mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 20:29:23 +00:00
1) Removes the key image DLEq on the Monero side of things, as the produced signature share serves as a DLEq for it. 2) Removes the nonce DLEqs from modular-frost as they're unnecessary for monero-serai. Updates documentation accordingly. Without the proof the nonces are internally consistent, the produced signatures from modular-frost can be argued as a batch-verifiable CP93 DLEq (R0, R1, s), or as a GSP for the CP93 DLEq statement (which naturally produces (R0, R1, s)). The lack of proving the nonces consistent does make the process weaker, yet it's also unnecessary for the class of protocols this is intended to service. To provide DLEqs for the nonces would be to provide PoKs for the nonce commitments (in the traditional Schnorr case).
271 lines
8.4 KiB
Rust
271 lines
8.4 KiB
Rust
use std::collections::HashMap;
|
|
|
|
use rand_core::{RngCore, CryptoRng};
|
|
|
|
pub use dkg::tests::{key_gen, musig_key_gen, recover_key};
|
|
|
|
use crate::{
|
|
Curve, Participant, ThresholdKeys, FrostError,
|
|
algorithm::{Algorithm, Hram, IetfSchnorr},
|
|
sign::{Writable, PreprocessMachine, SignMachine, SignatureMachine, AlgorithmMachine},
|
|
};
|
|
|
|
/// Tests for the nonce handling code.
|
|
pub mod nonces;
|
|
use nonces::test_multi_nonce;
|
|
|
|
/// Vectorized test suite to ensure consistency.
|
|
pub mod vectors;
|
|
|
|
// Literal test definitions to run during `cargo test`
|
|
#[cfg(test)]
|
|
mod literal;
|
|
|
|
/// Constant amount of participants to use when testing.
|
|
pub const PARTICIPANTS: u16 = 5;
|
|
/// Constant threshold of participants to use when signing.
|
|
pub const THRESHOLD: u16 = ((PARTICIPANTS * 2) / 3) + 1;
|
|
|
|
/// Clone a map without a specific value.
|
|
pub fn clone_without<K: Clone + core::cmp::Eq + core::hash::Hash, V: Clone>(
|
|
map: &HashMap<K, V>,
|
|
without: &K,
|
|
) -> HashMap<K, V> {
|
|
let mut res = map.clone();
|
|
res.remove(without).unwrap();
|
|
res
|
|
}
|
|
|
|
/// Spawn algorithm machines for a random selection of signers, each executing the given algorithm.
|
|
pub fn algorithm_machines<R: RngCore, C: Curve, A: Algorithm<C>>(
|
|
rng: &mut R,
|
|
algorithm: &A,
|
|
keys: &HashMap<Participant, ThresholdKeys<C>>,
|
|
) -> HashMap<Participant, AlgorithmMachine<C, A>> {
|
|
let mut included = vec![];
|
|
while included.len() < usize::from(keys[&Participant::new(1).unwrap()].params().t()) {
|
|
let n = Participant::new(
|
|
u16::try_from((rng.next_u64() % u64::try_from(keys.len()).unwrap()) + 1).unwrap(),
|
|
)
|
|
.unwrap();
|
|
if included.contains(&n) {
|
|
continue;
|
|
}
|
|
included.push(n);
|
|
}
|
|
|
|
keys
|
|
.iter()
|
|
.filter_map(|(i, keys)| {
|
|
if included.contains(i) {
|
|
Some((*i, AlgorithmMachine::new(algorithm.clone(), keys.clone())))
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
// Run the preprocess step
|
|
pub(crate) fn preprocess<
|
|
R: RngCore + CryptoRng,
|
|
M: PreprocessMachine,
|
|
F: FnMut(&mut R, &mut HashMap<Participant, M::SignMachine>),
|
|
>(
|
|
rng: &mut R,
|
|
mut machines: HashMap<Participant, M>,
|
|
mut cache: F,
|
|
) -> (HashMap<Participant, M::SignMachine>, HashMap<Participant, M::Preprocess>) {
|
|
let mut commitments = HashMap::new();
|
|
let mut machines = machines
|
|
.drain()
|
|
.map(|(i, machine)| {
|
|
let (machine, preprocess) = machine.preprocess(rng);
|
|
commitments.insert(i, {
|
|
let mut buf = vec![];
|
|
preprocess.write(&mut buf).unwrap();
|
|
machine.read_preprocess::<&[u8]>(&mut buf.as_ref()).unwrap()
|
|
});
|
|
(i, machine)
|
|
})
|
|
.collect::<HashMap<_, _>>();
|
|
|
|
cache(rng, &mut machines);
|
|
|
|
(machines, commitments)
|
|
}
|
|
|
|
// Run the preprocess and generate signature shares
|
|
#[allow(clippy::type_complexity)]
|
|
pub(crate) fn preprocess_and_shares<
|
|
R: RngCore + CryptoRng,
|
|
M: PreprocessMachine,
|
|
F: FnMut(&mut R, &mut HashMap<Participant, M::SignMachine>),
|
|
>(
|
|
rng: &mut R,
|
|
machines: HashMap<Participant, M>,
|
|
cache: F,
|
|
msg: &[u8],
|
|
) -> (
|
|
HashMap<Participant, <M::SignMachine as SignMachine<M::Signature>>::SignatureMachine>,
|
|
HashMap<Participant, <M::SignMachine as SignMachine<M::Signature>>::SignatureShare>,
|
|
) {
|
|
let (mut machines, commitments) = preprocess(rng, machines, cache);
|
|
|
|
let mut shares = HashMap::new();
|
|
let machines = machines
|
|
.drain()
|
|
.map(|(i, machine)| {
|
|
let (machine, share) = machine.sign(clone_without(&commitments, &i), msg).unwrap();
|
|
shares.insert(i, {
|
|
let mut buf = vec![];
|
|
share.write(&mut buf).unwrap();
|
|
machine.read_share::<&[u8]>(&mut buf.as_ref()).unwrap()
|
|
});
|
|
(i, machine)
|
|
})
|
|
.collect::<HashMap<_, _>>();
|
|
|
|
(machines, shares)
|
|
}
|
|
|
|
fn sign_internal<
|
|
R: RngCore + CryptoRng,
|
|
M: PreprocessMachine,
|
|
F: FnMut(&mut R, &mut HashMap<Participant, M::SignMachine>),
|
|
>(
|
|
rng: &mut R,
|
|
machines: HashMap<Participant, M>,
|
|
cache: F,
|
|
msg: &[u8],
|
|
) -> M::Signature {
|
|
let (mut machines, shares) = preprocess_and_shares(rng, machines, cache, msg);
|
|
|
|
let mut signature = None;
|
|
for (i, machine) in machines.drain() {
|
|
let sig = machine.complete(clone_without(&shares, &i)).unwrap();
|
|
if signature.is_none() {
|
|
signature = Some(sig.clone());
|
|
}
|
|
assert_eq!(&sig, signature.as_ref().unwrap());
|
|
}
|
|
signature.unwrap()
|
|
}
|
|
|
|
/// Execute the signing protocol, without caching any machines. This isn't as comprehensive at
|
|
/// testing as sign, and accordingly isn't preferred, yet is usable for machines not supporting
|
|
/// caching.
|
|
pub fn sign_without_caching<R: RngCore + CryptoRng, M: PreprocessMachine>(
|
|
rng: &mut R,
|
|
machines: HashMap<Participant, M>,
|
|
msg: &[u8],
|
|
) -> M::Signature {
|
|
sign_internal(rng, machines, |_, _| {}, msg)
|
|
}
|
|
|
|
/// Execute the signing protocol, randomly caching various machines to ensure they can cache
|
|
/// successfully.
|
|
pub fn sign<R: RngCore + CryptoRng, M: PreprocessMachine>(
|
|
rng: &mut R,
|
|
params: &<M::SignMachine as SignMachine<M::Signature>>::Params,
|
|
mut keys: HashMap<Participant, <M::SignMachine as SignMachine<M::Signature>>::Keys>,
|
|
machines: HashMap<Participant, M>,
|
|
msg: &[u8],
|
|
) -> M::Signature {
|
|
sign_internal(
|
|
rng,
|
|
machines,
|
|
|rng, machines| {
|
|
// Cache and rebuild half of the machines
|
|
let included = machines.keys().copied().collect::<Vec<_>>();
|
|
for i in included {
|
|
if (rng.next_u64() % 2) == 0 {
|
|
let cache = machines.remove(&i).unwrap().cache();
|
|
machines.insert(
|
|
i,
|
|
M::SignMachine::from_cache(params.clone(), keys.remove(&i).unwrap(), cache).0,
|
|
);
|
|
}
|
|
}
|
|
},
|
|
msg,
|
|
)
|
|
}
|
|
|
|
/// Test a basic Schnorr signature with the provided keys.
|
|
pub fn test_schnorr_with_keys<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(
|
|
rng: &mut R,
|
|
keys: &HashMap<Participant, ThresholdKeys<C>>,
|
|
) {
|
|
const MSG: &[u8] = b"Hello, World!";
|
|
|
|
let machines = algorithm_machines(&mut *rng, &IetfSchnorr::<C, H>::ietf(), keys);
|
|
let sig = sign(&mut *rng, &IetfSchnorr::<C, H>::ietf(), keys.clone(), machines, MSG);
|
|
let group_key = keys[&Participant::new(1).unwrap()].group_key();
|
|
assert!(sig.verify(group_key, H::hram(&sig.R, &group_key, MSG)));
|
|
}
|
|
|
|
/// Test a basic Schnorr signature.
|
|
pub fn test_schnorr<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(rng: &mut R) {
|
|
let keys = key_gen(&mut *rng);
|
|
test_schnorr_with_keys::<_, _, H>(&mut *rng, &keys)
|
|
}
|
|
|
|
/// Test a basic Schnorr signature, yet with MuSig.
|
|
pub fn test_musig_schnorr<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(rng: &mut R) {
|
|
let keys = musig_key_gen(&mut *rng);
|
|
test_schnorr_with_keys::<_, _, H>(&mut *rng, &keys)
|
|
}
|
|
|
|
/// Test an offset Schnorr signature.
|
|
pub fn test_offset_schnorr<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(rng: &mut R) {
|
|
const MSG: &[u8] = b"Hello, World!";
|
|
|
|
let mut keys = key_gen(&mut *rng);
|
|
let group_key = keys[&Participant::new(1).unwrap()].group_key();
|
|
|
|
let offset = C::F::from(5);
|
|
let offset_key = group_key + (C::generator() * offset);
|
|
for keys in keys.values_mut() {
|
|
*keys = keys.offset(offset);
|
|
assert_eq!(keys.group_key(), offset_key);
|
|
}
|
|
|
|
let machines = algorithm_machines(&mut *rng, &IetfSchnorr::<C, H>::ietf(), &keys);
|
|
let sig = sign(&mut *rng, &IetfSchnorr::<C, H>::ietf(), keys.clone(), machines, MSG);
|
|
let group_key = keys[&Participant::new(1).unwrap()].group_key();
|
|
assert!(sig.verify(offset_key, H::hram(&sig.R, &group_key, MSG)));
|
|
}
|
|
|
|
/// Test blame for an invalid Schnorr signature share.
|
|
pub fn test_schnorr_blame<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(rng: &mut R) {
|
|
const MSG: &[u8] = b"Hello, World!";
|
|
|
|
let keys = key_gen(&mut *rng);
|
|
let machines = algorithm_machines(&mut *rng, &IetfSchnorr::<C, H>::ietf(), &keys);
|
|
|
|
let (mut machines, shares) = preprocess_and_shares(&mut *rng, machines, |_, _| {}, MSG);
|
|
|
|
for (i, machine) in machines.drain() {
|
|
let mut shares = clone_without(&shares, &i);
|
|
|
|
// Select a random participant to give an invalid share
|
|
let participants = shares.keys().collect::<Vec<_>>();
|
|
let faulty = *participants
|
|
[usize::try_from(rng.next_u64() % u64::try_from(participants.len()).unwrap()).unwrap()];
|
|
shares.get_mut(&faulty).unwrap().invalidate();
|
|
|
|
assert_eq!(machine.complete(shares).err(), Some(FrostError::InvalidShare(faulty)));
|
|
}
|
|
}
|
|
|
|
/// Run a variety of tests against a ciphersuite.
|
|
pub fn test_ciphersuite<R: RngCore + CryptoRng, C: Curve, H: Hram<C>>(rng: &mut R) {
|
|
test_schnorr::<R, C, H>(rng);
|
|
test_musig_schnorr::<R, C, H>(rng);
|
|
test_offset_schnorr::<R, C, H>(rng);
|
|
test_schnorr_blame::<R, C, H>(rng);
|
|
|
|
test_multi_nonce::<R, C>(rng);
|
|
}
|