Files
serai/coins/monero/src/ringct/bulletproofs/scalar_vector.rs
Luke Parker a66994aade Use FCMP implementation of BP+ in monero-serai (#344)
* Add in an implementation of BP+ based off the paper, intended for clarity and review

This was done as part of my work on FCMPs from Monero, and is copied from https://github.com/kayabaNerve/full-chain-membership-proofs

* Remove crate structure of BP+

* Remove arithmetic circuit code

* Remove AC/VC generators code

* Remove generator transcript

Monero uses non-transcripted static generators.

* Further trimming of generators

* Remove the single range proof

It's unused by Monero and accordingly unhelpful.

* Work on getting BP+ to compile in its new env

* Correct BP+ folder name

* Further tweaks to get closer to compiling

* Remove the ScalarMatrix file

It's only used for AC proofs

* Compiles, with tests passing

* Lock BP+ to Ed25519 instead of the generic Ciphersuite

* Resolve most warnings in BP+

* Make existing bulletproofs test easier to read

* Further strip generators

* Swap G/H as Monero did

* Replace RangeCommitment with Commitment

* Hard-code BP+ h to Ed25519's generator

* Use pub(crate) for BP+, not pub

* Replace initial_transcript with hash_plus

* Rename hash_plus to initial_transcript

* Finish integrating the FCMP BP+ impl

* Move BP+ folder

* Correct no-std support

* Rename "long_n" to eta

* Add note on non-prime order dfg points
2023-08-27 15:33:17 -04:00

115 lines
3.0 KiB
Rust

use core::ops::{Add, Sub, Mul, Index};
use std_shims::vec::Vec;
use zeroize::{Zeroize, ZeroizeOnDrop};
use group::ff::Field;
use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::multiexp;
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
pub(crate) struct ScalarVector(pub(crate) Vec<Scalar>);
macro_rules! math_op {
($Op: ident, $op: ident, $f: expr) => {
#[allow(clippy::redundant_closure_call)]
impl $Op<Scalar> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
#[allow(clippy::redundant_closure_call)]
impl $Op<Scalar> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
#[allow(clippy::redundant_closure_call)]
impl $Op<ScalarVector> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
#[allow(clippy::redundant_closure_call)]
impl $Op<&ScalarVector> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: &ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
};
}
math_op!(Add, add, |(a, b): (&Scalar, &Scalar)| *a + *b);
math_op!(Sub, sub, |(a, b): (&Scalar, &Scalar)| *a - *b);
math_op!(Mul, mul, |(a, b): (&Scalar, &Scalar)| *a * *b);
impl ScalarVector {
pub(crate) fn new(len: usize) -> ScalarVector {
ScalarVector(vec![Scalar::ZERO; len])
}
pub(crate) fn powers(x: Scalar, len: usize) -> ScalarVector {
debug_assert!(len != 0);
let mut res = Vec::with_capacity(len);
res.push(Scalar::ONE);
for i in 1 .. len {
res.push(res[i - 1] * x);
}
ScalarVector(res)
}
pub(crate) fn sum(mut self) -> Scalar {
self.0.drain(..).sum()
}
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn split(self) -> (ScalarVector, ScalarVector) {
let (l, r) = self.0.split_at(self.0.len() / 2);
(ScalarVector(l.to_vec()), ScalarVector(r.to_vec()))
}
}
impl Index<usize> for ScalarVector {
type Output = Scalar;
fn index(&self, index: usize) -> &Scalar {
&self.0[index]
}
}
pub(crate) fn inner_product(a: &ScalarVector, b: &ScalarVector) -> Scalar {
(a * b).sum()
}
impl Mul<&[EdwardsPoint]> for &ScalarVector {
type Output = EdwardsPoint;
fn mul(self, b: &[EdwardsPoint]) -> EdwardsPoint {
debug_assert_eq!(self.len(), b.len());
multiexp(&self.0.iter().copied().zip(b.iter().copied()).collect::<Vec<_>>())
}
}
pub(crate) fn hadamard_fold(
l: &[EdwardsPoint],
r: &[EdwardsPoint],
a: Scalar,
b: Scalar,
) -> Vec<EdwardsPoint> {
let mut res = Vec::with_capacity(l.len() / 2);
for i in 0 .. l.len() {
res.push(multiexp(&[(a, l[i]), (b, r[i])]));
}
res
}