mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 04:09:23 +00:00
310 lines
8.7 KiB
Rust
310 lines
8.7 KiB
Rust
use std_shims::{vec::Vec, sync::OnceLock};
|
|
|
|
use rand_core::{RngCore, CryptoRng};
|
|
|
|
use zeroize::Zeroize;
|
|
|
|
use curve25519_dalek::{scalar::Scalar as DalekScalar, edwards::EdwardsPoint as DalekPoint};
|
|
|
|
use group::{ff::Field, Group};
|
|
use dalek_ff_group::{ED25519_BASEPOINT_POINT as G, Scalar, EdwardsPoint};
|
|
|
|
use multiexp::BatchVerifier;
|
|
|
|
use crate::{Commitment, ringct::bulletproofs::core::*};
|
|
|
|
include!(concat!(env!("OUT_DIR"), "/generators.rs"));
|
|
|
|
static IP12_CELL: OnceLock<Scalar> = OnceLock::new();
|
|
pub(crate) fn IP12() -> Scalar {
|
|
*IP12_CELL.get_or_init(|| inner_product(&ScalarVector(vec![Scalar::ONE; N]), TWO_N()))
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub struct OriginalStruct {
|
|
pub(crate) A: DalekPoint,
|
|
pub(crate) S: DalekPoint,
|
|
pub(crate) T1: DalekPoint,
|
|
pub(crate) T2: DalekPoint,
|
|
pub(crate) taux: DalekScalar,
|
|
pub(crate) mu: DalekScalar,
|
|
pub(crate) L: Vec<DalekPoint>,
|
|
pub(crate) R: Vec<DalekPoint>,
|
|
pub(crate) a: DalekScalar,
|
|
pub(crate) b: DalekScalar,
|
|
pub(crate) t: DalekScalar,
|
|
}
|
|
|
|
impl OriginalStruct {
|
|
pub(crate) fn prove<R: RngCore + CryptoRng>(
|
|
rng: &mut R,
|
|
commitments: &[Commitment],
|
|
) -> OriginalStruct {
|
|
let (logMN, M, MN) = MN(commitments.len());
|
|
|
|
let (aL, aR) = bit_decompose(commitments);
|
|
let commitments_points = commitments.iter().map(Commitment::calculate).collect::<Vec<_>>();
|
|
let (mut cache, _) = hash_commitments(commitments_points.clone());
|
|
|
|
let (sL, sR) =
|
|
ScalarVector((0 .. (MN * 2)).map(|_| Scalar::random(&mut *rng)).collect::<Vec<_>>()).split();
|
|
|
|
let generators = GENERATORS();
|
|
let (mut alpha, A) = alpha_rho(&mut *rng, generators, &aL, &aR);
|
|
let (mut rho, S) = alpha_rho(&mut *rng, generators, &sL, &sR);
|
|
|
|
let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]);
|
|
let mut cache = hash_to_scalar(&y.to_bytes());
|
|
let z = cache;
|
|
|
|
let l0 = &aL - z;
|
|
let l1 = sL;
|
|
|
|
let mut zero_twos = Vec::with_capacity(MN);
|
|
let zpow = ScalarVector::powers(z, M + 2);
|
|
for j in 0 .. M {
|
|
for i in 0 .. N {
|
|
zero_twos.push(zpow[j + 2] * TWO_N()[i]);
|
|
}
|
|
}
|
|
|
|
let yMN = ScalarVector::powers(y, MN);
|
|
let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos);
|
|
let r1 = yMN * sR;
|
|
|
|
let (T1, T2, x, mut taux) = {
|
|
let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0);
|
|
let t2 = inner_product(&l1, &r1);
|
|
|
|
let mut tau1 = Scalar::random(&mut *rng);
|
|
let mut tau2 = Scalar::random(&mut *rng);
|
|
|
|
let T1 = prove_multiexp(&[(t1, H()), (tau1, EdwardsPoint::generator())]);
|
|
let T2 = prove_multiexp(&[(t2, H()), (tau2, EdwardsPoint::generator())]);
|
|
|
|
let x =
|
|
hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]);
|
|
|
|
let taux = (tau2 * (x * x)) + (tau1 * x);
|
|
|
|
tau1.zeroize();
|
|
tau2.zeroize();
|
|
(T1, T2, x, taux)
|
|
};
|
|
|
|
let mu = (x * rho) + alpha;
|
|
alpha.zeroize();
|
|
rho.zeroize();
|
|
|
|
for (i, gamma) in commitments.iter().map(|c| Scalar(c.mask)).enumerate() {
|
|
taux += zpow[i + 2] * gamma;
|
|
}
|
|
|
|
let l = &l0 + &(l1 * x);
|
|
let r = &r0 + &(r1 * x);
|
|
|
|
let t = inner_product(&l, &r);
|
|
|
|
let x_ip =
|
|
hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]);
|
|
|
|
let mut a = l;
|
|
let mut b = r;
|
|
|
|
let yinv = y.invert().unwrap();
|
|
let yinvpow = ScalarVector::powers(yinv, MN);
|
|
|
|
let mut G_proof = generators.G[.. a.len()].to_vec();
|
|
let mut H_proof = generators.H[.. a.len()].to_vec();
|
|
H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow);
|
|
let U = H() * x_ip;
|
|
|
|
let mut L = Vec::with_capacity(logMN);
|
|
let mut R = Vec::with_capacity(logMN);
|
|
|
|
while a.len() != 1 {
|
|
let (aL, aR) = a.split();
|
|
let (bL, bR) = b.split();
|
|
|
|
let cL = inner_product(&aL, &bR);
|
|
let cR = inner_product(&aR, &bL);
|
|
|
|
let (G_L, G_R) = G_proof.split_at(aL.len());
|
|
let (H_L, H_R) = H_proof.split_at(aL.len());
|
|
|
|
let L_i = prove_multiexp(&LR_statements(&aL, G_R, &bR, H_L, cL, U));
|
|
let R_i = prove_multiexp(&LR_statements(&aR, G_L, &bL, H_R, cR, U));
|
|
L.push(L_i);
|
|
R.push(R_i);
|
|
|
|
let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]);
|
|
let winv = w.invert().unwrap();
|
|
|
|
a = (aL * w) + (aR * winv);
|
|
b = (bL * winv) + (bR * w);
|
|
|
|
if a.len() != 1 {
|
|
G_proof = hadamard_fold(G_L, G_R, winv, w);
|
|
H_proof = hadamard_fold(H_L, H_R, w, winv);
|
|
}
|
|
}
|
|
|
|
let res = OriginalStruct {
|
|
A: *A,
|
|
S: *S,
|
|
T1: *T1,
|
|
T2: *T2,
|
|
taux: *taux,
|
|
mu: *mu,
|
|
L: L.drain(..).map(|L| *L).collect(),
|
|
R: R.drain(..).map(|R| *R).collect(),
|
|
a: *a[0],
|
|
b: *b[0],
|
|
t: *t,
|
|
};
|
|
debug_assert!(res.verify(rng, &commitments_points));
|
|
res
|
|
}
|
|
|
|
#[must_use]
|
|
fn verify_core<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
|
|
&self,
|
|
rng: &mut R,
|
|
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
|
|
id: ID,
|
|
commitments: &[DalekPoint],
|
|
) -> bool {
|
|
// Verify commitments are valid
|
|
if commitments.is_empty() || (commitments.len() > MAX_M) {
|
|
return false;
|
|
}
|
|
|
|
// Verify L and R are properly sized
|
|
if self.L.len() != self.R.len() {
|
|
return false;
|
|
}
|
|
|
|
let (logMN, M, MN) = MN(commitments.len());
|
|
if self.L.len() != logMN {
|
|
return false;
|
|
}
|
|
|
|
// Rebuild all challenges
|
|
let (mut cache, commitments) = hash_commitments(commitments.iter().copied());
|
|
let y = hash_cache(&mut cache, &[self.A.compress().to_bytes(), self.S.compress().to_bytes()]);
|
|
|
|
let z = hash_to_scalar(&y.to_bytes());
|
|
cache = z;
|
|
|
|
let x = hash_cache(
|
|
&mut cache,
|
|
&[z.to_bytes(), self.T1.compress().to_bytes(), self.T2.compress().to_bytes()],
|
|
);
|
|
|
|
let x_ip = hash_cache(
|
|
&mut cache,
|
|
&[x.to_bytes(), self.taux.to_bytes(), self.mu.to_bytes(), self.t.to_bytes()],
|
|
);
|
|
|
|
let mut w = Vec::with_capacity(logMN);
|
|
let mut winv = Vec::with_capacity(logMN);
|
|
for (L, R) in self.L.iter().zip(&self.R) {
|
|
w.push(hash_cache(&mut cache, &[L.compress().to_bytes(), R.compress().to_bytes()]));
|
|
winv.push(cache.invert().unwrap());
|
|
}
|
|
|
|
// Convert the proof from * INV_EIGHT to its actual form
|
|
let normalize = |point: &DalekPoint| EdwardsPoint(point.mul_by_cofactor());
|
|
|
|
let L = self.L.iter().map(normalize).collect::<Vec<_>>();
|
|
let R = self.R.iter().map(normalize).collect::<Vec<_>>();
|
|
let T1 = normalize(&self.T1);
|
|
let T2 = normalize(&self.T2);
|
|
let A = normalize(&self.A);
|
|
let S = normalize(&self.S);
|
|
|
|
let commitments = commitments.iter().map(EdwardsPoint::mul_by_cofactor).collect::<Vec<_>>();
|
|
|
|
// Verify it
|
|
let mut proof = Vec::with_capacity(4 + commitments.len());
|
|
|
|
let zpow = ScalarVector::powers(z, M + 3);
|
|
let ip1y = ScalarVector::powers(y, M * N).sum();
|
|
let mut k = -(zpow[2] * ip1y);
|
|
for j in 1 ..= M {
|
|
k -= zpow[j + 2] * IP12();
|
|
}
|
|
let y1 = Scalar(self.t) - ((z * ip1y) + k);
|
|
proof.push((-y1, H()));
|
|
|
|
proof.push((-Scalar(self.taux), G));
|
|
|
|
for (j, commitment) in commitments.iter().enumerate() {
|
|
proof.push((zpow[j + 2], *commitment));
|
|
}
|
|
|
|
proof.push((x, T1));
|
|
proof.push((x * x, T2));
|
|
verifier.queue(&mut *rng, id, proof);
|
|
|
|
proof = Vec::with_capacity(4 + (2 * (MN + logMN)));
|
|
let z3 = (Scalar(self.t) - (Scalar(self.a) * Scalar(self.b))) * x_ip;
|
|
proof.push((z3, H()));
|
|
proof.push((-Scalar(self.mu), G));
|
|
|
|
proof.push((Scalar::ONE, A));
|
|
proof.push((x, S));
|
|
|
|
{
|
|
let ypow = ScalarVector::powers(y, MN);
|
|
let yinv = y.invert().unwrap();
|
|
let yinvpow = ScalarVector::powers(yinv, MN);
|
|
|
|
let w_cache = challenge_products(&w, &winv);
|
|
|
|
let generators = GENERATORS();
|
|
for i in 0 .. MN {
|
|
let g = (Scalar(self.a) * w_cache[i]) + z;
|
|
proof.push((-g, generators.G[i]));
|
|
|
|
let mut h = Scalar(self.b) * yinvpow[i] * w_cache[(!i) & (MN - 1)];
|
|
h -= ((zpow[(i / N) + 2] * TWO_N()[i % N]) + (z * ypow[i])) * yinvpow[i];
|
|
proof.push((-h, generators.H[i]));
|
|
}
|
|
}
|
|
|
|
for i in 0 .. logMN {
|
|
proof.push((w[i] * w[i], L[i]));
|
|
proof.push((winv[i] * winv[i], R[i]));
|
|
}
|
|
verifier.queue(rng, id, proof);
|
|
|
|
true
|
|
}
|
|
|
|
#[must_use]
|
|
pub(crate) fn verify<R: RngCore + CryptoRng>(
|
|
&self,
|
|
rng: &mut R,
|
|
commitments: &[DalekPoint],
|
|
) -> bool {
|
|
let mut verifier = BatchVerifier::new(1);
|
|
if self.verify_core(rng, &mut verifier, (), commitments) {
|
|
verifier.verify_vartime()
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
#[must_use]
|
|
pub(crate) fn batch_verify<ID: Copy + Zeroize, R: RngCore + CryptoRng>(
|
|
&self,
|
|
rng: &mut R,
|
|
verifier: &mut BatchVerifier<ID, EdwardsPoint>,
|
|
id: ID,
|
|
commitments: &[DalekPoint],
|
|
) -> bool {
|
|
self.verify_core(rng, verifier, id, commitments)
|
|
}
|
|
}
|