Files
serai/crypto/multiexp/src/batch.rs
Luke Parker 75c3cdc5af Comment the previous commit
Despite the intentions of https://github.com/serai-dex/serai/issues/85, 
it failed to be practically faster :/

Updates a DLEq test to be better as well.
2022-08-13 19:43:18 -04:00

132 lines
3.9 KiB
Rust

use rand_core::{RngCore, CryptoRng};
use zeroize::Zeroize;
use ff::{Field, PrimeFieldBits};
use group::Group;
use crate::{multiexp, multiexp_vartime};
#[cfg(feature = "batch")]
#[derive(Clone, Zeroize)]
pub struct BatchVerifier<Id: Copy + Zeroize, G: Group + Zeroize>(Vec<(Id, Vec<(G::Scalar, G)>)>);
#[cfg(feature = "batch")]
impl<Id: Copy + Zeroize, G: Group + Zeroize> BatchVerifier<Id, G>
where
<G as Group>::Scalar: PrimeFieldBits + Zeroize,
{
pub fn new(capacity: usize) -> BatchVerifier<Id, G> {
BatchVerifier(Vec::with_capacity(capacity))
}
pub fn queue<R: RngCore + CryptoRng, I: IntoIterator<Item = (G::Scalar, G)>>(
&mut self,
rng: &mut R,
id: Id,
pairs: I,
) {
// Define a unique scalar factor for this set of variables so individual items can't overlap
let u = if self.0.is_empty() {
G::Scalar::one()
} else {
let mut weight;
while {
// Generate a random scalar
weight = G::Scalar::random(&mut *rng);
// Clears half the bits, maintaining security, to minimize scalar additions
// Is not practically faster for whatever reason
/*
// Generate a random scalar
let mut repr = G::Scalar::random(&mut *rng).to_repr();
// Calculate the amount of bytes to clear. We want to clear less than half
let repr_len = repr.as_ref().len();
let unused_bits = (repr_len * 8) - usize::try_from(G::Scalar::CAPACITY).unwrap();
// Don't clear any partial bytes
let to_clear = (repr_len / 2) - ((unused_bits + 7) / 8);
// Clear a safe amount of bytes
for b in &mut repr.as_mut()[.. to_clear] {
*b = 0;
}
// Ensure these bits are used as the low bits so low scalars multiplied by this don't
// become large scalars
weight = G::Scalar::from_repr(repr).unwrap();
// Tests if any bit we supposedly just cleared is set, and if so, reverses it
// Not a security issue if this fails, just a minor performance hit at ~2^-120 odds
if weight.to_le_bits().iter().take(to_clear * 8).any(|bit| *bit) {
repr.as_mut().reverse();
weight = G::Scalar::from_repr(repr).unwrap();
}
*/
// Ensure it's non-zero, as a zero scalar would cause this item to pass no matter what
weight.is_zero().into()
} {}
weight
};
self.0.push((id, pairs.into_iter().map(|(scalar, point)| (scalar * u, point)).collect()));
}
#[must_use]
pub fn verify_core(&self) -> bool {
let mut flat = self.0.iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>();
let res = multiexp(&flat).is_identity().into();
flat.zeroize();
res
}
pub fn verify(mut self) -> bool {
let res = self.verify_core();
self.zeroize();
res
}
#[must_use]
pub fn verify_vartime(&self) -> bool {
multiexp_vartime(&self.0.iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>())
.is_identity()
.into()
}
// A constant time variant may be beneficial for robust protocols
pub fn blame_vartime(&self) -> Option<Id> {
let mut slice = self.0.as_slice();
while slice.len() > 1 {
let split = slice.len() / 2;
if multiexp_vartime(
&slice[.. split].iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>(),
)
.is_identity()
.into()
{
slice = &slice[split ..];
} else {
slice = &slice[.. split];
}
}
slice
.get(0)
.filter(|(_, value)| !bool::from(multiexp_vartime(value).is_identity()))
.map(|(id, _)| *id)
}
pub fn verify_with_vartime_blame(mut self) -> Result<(), Id> {
let res = if self.verify_core() { Ok(()) } else { Err(self.blame_vartime().unwrap()) };
self.zeroize();
res
}
pub fn verify_vartime_with_vartime_blame(&self) -> Result<(), Id> {
if self.verify_vartime() {
Ok(())
} else {
Err(self.blame_vartime().unwrap())
}
}
}