Files
serai/crypto/evrf/ec-gadgets/src/dlog.rs
Luke Parker 2bc880e372 Downstream the eVRF libraries from FCMP++
Also adds no-std support to secq256k1 and embedwards25519.
2025-01-29 22:29:40 -05:00

525 lines
19 KiB
Rust

use core::fmt;
use std_shims::{vec, vec::Vec};
use ciphersuite::{
group::ff::{Field, PrimeField, BatchInverter},
Ciphersuite,
};
use generalized_bulletproofs_circuit_abstraction::*;
use crate::*;
/// Parameters for a discrete logarithm proof.
pub trait DiscreteLogParameters {
/// The amount of bits used to represent a scalar.
type ScalarBits: ArrayLength;
/// The amount of x**i coefficients in a divisor.
///
/// This is the amount of points in a divisor (the amount of bits in a scalar, plus one) divided
/// by two.
type XCoefficients: ArrayLength;
/// The amount of x**i coefficients in a divisor, minus one.
type XCoefficientsMinusOne: ArrayLength;
/// The amount of y x**i coefficients in a divisor.
///
/// This is the amount of points in a divisor (the amount of bits in a scalar, plus one) divided
/// by two, minus two.
type YxCoefficients: ArrayLength;
}
/// A tabled generator for proving/verifying discrete logarithm claims.
#[derive(Clone)]
pub struct GeneratorTable<F: PrimeField, Parameters: DiscreteLogParameters>(
GenericArray<(F, F), Parameters::ScalarBits>,
);
impl<F: PrimeField, Parameters: DiscreteLogParameters> fmt::Debug
for GeneratorTable<F, Parameters>
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("GeneratorTable")
.field("x", &self.0[0].0)
.field("y", &self.0[0].1)
.finish_non_exhaustive()
}
}
impl<F: PrimeField, Parameters: DiscreteLogParameters> GeneratorTable<F, Parameters> {
/// Create a new table for this generator.
///
/// The generator is assumed to be well-formed and on-curve. This function may panic if it's not.
pub fn new(curve: &CurveSpec<F>, generator_x: F, generator_y: F) -> Self {
// mdbl-2007-bl
fn dbl<F: PrimeField>(a: F, x1: F, y1: F) -> (F, F) {
let xx = x1 * x1;
let w = a + (xx + xx.double());
let y1y1 = y1 * y1;
let r = y1y1 + y1y1;
let sss = (y1 * r).double().double();
let rr = r * r;
let b = x1 + r;
let b = (b * b) - xx - rr;
let h = (w * w) - b.double();
let x3 = h.double() * y1;
let y3 = (w * (b - h)) - rr.double();
let z3 = sss;
// Normalize from XYZ to XY
let z3_inv = z3.invert().unwrap();
let x3 = x3 * z3_inv;
let y3 = y3 * z3_inv;
(x3, y3)
}
let mut res = Self(GenericArray::default());
res.0[0] = (generator_x, generator_y);
for i in 1 .. Parameters::ScalarBits::USIZE {
let last = res.0[i - 1];
res.0[i] = dbl(curve.a, last.0, last.1);
}
res
}
}
/// A representation of the divisor.
///
/// The coefficient for x**1 is explicitly excluded as it's expected to be normalized to 1.
#[derive(Clone)]
pub struct Divisor<Parameters: DiscreteLogParameters> {
/// The coefficient for the `y` term of the divisor.
///
/// There is never more than one `y**i x**0` coefficient as the leading term of the modulus is
/// `y**2`. It's assumed the coefficient is non-zero (and present) as it will be for any divisor
/// exceeding trivial complexity.
pub y: Variable,
/// The coefficients for the `y**1 x**i` terms of the polynomial.
pub yx: GenericArray<Variable, Parameters::YxCoefficients>,
/// The coefficients for the `x**i` terms of the polynomial, skipping x**1.
///
/// x**1 is skipped as it's expected to be normalized to 1, and therefore constant, in order to
/// ensure the divisor is non-zero (as necessary for the proof to be complete).
// Subtract 1 from the length due to skipping the coefficient for x**1
pub x_from_power_of_2: GenericArray<Variable, Parameters::XCoefficientsMinusOne>,
/// The constant term in the polynomial (alternatively, the coefficient for y**0 x**0).
pub zero: Variable,
}
/// A point, its discrete logarithm, and the divisor to prove it.
#[derive(Clone)]
pub struct PointWithDlog<Parameters: DiscreteLogParameters> {
/// The point which is supposedly the result of scaling the generator by the discrete logarithm.
pub point: (Variable, Variable),
/// The discrete logarithm, represented as coefficients of a polynomial of 2**i.
pub dlog: GenericArray<Variable, Parameters::ScalarBits>,
/// The divisor interpolating the relevant doublings of generator with the inverse of the point.
pub divisor: Divisor<Parameters>,
}
/// A struct containing a point used for the evaluation of a divisor.
///
/// Preprocesses and caches as much of the calculation as possible to minimize work upon reuse of
/// challenge points.
struct ChallengePoint<F: PrimeField, Parameters: DiscreteLogParameters> {
y: F,
yx: GenericArray<F, Parameters::YxCoefficients>,
x: GenericArray<F, Parameters::XCoefficients>,
p_0_n_0: F,
x_p_0_n_0: GenericArray<F, Parameters::YxCoefficients>,
p_1_n: F,
p_1_d: F,
}
impl<F: PrimeField, Parameters: DiscreteLogParameters> ChallengePoint<F, Parameters> {
fn new(
curve: &CurveSpec<F>,
// The slope between all of the challenge points
slope: F,
// The x and y coordinates
x: F,
y: F,
// The inversion of twice the y coordinate
// We accept this as an argument so that the caller can calculcate these with a batch inversion
inv_two_y: F,
) -> Self {
// Powers of x, skipping x**0
let divisor_x_len = Parameters::XCoefficients::USIZE;
let mut x_pows = GenericArray::default();
x_pows[0] = x;
for i in 1 .. divisor_x_len {
let last = x_pows[i - 1];
x_pows[i] = last * x;
}
// Powers of x multiplied by y
let divisor_yx_len = Parameters::YxCoefficients::USIZE;
let mut yx = GenericArray::default();
// Skips x**0
yx[0] = y * x;
for i in 1 .. divisor_yx_len {
let last = yx[i - 1];
yx[i] = last * x;
}
let x_sq = x.square();
let three_x_sq = x_sq.double() + x_sq;
let three_x_sq_plus_a = three_x_sq + curve.a;
let two_y = y.double();
// p_0_n_0 from `DivisorChallenge`
let p_0_n_0 = three_x_sq_plus_a * inv_two_y;
let mut x_p_0_n_0 = GenericArray::default();
// Since this iterates over x, which skips x**0, this also skips p_0_n_0 x**0
for (i, x) in x_pows.iter().take(divisor_yx_len).enumerate() {
x_p_0_n_0[i] = p_0_n_0 * x;
}
// p_1_n from `DivisorChallenge`
let p_1_n = two_y;
// p_1_d from `DivisorChallenge`
let p_1_d = (-slope * p_1_n) + three_x_sq_plus_a;
ChallengePoint { x: x_pows, y, yx, p_0_n_0, x_p_0_n_0, p_1_n, p_1_d }
}
}
// `DivisorChallenge` from the section `Discrete Log Proof`
fn divisor_challenge_eval<C: Ciphersuite, Parameters: DiscreteLogParameters>(
circuit: &mut Circuit<C>,
divisor: &Divisor<Parameters>,
challenge: &ChallengePoint<C::F, Parameters>,
) -> Variable {
// The evaluation of the divisor differentiated by y, further multiplied by p_0_n_0
// Differentation drops everything without a y coefficient, and drops what remains by a power
// of y
// (y**1 -> y**0, yx**i -> x**i)
// This aligns with p_0_n_1 from `DivisorChallenge`
let p_0_n_1 = {
let mut p_0_n_1 = LinComb::empty().term(challenge.p_0_n_0, divisor.y);
for (j, var) in divisor.yx.iter().enumerate() {
// This does not raise by `j + 1` as x_p_0_n_0 omits x**0
p_0_n_1 = p_0_n_1.term(challenge.x_p_0_n_0[j], *var);
}
p_0_n_1
};
// The evaluation of the divisor differentiated by x
// This aligns with p_0_n_2 from `DivisorChallenge`
let p_0_n_2 = {
// The coefficient for x**1 is 1, so 1 becomes the new zero coefficient
let mut p_0_n_2 = LinComb::empty().constant(C::F::ONE);
// Handle the new y coefficient
p_0_n_2 = p_0_n_2.term(challenge.y, divisor.yx[0]);
// Handle the new yx coefficients
for (j, yx) in divisor.yx.iter().enumerate().skip(1) {
// For the power which was shifted down, we multiply this coefficient
// 3 x**2 -> 2 * 3 x**1
let original_power_of_x = C::F::from(u64::try_from(j + 1).unwrap());
// `j - 1` so `j = 1` indexes yx[0] as yx[0] is the y x**1
// (yx omits y x**0)
let this_weight = original_power_of_x * challenge.yx[j - 1];
p_0_n_2 = p_0_n_2.term(this_weight, *yx);
}
// Handle the x coefficients
// We don't skip the first one as `x_from_power_of_2` already omits x**1
for (i, x) in divisor.x_from_power_of_2.iter().enumerate() {
// i + 2 as the paper expects i to start from 1 and be + 1, yet we start from 0
let original_power_of_x = C::F::from(u64::try_from(i + 2).unwrap());
// Still x[i] as x[0] is x**1
let this_weight = original_power_of_x * challenge.x[i];
p_0_n_2 = p_0_n_2.term(this_weight, *x);
}
p_0_n_2
};
// p_0_n from `DivisorChallenge`
let p_0_n = p_0_n_1 + &p_0_n_2;
// Evaluation of the divisor
// p_0_d from `DivisorChallenge`
let p_0_d = {
let mut p_0_d = LinComb::empty().term(challenge.y, divisor.y);
for (var, c_yx) in divisor.yx.iter().zip(&challenge.yx) {
p_0_d = p_0_d.term(*c_yx, *var);
}
for (i, var) in divisor.x_from_power_of_2.iter().enumerate() {
// This `i+1` is preserved, despite most not being as x omits x**0, as this assumes we
// start with `i=1`
p_0_d = p_0_d.term(challenge.x[i + 1], *var);
}
// Adding x effectively adds a `1 x` term, ensuring the divisor isn't 0
p_0_d.term(C::F::ONE, divisor.zero).constant(challenge.x[0])
};
// Calculate the joint numerator
// p_n from `DivisorChallenge`
let p_n = p_0_n * challenge.p_1_n;
// Calculate the joint denominator
// p_d from `DivisorChallenge`
let p_d = p_0_d * challenge.p_1_d;
// We want `n / d = o`
// `n / d = o` == `n = d * o`
// These are safe unwraps as they're solely done by the prover and should always be non-zero
let witness =
circuit.eval(&p_d).map(|p_d| (p_d, circuit.eval(&p_n).unwrap() * p_d.invert().unwrap()));
let (_l, o, n_claim) = circuit.mul(Some(p_d), None, witness);
circuit.equality(p_n, &n_claim.into());
o
}
/// A challenge to evaluate divisors with.
///
/// This challenge must be sampled after writing the commitments to the transcript. This challenge
/// is reusable across various divisors.
pub struct DiscreteLogChallenge<F: PrimeField, Parameters: DiscreteLogParameters> {
c0: ChallengePoint<F, Parameters>,
c1: ChallengePoint<F, Parameters>,
c2: ChallengePoint<F, Parameters>,
slope: F,
intercept: F,
}
/// A generator which has been challenged and is ready for use in evaluating discrete logarithm
/// claims.
pub struct ChallengedGenerator<F: PrimeField, Parameters: DiscreteLogParameters>(
GenericArray<F, Parameters::ScalarBits>,
);
/// Gadgets for proving the discrete logarithm of points on an elliptic curve defined over the
/// scalar field of the curve of the Bulletproof.
pub trait EcDlogGadgets<C: Ciphersuite> {
/// Sample a challenge for a series of discrete logarithm claims.
///
/// This must be called after writing the commitments to the transcript.
///
/// The generators are assumed to be non-empty. They are not transcripted. If your generators are
/// dynamic, they must be properly transcripted into the context.
///
/// May panic/have undefined behavior if an assumption is broken.
#[allow(clippy::type_complexity)]
fn discrete_log_challenge<T: Transcript, Parameters: DiscreteLogParameters>(
&self,
transcript: &mut T,
curve: &CurveSpec<C::F>,
generators: &[&GeneratorTable<C::F, Parameters>],
) -> (DiscreteLogChallenge<C::F, Parameters>, Vec<ChallengedGenerator<C::F, Parameters>>);
/// Prove this point has the specified discrete logarithm over the specified generator.
///
/// The discrete logarithm is not validated to be in a canonical form. The only guarantee made on
/// it is that it's a consistent representation of _a_ discrete logarithm (reuse won't enable
/// re-interpretation as a distinct discrete logarithm).
///
/// This does ensure the point is on-curve.
///
/// This MUST only be called with `Variable`s present within commitments.
///
/// May panic/have undefined behavior if an assumption is broken, or if passed an invalid
/// witness.
fn discrete_log<Parameters: DiscreteLogParameters>(
&mut self,
curve: &CurveSpec<C::F>,
point: PointWithDlog<Parameters>,
challenge: &DiscreteLogChallenge<C::F, Parameters>,
challenged_generator: &ChallengedGenerator<C::F, Parameters>,
) -> OnCurve;
}
impl<C: Ciphersuite> EcDlogGadgets<C> for Circuit<C> {
// This is part of `DiscreteLog` from `Discrete Log Proof`, specifically, the challenges and
// the calculations dependent solely on them
fn discrete_log_challenge<T: Transcript, Parameters: DiscreteLogParameters>(
&self,
transcript: &mut T,
curve: &CurveSpec<C::F>,
generators: &[&GeneratorTable<C::F, Parameters>],
) -> (DiscreteLogChallenge<C::F, Parameters>, Vec<ChallengedGenerator<C::F, Parameters>>) {
// Get the challenge points
let sign_of_points = transcript.challenge_bytes();
let sign_of_point_0 = (sign_of_points[0] & 1) == 1;
let sign_of_point_1 = ((sign_of_points[0] >> 1) & 1) == 1;
let (c0_x, c0_y) = loop {
let c0_x = transcript.challenge::<C>();
let Some(c0_y) =
Option::<C::F>::from(((c0_x.square() * c0_x) + (curve.a * c0_x) + curve.b).sqrt())
else {
continue;
};
// Takes the even y coordinate as to not be dependent on whatever root the above sqrt
// happens to returns
break (c0_x, if bool::from(c0_y.is_odd()) != sign_of_point_0 { -c0_y } else { c0_y });
};
let (c1_x, c1_y) = loop {
let c1_x = transcript.challenge::<C>();
let Some(c1_y) =
Option::<C::F>::from(((c1_x.square() * c1_x) + (curve.a * c1_x) + curve.b).sqrt())
else {
continue;
};
break (c1_x, if bool::from(c1_y.is_odd()) != sign_of_point_1 { -c1_y } else { c1_y });
};
// mmadd-1998-cmo
fn incomplete_add<F: PrimeField>(x1: F, y1: F, x2: F, y2: F) -> Option<(F, F)> {
if x1 == x2 {
None?
}
let u = y2 - y1;
let uu = u * u;
let v = x2 - x1;
let vv = v * v;
let vvv = v * vv;
let r = vv * x1;
let a = uu - vvv - r.double();
let x3 = v * a;
let y3 = (u * (r - a)) - (vvv * y1);
let z3 = vvv;
// Normalize from XYZ to XY
let z3_inv = Option::<F>::from(z3.invert())?;
let x3 = x3 * z3_inv;
let y3 = y3 * z3_inv;
Some((x3, y3))
}
let (c2_x, c2_y) = incomplete_add::<C::F>(c0_x, c0_y, c1_x, c1_y)
.expect("randomly selected points shared an x coordinate");
// We want C0, C1, C2 = -(C0 + C1)
let c2_y = -c2_y;
// Calculate the slope and intercept
// Safe invert as these x coordinates must be distinct due to passing the above incomplete_add
let slope = (c1_y - c0_y) * (c1_x - c0_x).invert().unwrap();
let intercept = c0_y - (slope * c0_x);
// Calculate the inversions for 2 c_y (for each c) and all of the challenged generators
let mut inversions = vec![C::F::ZERO; 3 + (generators.len() * Parameters::ScalarBits::USIZE)];
// Needed for the left-hand side eval
{
inversions[0] = c0_y.double();
inversions[1] = c1_y.double();
inversions[2] = c2_y.double();
}
// Perform the inversions for the generators
for (i, generator) in generators.iter().enumerate() {
// Needed for the right-hand side eval
for (j, generator) in generator.0.iter().enumerate() {
// `DiscreteLog` has weights of `(mu - (G_i.y + (slope * G_i.x)))**-1` in its last line
inversions[3 + (i * Parameters::ScalarBits::USIZE) + j] =
intercept - (generator.1 - (slope * generator.0));
}
}
for challenge_inversion in &inversions {
// This should be unreachable barring negligible probability
if challenge_inversion.is_zero().into() {
panic!("trying to invert 0");
}
}
let mut scratch = vec![C::F::ZERO; inversions.len()];
let _ = BatchInverter::invert_with_external_scratch(&mut inversions, &mut scratch);
let mut inversions = inversions.into_iter();
let inv_c0_two_y = inversions.next().unwrap();
let inv_c1_two_y = inversions.next().unwrap();
let inv_c2_two_y = inversions.next().unwrap();
let c0 = ChallengePoint::new(curve, slope, c0_x, c0_y, inv_c0_two_y);
let c1 = ChallengePoint::new(curve, slope, c1_x, c1_y, inv_c1_two_y);
let c2 = ChallengePoint::new(curve, slope, c2_x, c2_y, inv_c2_two_y);
// Fill in the inverted values
let mut challenged_generators = Vec::with_capacity(generators.len());
for _ in 0 .. generators.len() {
let mut challenged_generator = GenericArray::default();
for i in 0 .. Parameters::ScalarBits::USIZE {
challenged_generator[i] = inversions.next().unwrap();
}
challenged_generators.push(ChallengedGenerator(challenged_generator));
}
(DiscreteLogChallenge { c0, c1, c2, slope, intercept }, challenged_generators)
}
// `DiscreteLog` from `Discrete Log Proof`
fn discrete_log<Parameters: DiscreteLogParameters>(
&mut self,
curve: &CurveSpec<C::F>,
point: PointWithDlog<Parameters>,
challenge: &DiscreteLogChallenge<C::F, Parameters>,
challenged_generator: &ChallengedGenerator<C::F, Parameters>,
) -> OnCurve {
let PointWithDlog { divisor, dlog, point } = point;
// Ensure this is being safely called
let arg_iter = [point.0, point.1, divisor.y, divisor.zero];
let arg_iter = arg_iter.iter().chain(divisor.yx.iter());
let arg_iter = arg_iter.chain(divisor.x_from_power_of_2.iter());
let arg_iter = arg_iter.chain(dlog.iter());
for variable in arg_iter {
debug_assert!(
matches!(variable, Variable::CG { .. } | Variable::V(_)),
"discrete log proofs requires all arguments belong to commitments",
);
}
// Check the point is on curve
let point = self.on_curve(curve, point);
// The challenge has already been sampled so those lines aren't necessary
// lhs from the paper, evaluating the divisor
let lhs_eval = LinComb::from(divisor_challenge_eval(self, &divisor, &challenge.c0)) +
&LinComb::from(divisor_challenge_eval(self, &divisor, &challenge.c1)) +
&LinComb::from(divisor_challenge_eval(self, &divisor, &challenge.c2));
// Interpolate the doublings of the generator
let mut rhs_eval = LinComb::empty();
// We call this `bit` yet it's not constrained to being a bit
// It's presumed to be yet may be malleated
for (bit, weight) in dlog.into_iter().zip(&challenged_generator.0) {
rhs_eval = rhs_eval.term(*weight, bit);
}
// Interpolate the output point
// intercept - (y - (slope * x))
// intercept - y + (slope * x)
// -y + (slope * x) + intercept
// EXCEPT the output point we're proving the discrete log for isn't the one interpolated
// Its negative is, so -y becomes y
// y + (slope * x) + intercept
let output_interpolation = LinComb::empty()
.constant(challenge.intercept)
.term(C::F::ONE, point.y)
.term(challenge.slope, point.x);
let output_interpolation_eval = self.eval(&output_interpolation);
let (_output_interpolation, inverse) =
self.inverse(Some(output_interpolation), output_interpolation_eval);
rhs_eval = rhs_eval.term(C::F::ONE, inverse);
self.equality(lhs_eval, &rhs_eval);
point
}
}