::{
vec::Vec,
io::{self, Read, Write},
};
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use subtle::{ConstantTimeEq, ConditionallySelectable};
use curve25519_dalek::{
constants::{ED25519_BASEPOINT_TABLE, ED25519_BASEPOINT_POINT},
scalar::Scalar,
traits::{IsIdentity, MultiscalarMul, VartimePrecomputedMultiscalarMul},
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation},
};
use crate::{
INV_EIGHT, BASEPOINT_PRECOMP, Commitment, random_scalar, hash_to_scalar, wallet::decoys::Decoys,
ringct::hash_to_point, serialize::*,
};
#[cfg(feature = "multisig")]
mod multisig;
#[cfg(feature = "multisig")]
pub use multisig::{ClsagDetails, ClsagAddendum, ClsagMultisig};
/// Errors returned when CLSAG signing fails.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "std", derive(thiserror::Error))]
pub enum ClsagError {
#[cfg_attr(feature = "std", error("internal error ({0})"))]
InternalError(&'static str),
#[cfg_attr(feature = "std", error("invalid ring"))]
InvalidRing,
#[cfg_attr(feature = "std", error("invalid ring member (member {0}, ring size {1})"))]
InvalidRingMember(u8, u8),
#[cfg_attr(feature = "std", error("invalid commitment"))]
InvalidCommitment,
#[cfg_attr(feature = "std", error("invalid key image"))]
InvalidImage,
#[cfg_attr(feature = "std", error("invalid D"))]
InvalidD,
#[cfg_attr(feature = "std", error("invalid s"))]
InvalidS,
#[cfg_attr(feature = "std", error("invalid c1"))]
InvalidC1,
}
/// Input being signed for.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub struct ClsagInput {
// The actual commitment for the true spend
pub(crate) commitment: Commitment,
// True spend index, offsets, and ring
pub(crate) decoys: Decoys,
}
impl ClsagInput {
pub fn new(commitment: Commitment, decoys: Decoys) -> Result<ClsagInput, ClsagError> {
let n = decoys.len();
if n > u8::MAX.into() {
Err(ClsagError::InternalError("max ring size in this library is u8 max"))?;
}
let n = u8::try_from(n).unwrap();
if decoys.i >= n {
Err(ClsagError::InvalidRingMember(decoys.i, n))?;
}
// Validate the commitment matches
if decoys.ring[usize::from(decoys.i)][1] != commitment.calculate() {
Err(ClsagError::InvalidCommitment)?;
}
Ok(ClsagInput { commitment, decoys })
}
}
#[allow(clippy::large_enum_variant)]
enum Mode {
Sign(usize, EdwardsPoint, EdwardsPoint),
Verify(Scalar),
}
// Core of the CLSAG algorithm, applicable to both sign and verify with minimal differences
// Said differences are covered via the above Mode
fn core(
ring: &[[EdwardsPoint; 2]],
I: &EdwardsPoint,
pseudo_out: &EdwardsPoint,
msg: &[u8; 32],
D: &EdwardsPoint,
s: &[Scalar],
A_c1: &Mode,
) -> ((EdwardsPoint, Scalar, Scalar), Scalar) {
let n = ring.len();
let images_precomp = match A_c1 {
Mode::Sign(..) => None,
Mode::Verify(..) => Some(VartimeEdwardsPrecomputation::new([I, D])),
};
let D_INV_EIGHT = D * INV_EIGHT();
// Generate the transcript
// Instead of generating multiple, a single transcript is created and then edited as needed
const PREFIX: &[u8] = b"CLSAG_";
#[rustfmt::skip]
const AGG_0: &[u8] = b"agg_0";
#[rustfmt::skip]
const ROUND: &[u8] = b"round";
const PREFIX_AGG_0_LEN: usize = PREFIX.len() + AGG_0.len();
let mut to_hash = Vec::with_capacity(((2 * n) + 5) * 32);
to_hash.extend(PREFIX);
to_hash.extend(AGG_0);
to_hash.extend([0; 32 - PREFIX_AGG_0_LEN]);
let mut P = Vec::with_capacity(n);
for member in ring {
P.push(member[0]);
to_hash.extend(member[0].compress().to_bytes());
}
let mut C = Vec::with_capacity(n);
for member in ring {
C.push(member[1] - pseudo_out);
to_hash.extend(member[1].compress().to_bytes());
}
to_hash.extend(I.compress().to_bytes());
to_hash.extend(D_INV_EIGHT.compress().to_bytes());
to_hash.extend(pseudo_out.compress().to_bytes());
// mu_P with agg_0
let mu_P = hash_to_scalar(&to_hash);
// mu_C with agg_1
to_hash[PREFIX_AGG_0_LEN - 1] = b'1';
let mu_C = hash_to_scalar(&to_hash);
// Truncate it for the round transcript, altering the DST as needed
to_hash.truncate(((2 * n) + 1) * 32);
for i in 0 .. ROUND.len() {
to_hash[PREFIX.len() + i] = ROUND[i];
}
// Unfortunately, it's I D pseudo_out instead of pseudo_out I D, meaning this needs to be
// truncated just to add it back
to_hash.extend(pseudo_out.compress().to_bytes());
to_hash.extend(msg);
// Configure the loop based on if we're signing or verifying
let start;
let end;
let mut c;
match A_c1 {
Mode::Sign(r, A, AH) => {
start = r + 1;
end = r + n;
to_hash.extend(A.compress().to_bytes());
to_hash.extend(AH.compress().to_bytes());
c = hash_to_scalar(&to_hash);
}
Mode::Verify(c1) => {
start = 0;
end = n;
c = *c1;
}
}
// Perform the core loop
let mut c1 = c;
for i in (start .. end).map(|i| i % n) {
let c_p = mu_P * c;
let c_c = mu_C * c;
// (s_i * G) + (c_p * P_i) + (c_c * C_i)
let L = match A_c1 {
Mode::Sign(..) => {
EdwardsPoint::multiscalar_mul([s[i], c_p, c_c], [ED25519_BASEPOINT_POINT, P[i], C[i]])
}
Mode::Verify(..) => {
BASEPOINT_PRECOMP().vartime_mixed_multiscalar_mul([s[i]], [c_p, c_c], [P[i], C[i]])
}
};
let PH = hash_to_point(&P[i]);
// (c_p * I) + (c_c * D) + (s_i * PH)
let R = match A_c1 {
Mode::Sign(..) => EdwardsPoint::multiscalar_mul([c_p, c_c, s[i]], [I, D, &PH]),
Mode::Verify(..) => {
images_precomp.as_ref().unwrap().vartime_mixed_multiscalar_mul([c_p, c_c], [s[i]], [PH])
}
};
to_hash.truncate(((2 * n) + 3) * 32);
to_hash.extend(L.compress().to_bytes());
to_hash.extend(R.compress().to_bytes());
c = hash_to_scalar(&to_hash);
// This will only execute once and shouldn't need to be constant time. Making it constant time
// removes the risk of branch prediction creating timing differences depending on ring index
// however
c1.conditional_assign(&c, i.ct_eq(&(n - 1)));
}
// This first tuple is needed to continue signing, the latter is the c to be tested/worked with
((D_INV_EIGHT, c * mu_P, c * mu_C), c1)
}
/// CLSAG signature, as used in Monero.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Clsag {
pub D: EdwardsPoint,
pub s: Vec<Scalar>,
pub c1: Scalar,
}
impl Clsag {
// Sign core is the extension of core as needed for signing, yet is shared between single signer
// and multisig, hence why it's still core
pub(crate) fn sign_core<R: RngCore + CryptoRng>(
rng: &mut R,
I: &EdwardsPoint,
input: &ClsagInput,
mask: Scalar,
msg: &[u8; 32],
A: EdwardsPoint,
AH: EdwardsPoint,
) -> (Clsag, EdwardsPoint, Scalar, Scalar) {
let r: usize = input.decoys.i.into();
let pseudo_out = Commitment::new(mask, input.commitment.amount).calculate();
let z = input.commitment.mask - mask;
let H = hash_to_point(&input.decoys.ring[r][0]);
let D = H * z;
let mut s = Vec::with_capacity(input.decoys.ring.len());
for _ in 0 .. input.decoys.ring.len() {
s.push(random_scalar(rng));
}
let ((D, p, c), c1) =
core(&input.decoys.ring, I, &pseudo_out, msg, &D, &s, &Mode::Sign(r, A, AH));
(Clsag { D, s, c1 }, pseudo_out, p, c * z)
}
/// Generate CLSAG signatures for the given inputs.
/// inputs is of the form (private key, key image, input).
/// sum_outputs is for the sum of the outputs' commitment masks.
pub fn sign<R: RngCore + CryptoRng>(
rng: &mut R,
mut inputs: Vec<(Zeroizing<Scalar>, EdwardsPoint, ClsagInput)>,
sum_outputs: Scalar,
msg: [u8; 32],
) -> Vec<(Clsag, EdwardsPoint)> {
let mut res = Vec::with_capacity(inputs.len());
let mut sum_pseudo_outs = Scalar::ZERO;
for i in 0 .. inputs.len() {
let mut mask = random_scalar(rng);
if i == (inputs.len() - 1) {
mask = sum_outputs - sum_pseudo_outs;
} else {
sum_pseudo_outs += mask;
}
let mut nonce = Zeroizing::new(random_scalar(rng));
let (mut clsag, pseudo_out, p, c) = Clsag::sign_core(
rng,
&inputs[i].1,
&inputs[i].2,
mask,
&msg,
nonce.deref() * ED25519_BASEPOINT_TABLE,
nonce.deref() *
hash_to_point(&inputs[i].2.decoys.ring[usize::from(inputs[i].2.decoys.i)][0]),
);
// Effectively r - cx, except cx is (c_p x) + (c_c z), where z is the delta between a ring
// member's commitment and our input commitment (which will only have a known discrete log
// over G if the amounts cancel out)
clsag.s[usize::from(inputs[i].2.decoys.i)] = nonce.deref() - ((p * inputs[i].0.deref()) + c);
inputs[i].0.zeroize();
nonce.zeroize();
debug_assert!(clsag
.verify(&inputs[i].2.decoys.ring, &inputs[i].1, &pseudo_out, &msg)
.is_ok());
res.push((clsag, pseudo_out));
}
res
}
/// Verify the CLSAG signature against the given Transaction data.
pub fn verify(
&self,
ring: &[[EdwardsPoint; 2]],
I: &EdwardsPoint,
pseudo_out: &EdwardsPoint,
msg: &[u8; 32],
) -> Result<(), ClsagError> {
// Preliminary checks. s, c1, and points must also be encoded canonically, which isn't checked
// here
if ring.is_empty() {
Err(ClsagError::InvalidRing)?;
}
if ring.len() != self.s.len() {
Err(ClsagError::InvalidS)?;
}
if I.is_identity() {
Err(ClsagError::InvalidImage)?;
}
let D = self.D.mul_by_cofactor();
if D.is_identity() {
Err(ClsagError::InvalidD)?;
}
let (_, c1) = core(ring, I, pseudo_out, msg, &D, &self.s, &Mode::Verify(self.c1));
if c1 != self.c1 {
Err(ClsagError::InvalidC1)?;
}
Ok(())
}
pub(crate) fn fee_weight(ring_len: usize) -> usize {
(ring_len * 32) + 32 + 32
}
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
write_raw_vec(write_scalar, &self.s, w)?;
w.write_all(&self.c1.to_bytes())?;
write_point(&self.D, w)
}
pub fn read<R: Read>(decoys: usize, r: &mut R) -> io::Result<Clsag> {
Ok(Clsag { s: read_raw_vec(read_scalar, decoys, r)?, c1: read_scalar(r)?, D: read_point(r)? })
}
}