Files
serai/processor/src/coin/monero.rs
Luke Parker af86b7a499 Support caching preprocesses in FROST (#190)
* Remove the explicit included participants from FROST

Now, whoever submits preprocesses becomes the signing set. Better separates
preprocess from sign, at the cost of slightly more annoying integrations
(Monero needs to now independently lagrange/offset its key images).

* Support caching preprocesses

Closes https://github.com/serai-dex/serai/issues/40.

I *could* have added a serialization trait to Algorithm and written a ton of
data to disk, while requiring Algorithm implementors also accept such work.
Instead, I moved preprocess to a seeded RNG (Chacha20) which should be as
secure as the regular RNG. Rebuilding from cache simply loads the previously
used Chacha seed, making the Algorithm oblivious to the fact it's being
rebuilt from a cache. This removes any requirements for it to be modified
while guaranteeing equivalency.

This builds on the last commit which delayed determining the signing set till
post-preprocess acquisition. Unfortunately, that commit did force preprocess
from ThresholdView to ThresholdKeys which had visible effects on Monero.

Serai will actually need delayed set determination for #163, and overall,
it remains better, hence it's inclusion.

* Document FROST preprocess caching

* Update ethereum to new FROST

* Fix bug in Monero offset calculation and update processor
2022-12-08 19:04:35 -05:00

275 lines
7.3 KiB
Rust

use async_trait::async_trait;
use curve25519_dalek::scalar::Scalar;
use dalek_ff_group as dfg;
use transcript::RecommendedTranscript;
use frost::{curve::Ed25519, ThresholdKeys};
use monero_serai::{
transaction::Transaction,
block::Block,
rpc::Rpc,
wallet::{
ViewPair, Scanner,
address::{Network, MoneroAddress},
Fee, SpendableOutput, SignableTransaction as MSignableTransaction, TransactionMachine,
},
};
use crate::{
additional_key,
coin::{CoinError, Output as OutputTrait, Coin},
};
#[derive(Clone, Debug)]
pub struct Output(SpendableOutput);
impl From<SpendableOutput> for Output {
fn from(output: SpendableOutput) -> Output {
Output(output)
}
}
impl OutputTrait for Output {
// While we could use (tx, o), using the key ensures we won't be susceptible to the burning bug.
// While the Monero library offers a variant which allows senders to ensure their TXs have unique
// output keys, Serai can still be targeted using the classic burning bug
type Id = [u8; 32];
fn id(&self) -> Self::Id {
self.0.output.data.key.compress().to_bytes()
}
fn amount(&self) -> u64 {
self.0.commitment().amount
}
fn serialize(&self) -> Vec<u8> {
self.0.serialize()
}
fn deserialize<R: std::io::Read>(reader: &mut R) -> std::io::Result<Self> {
SpendableOutput::deserialize(reader).map(Output)
}
}
#[derive(Debug)]
pub struct SignableTransaction {
keys: ThresholdKeys<Ed25519>,
transcript: RecommendedTranscript,
// Monero height, defined as the length of the chain
height: usize,
actual: MSignableTransaction,
}
#[derive(Clone, Debug)]
pub struct Monero {
pub(crate) rpc: Rpc,
view: Scalar,
}
impl Monero {
pub async fn new(url: String) -> Monero {
Monero { rpc: Rpc::new(url).unwrap(), view: additional_key::<Monero>(0).0 }
}
fn scanner(&self, spend: dfg::EdwardsPoint) -> Scanner {
Scanner::from_view(ViewPair::new(spend.0, self.view), Network::Mainnet, None)
}
#[cfg(test)]
fn empty_scanner() -> Scanner {
use group::Group;
Scanner::from_view(
ViewPair::new(*dfg::EdwardsPoint::generator(), Scalar::one()),
Network::Mainnet,
Some(std::collections::HashSet::new()),
)
}
#[cfg(test)]
fn empty_address() -> MoneroAddress {
Self::empty_scanner().address()
}
}
#[async_trait]
impl Coin for Monero {
type Curve = Ed25519;
type Fee = Fee;
type Transaction = Transaction;
type Block = Block;
type Output = Output;
type SignableTransaction = SignableTransaction;
type TransactionMachine = TransactionMachine;
type Address = MoneroAddress;
const ID: &'static [u8] = b"Monero";
const CONFIRMATIONS: usize = 10;
// Testnet TX bb4d188a4c571f2f0de70dca9d475abc19078c10ffa8def26dd4f63ce1bcfd79 uses 146 inputs
// while using less than 100kb of space, albeit with just 2 outputs (though outputs share a BP)
// The TX size limit is half the contextual median block weight, where said weight is >= 300,000
// This means any TX which fits into 150kb will be accepted by Monero
// 128, even with 16 outputs, should fit into 100kb. Further efficiency by 192 may be viable
// TODO: Get hard numbers and tune
const MAX_INPUTS: usize = 128;
const MAX_OUTPUTS: usize = 16;
fn address(&self, key: dfg::EdwardsPoint) -> Self::Address {
self.scanner(key).address()
}
async fn get_latest_block_number(&self) -> Result<usize, CoinError> {
// Monero defines height as chain length, so subtract 1 for block number
Ok(self.rpc.get_height().await.map_err(|_| CoinError::ConnectionError)? - 1)
}
async fn get_block(&self, number: usize) -> Result<Self::Block, CoinError> {
self.rpc.get_block(number).await.map_err(|_| CoinError::ConnectionError)
}
async fn get_outputs(
&self,
block: &Self::Block,
key: dfg::EdwardsPoint,
) -> Result<Vec<Self::Output>, CoinError> {
Ok(
self
.scanner(key)
.scan(&self.rpc, block)
.await
.map_err(|_| CoinError::ConnectionError)?
.iter()
.flat_map(|outputs| outputs.not_locked())
.map(Output::from)
.collect(),
)
}
async fn is_confirmed(&self, tx: &[u8]) -> Result<bool, CoinError> {
let tx_block_number = self
.rpc
.get_transaction_block_number(tx)
.await
.map_err(|_| CoinError::ConnectionError)?
.unwrap_or(usize::MAX);
Ok((self.get_latest_block_number().await?.saturating_sub(tx_block_number) + 1) >= 10)
}
async fn prepare_send(
&self,
keys: ThresholdKeys<Ed25519>,
transcript: RecommendedTranscript,
block_number: usize,
mut inputs: Vec<Output>,
payments: &[(MoneroAddress, u64)],
fee: Fee,
) -> Result<SignableTransaction, CoinError> {
let spend = keys.group_key();
Ok(SignableTransaction {
keys,
transcript,
height: block_number + 1,
actual: MSignableTransaction::new(
self.rpc.get_protocol().await.unwrap(), // TODO: Make this deterministic
inputs.drain(..).map(|input| input.0).collect(),
payments.to_vec(),
Some(self.address(spend)),
None,
fee,
)
.map_err(|_| CoinError::ConnectionError)?,
})
}
async fn attempt_send(
&self,
transaction: SignableTransaction,
) -> Result<Self::TransactionMachine, CoinError> {
transaction
.actual
.clone()
.multisig(
&self.rpc,
transaction.keys.clone(),
transaction.transcript.clone(),
transaction.height,
)
.await
.map_err(|_| CoinError::ConnectionError)
}
async fn publish_transaction(
&self,
tx: &Self::Transaction,
) -> Result<(Vec<u8>, Vec<<Self::Output as OutputTrait>::Id>), CoinError> {
self.rpc.publish_transaction(tx).await.map_err(|_| CoinError::ConnectionError)?;
Ok((tx.hash().to_vec(), tx.prefix.outputs.iter().map(|output| output.key.to_bytes()).collect()))
}
#[cfg(test)]
async fn get_fee(&self) -> Self::Fee {
self.rpc.get_fee().await.unwrap()
}
#[cfg(test)]
async fn mine_block(&self) {
#[derive(serde::Deserialize, Debug)]
struct EmptyResponse {}
let _: EmptyResponse = self
.rpc
.rpc_call(
"json_rpc",
Some(serde_json::json!({
"method": "generateblocks",
"params": {
"wallet_address": Self::empty_address().to_string(),
"amount_of_blocks": 10
},
})),
)
.await
.unwrap();
}
#[cfg(test)]
async fn test_send(&self, address: Self::Address) {
use zeroize::Zeroizing;
use rand_core::OsRng;
let new_block = self.get_latest_block_number().await.unwrap() + 1;
self.mine_block().await;
for _ in 0 .. 7 {
self.mine_block().await;
}
let outputs = Self::empty_scanner()
.scan(&self.rpc, &self.rpc.get_block(new_block).await.unwrap())
.await
.unwrap()
.swap_remove(0)
.ignore_timelock();
let amount = outputs[0].commitment().amount;
let fee = 3000000000; // TODO
let tx = MSignableTransaction::new(
self.rpc.get_protocol().await.unwrap(),
outputs,
vec![(address, amount - fee)],
Some(Self::empty_address()),
None,
self.rpc.get_fee().await.unwrap(),
)
.unwrap()
.sign(&mut OsRng, &self.rpc, &Zeroizing::new(Scalar::one()))
.await
.unwrap();
self.rpc.publish_transaction(&tx).await.unwrap();
self.mine_block().await;
}
}