Files
serai/crypto/evrf/secq256k1/src/point.rs

440 lines
10 KiB
Rust

use core::{
ops::{DerefMut, Add, AddAssign, Neg, Sub, SubAssign, Mul, MulAssign},
iter::Sum,
};
use rand_core::RngCore;
use zeroize::Zeroize;
use subtle::{Choice, CtOption, ConstantTimeEq, ConditionallySelectable, ConditionallyNegatable};
use generic_array::{typenum::U33, GenericArray};
use ciphersuite::group::{
ff::{Field, PrimeField, PrimeFieldBits},
Group, GroupEncoding,
prime::PrimeGroup,
};
use crate::{backend::u8_from_bool, Scalar, FieldElement};
fn recover_y(x: FieldElement) -> CtOption<FieldElement> {
// x**3 + B since a = 0
((x.square() * x) + FieldElement::from(7u64)).sqrt()
}
/// Point.
#[derive(Clone, Copy, Debug)]
#[repr(C)]
pub struct Point {
x: FieldElement, // / Z
y: FieldElement, // / Z
z: FieldElement,
}
impl Zeroize for Point {
fn zeroize(&mut self) {
self.x.zeroize();
self.y.zeroize();
self.z.zeroize();
let identity = Self::identity();
self.x = identity.x;
self.y = identity.y;
self.z = identity.z;
}
}
impl ConstantTimeEq for Point {
fn ct_eq(&self, other: &Self) -> Choice {
let x1 = self.x * other.z;
let x2 = other.x * self.z;
let y1 = self.y * other.z;
let y2 = other.y * self.z;
// Identity or equivalent
(self.z.is_zero() & other.z.is_zero()) | (x1.ct_eq(&x2) & y1.ct_eq(&y2))
}
}
impl PartialEq for Point {
fn eq(&self, other: &Point) -> bool {
self.ct_eq(other).into()
}
}
impl Eq for Point {}
impl ConditionallySelectable for Point {
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
Point {
x: FieldElement::conditional_select(&a.x, &b.x, choice),
y: FieldElement::conditional_select(&a.y, &b.y, choice),
z: FieldElement::conditional_select(&a.z, &b.z, choice),
}
}
}
impl Add for Point {
type Output = Point;
#[allow(non_snake_case)]
fn add(self, other: Self) -> Self {
// add-2015-rcb
let a = FieldElement::ZERO;
let B = FieldElement::from(7u64);
let b3 = B + B + B;
let X1 = self.x;
let Y1 = self.y;
let Z1 = self.z;
let X2 = other.x;
let Y2 = other.y;
let Z2 = other.z;
let t0 = X1 * X2;
let t1 = Y1 * Y2;
let t2 = Z1 * Z2;
let t3 = X1 + Y1;
let t4 = X2 + Y2;
let t3 = t3 * t4;
let t4 = t0 + t1;
let t3 = t3 - t4;
let t4 = X1 + Z1;
let t5 = X2 + Z2;
let t4 = t4 * t5;
let t5 = t0 + t2;
let t4 = t4 - t5;
let t5 = Y1 + Z1;
let X3 = Y2 + Z2;
let t5 = t5 * X3;
let X3 = t1 + t2;
let t5 = t5 - X3;
let Z3 = a * t4;
let X3 = b3 * t2;
let Z3 = X3 + Z3;
let X3 = t1 - Z3;
let Z3 = t1 + Z3;
let Y3 = X3 * Z3;
let t1 = t0 + t0;
let t1 = t1 + t0;
let t2 = a * t2;
let t4 = b3 * t4;
let t1 = t1 + t2;
let t2 = t0 - t2;
let t2 = a * t2;
let t4 = t4 + t2;
let t0 = t1 * t4;
let Y3 = Y3 + t0;
let t0 = t5 * t4;
let X3 = t3 * X3;
let X3 = X3 - t0;
let t0 = t3 * t1;
let Z3 = t5 * Z3;
let Z3 = Z3 + t0;
Point { x: X3, y: Y3, z: Z3 }
}
}
impl AddAssign for Point {
fn add_assign(&mut self, other: Point) {
*self = *self + other;
}
}
impl Add<&Point> for Point {
type Output = Point;
fn add(self, other: &Point) -> Point {
self + *other
}
}
impl AddAssign<&Point> for Point {
fn add_assign(&mut self, other: &Point) {
*self += *other;
}
}
impl Neg for Point {
type Output = Point;
fn neg(self) -> Self {
Point { x: self.x, y: -self.y, z: self.z }
}
}
impl Sub for Point {
type Output = Point;
#[allow(clippy::suspicious_arithmetic_impl)]
fn sub(self, other: Self) -> Self {
self + other.neg()
}
}
impl SubAssign for Point {
fn sub_assign(&mut self, other: Point) {
*self = *self - other;
}
}
impl Sub<&Point> for Point {
type Output = Point;
fn sub(self, other: &Point) -> Point {
self - *other
}
}
impl SubAssign<&Point> for Point {
fn sub_assign(&mut self, other: &Point) {
*self -= *other;
}
}
impl Group for Point {
type Scalar = Scalar;
fn random(mut rng: impl RngCore) -> Self {
loop {
let mut bytes = GenericArray::default();
rng.fill_bytes(bytes.as_mut());
let opt = Self::from_bytes(&bytes);
if opt.is_some().into() {
return opt.unwrap();
}
}
}
fn identity() -> Self {
Point { x: FieldElement::ZERO, y: FieldElement::ONE, z: FieldElement::ZERO }
}
fn generator() -> Self {
// Point with the lowest valid x-coordinate
Point {
x: FieldElement::from_repr(
hex_literal::hex!("0000000000000000000000000000000000000000000000000000000000000001")
.into(),
)
.unwrap(),
y: FieldElement::from_repr(
hex_literal::hex!("0C7C97045A2074634909ABDF82C9BD0248916189041F2AF0C1B800D1FFC278C0")
.into(),
)
.unwrap(),
z: FieldElement::ONE,
}
}
fn is_identity(&self) -> Choice {
self.z.ct_eq(&FieldElement::ZERO)
}
#[allow(non_snake_case)]
fn double(&self) -> Self {
// dbl-2007-bl
let a = FieldElement::ZERO;
let X1 = self.x;
let Y1 = self.y;
let Z1 = self.z;
let XX = X1 * X1;
let ZZ = Z1 * Z1;
let w = (a * ZZ) + XX.double() + XX;
let s = (Y1 * Z1).double();
let ss = s * s;
let sss = s * ss;
let R = Y1 * s;
let RR = R * R;
let B = X1 + R;
let B = (B * B) - XX - RR;
let h = (w * w) - B.double();
let X3 = h * s;
let Y3 = w * (B - h) - RR.double();
let Z3 = sss;
let res = Self { x: X3, y: Y3, z: Z3 };
// If self is identity, res will not be well-formed
// Accordingly, we return self if self was the identity
Self::conditional_select(&res, self, self.is_identity())
}
}
impl Sum<Point> for Point {
fn sum<I: Iterator<Item = Point>>(iter: I) -> Point {
let mut res = Self::identity();
for i in iter {
res += i;
}
res
}
}
impl<'a> Sum<&'a Point> for Point {
fn sum<I: Iterator<Item = &'a Point>>(iter: I) -> Point {
Point::sum(iter.cloned())
}
}
impl Mul<Scalar> for Point {
type Output = Point;
fn mul(self, mut other: Scalar) -> Point {
// Precompute the optimal amount that's a multiple of 2
let mut table = [Point::identity(); 16];
table[1] = self;
for i in 2 .. 16 {
table[i] = table[i - 1] + self;
}
let mut res = Self::identity();
let mut bits = 0;
for (i, mut bit) in other.to_le_bits().iter_mut().rev().enumerate() {
bits <<= 1;
let mut bit = u8_from_bool(bit.deref_mut());
bits |= bit;
bit.zeroize();
if ((i + 1) % 4) == 0 {
if i != 3 {
for _ in 0 .. 4 {
res = res.double();
}
}
let mut term = table[0];
for (j, candidate) in table[1 ..].iter().enumerate() {
let j = j + 1;
term = Self::conditional_select(&term, candidate, usize::from(bits).ct_eq(&j));
}
res += term;
bits = 0;
}
}
other.zeroize();
res
}
}
impl MulAssign<Scalar> for Point {
fn mul_assign(&mut self, other: Scalar) {
*self = *self * other;
}
}
impl Mul<&Scalar> for Point {
type Output = Point;
fn mul(self, other: &Scalar) -> Point {
self * *other
}
}
impl MulAssign<&Scalar> for Point {
fn mul_assign(&mut self, other: &Scalar) {
*self *= *other;
}
}
impl GroupEncoding for Point {
type Repr = GenericArray<u8, U33>;
fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
// Extract and clear the sign bit
let sign = Choice::from(bytes[0] & 1);
// Parse x, recover y
FieldElement::from_repr(*GenericArray::from_slice(&bytes[1 ..])).and_then(|x| {
let is_identity = x.is_zero();
let y = recover_y(x).map(|mut y| {
y.conditional_negate(y.is_odd().ct_eq(&!sign));
y
});
// If this the identity, set y to 1
let y =
CtOption::conditional_select(&y, &CtOption::new(FieldElement::ONE, 1.into()), is_identity);
// If this the identity, set y to 1 and z to 0 (instead of 1)
let z = <_>::conditional_select(&FieldElement::ONE, &FieldElement::ZERO, is_identity);
// Create the point if we have a y solution
let point = y.map(|y| Point { x, y, z });
let not_negative_zero = !(is_identity & sign);
// Only return the point if it isn't -0 and the sign byte wasn't malleated
CtOption::conditional_select(
&CtOption::new(Point::identity(), 0.into()),
&point,
not_negative_zero & ((bytes[0] & 1).ct_eq(&bytes[0])),
)
})
}
fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
Point::from_bytes(bytes)
}
fn to_bytes(&self) -> Self::Repr {
let Some(z) = Option::<FieldElement>::from(self.z.invert()) else {
return *GenericArray::from_slice(&[0; 33]);
};
let x = self.x * z;
let y = self.y * z;
let mut res = *GenericArray::from_slice(&[0; 33]);
res[1 ..].as_mut().copy_from_slice(&x.to_repr());
// The following conditional select normalizes the sign to 0 when x is 0
let y_sign = u8::conditional_select(&y.is_odd().unwrap_u8(), &0, x.ct_eq(&FieldElement::ZERO));
res[0] |= y_sign;
res
}
}
impl PrimeGroup for Point {}
impl ec_divisors::DivisorCurve for Point {
type FieldElement = FieldElement;
type XyPoint = ec_divisors::Projective<Self>;
fn interpolator_for_scalar_mul() -> &'static ec_divisors::Interpolator<Self::FieldElement> {
static PRECOMPUTE: std_shims::sync::LazyLock<ec_divisors::Interpolator<FieldElement>> =
std_shims::sync::LazyLock::new(|| {
ec_divisors::Interpolator::new(usize::try_from(130).unwrap())
});
&PRECOMPUTE
}
fn a() -> Self::FieldElement {
FieldElement::from(0u64)
}
fn b() -> Self::FieldElement {
FieldElement::from(7u64)
}
fn to_xy(point: Self) -> Option<(Self::FieldElement, Self::FieldElement)> {
let z: Self::FieldElement = Option::from(point.z.invert())?;
Some((point.x * z, point.y * z))
}
}
#[test]
fn test_curve() {
ff_group_tests::group::test_prime_group_bits::<_, Point>(&mut rand_core::OsRng);
}
#[test]
fn generator() {
assert_eq!(
Point::generator(),
Point::from_bytes(GenericArray::from_slice(&hex_literal::hex!(
"000000000000000000000000000000000000000000000000000000000000000001"
)))
.unwrap()
);
}
#[test]
fn zero_x_is_invalid() {
assert!(Option::<FieldElement>::from(recover_y(FieldElement::ZERO)).is_none());
}
// Checks random won't infinitely loop
#[test]
fn random() {
Point::random(&mut rand_core::OsRng);
}