Files
serai/crypto/dkg/src/frost.rs
2023-03-07 03:26:39 -05:00

598 lines
21 KiB
Rust

use core::{marker::PhantomData, ops::Deref, fmt};
use std::{
io::{self, Read, Write},
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use transcript::{Transcript, RecommendedTranscript};
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
};
use ciphersuite::Ciphersuite;
use multiexp::{multiexp_vartime, BatchVerifier};
use schnorr::SchnorrSignature;
use crate::{
Participant, DkgError, ThresholdParams, ThresholdCore, validate_map,
encryption::{
ReadWrite, EncryptionKeyMessage, EncryptedMessage, Encryption, EncryptionKeyProof,
DecryptionError,
},
};
type FrostError<C> = DkgError<EncryptionKeyProof<C>>;
#[allow(non_snake_case)]
fn challenge<C: Ciphersuite>(context: &str, l: Participant, R: &[u8], Am: &[u8]) -> C::F {
let mut transcript = RecommendedTranscript::new(b"DKG FROST v0.2");
transcript.domain_separate(b"schnorr_proof_of_knowledge");
transcript.append_message(b"context", context.as_bytes());
transcript.append_message(b"participant", l.to_bytes());
transcript.append_message(b"nonce", R);
transcript.append_message(b"commitments", Am);
C::hash_to_F(b"DKG-FROST-proof_of_knowledge-0", &transcript.challenge(b"schnorr"))
}
/// The commitments message, intended to be broadcast to all other parties.
/// Every participant should only provide one set of commitments to all parties.
/// If any participant sends multiple sets of commitments, they are faulty and should be presumed
/// malicious.
/// As this library does not handle networking, it is also unable to detect if any participant is
/// so faulty. That responsibility lies with the caller.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct Commitments<C: Ciphersuite> {
commitments: Vec<C::G>,
cached_msg: Vec<u8>,
sig: SchnorrSignature<C>,
}
impl<C: Ciphersuite> ReadWrite for Commitments<C> {
fn read<R: Read>(reader: &mut R, params: ThresholdParams) -> io::Result<Self> {
let mut commitments = Vec::with_capacity(params.t().into());
let mut cached_msg = vec![];
#[allow(non_snake_case)]
let mut read_G = || -> io::Result<C::G> {
let mut buf = <C::G as GroupEncoding>::Repr::default();
reader.read_exact(buf.as_mut())?;
let point = C::read_G(&mut buf.as_ref())?;
cached_msg.extend(buf.as_ref());
Ok(point)
};
for _ in 0 .. params.t() {
commitments.push(read_G()?);
}
Ok(Commitments { commitments, cached_msg, sig: SchnorrSignature::read(reader)? })
}
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&self.cached_msg)?;
self.sig.write(writer)
}
}
/// State machine to begin the key generation protocol.
#[derive(Debug, Zeroize)]
pub struct KeyGenMachine<C: Ciphersuite> {
params: ThresholdParams,
context: String,
_curve: PhantomData<C>,
}
impl<C: Ciphersuite> KeyGenMachine<C> {
/// Creates a new machine to generate a key for the specified curve in the specified multisig.
// The context string should be unique among multisigs.
pub fn new(params: ThresholdParams, context: String) -> KeyGenMachine<C> {
KeyGenMachine { params, context, _curve: PhantomData }
}
/// Start generating a key according to the FROST DKG spec.
/// Returns a commitments message to be sent to all parties over an authenticated channel. If any
/// party submits multiple sets of commitments, they MUST be treated as malicious.
pub fn generate_coefficients<R: RngCore + CryptoRng>(
self,
rng: &mut R,
) -> (SecretShareMachine<C>, EncryptionKeyMessage<C, Commitments<C>>) {
let t = usize::from(self.params.t);
let mut coefficients = Vec::with_capacity(t);
let mut commitments = Vec::with_capacity(t);
let mut cached_msg = vec![];
for i in 0 .. t {
// Step 1: Generate t random values to form a polynomial with
coefficients.push(Zeroizing::new(C::random_nonzero_F(&mut *rng)));
// Step 3: Generate public commitments
commitments.push(C::generator() * coefficients[i].deref());
cached_msg.extend(commitments[i].to_bytes().as_ref());
}
// Step 2: Provide a proof of knowledge
let r = Zeroizing::new(C::random_nonzero_F(rng));
let nonce = C::generator() * r.deref();
let sig = SchnorrSignature::<C>::sign(
&coefficients[0],
// This could be deterministic as the PoK is a singleton never opened up to cooperative
// discussion
// There's no reason to spend the time and effort to make this deterministic besides a
// general obsession with canonicity and determinism though
r,
challenge::<C>(&self.context, self.params.i(), nonce.to_bytes().as_ref(), &cached_msg),
);
// Additionally create an encryption mechanism to protect the secret shares
let encryption = Encryption::new(self.context.clone(), self.params.i, rng);
// Step 4: Broadcast
let msg =
encryption.registration(Commitments { commitments: commitments.clone(), cached_msg, sig });
(
SecretShareMachine {
params: self.params,
context: self.context,
coefficients,
our_commitments: commitments,
encryption,
},
msg,
)
}
}
fn polynomial<F: PrimeField + Zeroize>(
coefficients: &[Zeroizing<F>],
l: Participant,
) -> Zeroizing<F> {
let l = F::from(u64::from(u16::from(l)));
// This should never be reached since Participant is explicitly non-zero
assert!(l != F::zero(), "zero participant passed to polynomial");
let mut share = Zeroizing::new(F::zero());
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
*share += coefficient.deref();
if idx != (coefficients.len() - 1) {
*share *= l;
}
}
share
}
/// The secret share message, to be sent to the party it's intended for over an authenticated
/// channel.
/// If any participant sends multiple secret shares to another participant, they are faulty.
// This should presumably be written as SecretShare(Zeroizing<F::Repr>).
// It's unfortunately not possible as F::Repr doesn't have Zeroize as a bound.
// The encryption system also explicitly uses Zeroizing<M> so it can ensure anything being
// encrypted is within Zeroizing. Accordingly, internally having Zeroizing would be redundant.
#[derive(Clone, PartialEq, Eq)]
pub struct SecretShare<F: PrimeField>(F::Repr);
impl<F: PrimeField> AsRef<[u8]> for SecretShare<F> {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl<F: PrimeField> AsMut<[u8]> for SecretShare<F> {
fn as_mut(&mut self) -> &mut [u8] {
self.0.as_mut()
}
}
impl<F: PrimeField> fmt::Debug for SecretShare<F> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("SecretShare").finish_non_exhaustive()
}
}
impl<F: PrimeField> Zeroize for SecretShare<F> {
fn zeroize(&mut self) {
self.0.as_mut().zeroize()
}
}
// Still manually implement ZeroizeOnDrop to ensure these don't stick around.
// We could replace Zeroizing<M> with a bound M: ZeroizeOnDrop.
// Doing so would potentially fail to highlight the expected behavior with these and remove a layer
// of depth.
impl<F: PrimeField> Drop for SecretShare<F> {
fn drop(&mut self) {
self.zeroize();
}
}
impl<F: PrimeField> ZeroizeOnDrop for SecretShare<F> {}
impl<F: PrimeField> ReadWrite for SecretShare<F> {
fn read<R: Read>(reader: &mut R, _: ThresholdParams) -> io::Result<Self> {
let mut repr = F::Repr::default();
reader.read_exact(repr.as_mut())?;
Ok(SecretShare(repr))
}
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(self.0.as_ref())
}
}
/// Advancement of the key generation state machine.
#[derive(Zeroize)]
pub struct SecretShareMachine<C: Ciphersuite> {
params: ThresholdParams,
context: String,
coefficients: Vec<Zeroizing<C::F>>,
our_commitments: Vec<C::G>,
encryption: Encryption<C>,
}
impl<C: Ciphersuite> fmt::Debug for SecretShareMachine<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("SecretShareMachine")
.field("params", &self.params)
.field("context", &self.context)
.field("our_commitments", &self.our_commitments)
.field("encryption", &self.encryption)
.finish_non_exhaustive()
}
}
impl<C: Ciphersuite> SecretShareMachine<C> {
/// Verify the data from the previous round (canonicity, PoKs, message authenticity)
#[allow(clippy::type_complexity)]
fn verify_r1<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
mut commitments: HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
) -> Result<HashMap<Participant, Vec<C::G>>, FrostError<C>> {
validate_map(
&commitments,
&(1 ..= self.params.n()).map(Participant).collect::<Vec<_>>(),
self.params.i(),
)?;
let mut batch = BatchVerifier::<Participant, C::G>::new(commitments.len());
let mut commitments = commitments
.drain()
.map(|(l, msg)| {
let mut msg = self.encryption.register(l, msg);
// Step 5: Validate each proof of knowledge
// This is solely the prep step for the latter batch verification
msg.sig.batch_verify(
rng,
&mut batch,
l,
msg.commitments[0],
challenge::<C>(&self.context, l, msg.sig.R.to_bytes().as_ref(), &msg.cached_msg),
);
(l, msg.commitments.drain(..).collect::<Vec<_>>())
})
.collect::<HashMap<_, _>>();
batch.verify_with_vartime_blame().map_err(FrostError::InvalidProofOfKnowledge)?;
commitments.insert(self.params.i, self.our_commitments.drain(..).collect());
Ok(commitments)
}
/// Continue generating a key.
/// Takes in everyone else's commitments. Returns a HashMap of encrypted secret shares to be sent
/// over authenticated channels to their relevant counterparties.
/// If any participant sends multiple secret shares to another participant, they are faulty.
#[allow(clippy::type_complexity)]
pub fn generate_secret_shares<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
commitments: HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
) -> Result<
(KeyMachine<C>, HashMap<Participant, EncryptedMessage<C, SecretShare<C::F>>>),
FrostError<C>,
> {
let commitments = self.verify_r1(&mut *rng, commitments)?;
// Step 1: Generate secret shares for all other parties
let mut res = HashMap::new();
for l in (1 ..= self.params.n()).map(Participant) {
// Don't insert our own shares to the byte buffer which is meant to be sent around
// An app developer could accidentally send it. Best to keep this black boxed
if l == self.params.i() {
continue;
}
let mut share = polynomial(&self.coefficients, l);
let share_bytes = Zeroizing::new(SecretShare::<C::F>(share.to_repr()));
share.zeroize();
res.insert(l, self.encryption.encrypt(rng, l, share_bytes));
}
// Calculate our own share
let share = polynomial(&self.coefficients, self.params.i());
self.coefficients.zeroize();
Ok((
KeyMachine { params: self.params, secret: share, commitments, encryption: self.encryption },
res,
))
}
}
/// Advancement of the the secret share state machine protocol.
/// This machine will 'complete' the protocol, by a local perspective, and can be the last
/// interactive component. In order to be secure, the parties must confirm having successfully
/// completed the protocol (an effort out of scope to this library), yet this is modelled by one
/// more state transition.
pub struct KeyMachine<C: Ciphersuite> {
params: ThresholdParams,
secret: Zeroizing<C::F>,
commitments: HashMap<Participant, Vec<C::G>>,
encryption: Encryption<C>,
}
impl<C: Ciphersuite> fmt::Debug for KeyMachine<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("KeyMachine")
.field("params", &self.params)
.field("commitments", &self.commitments)
.field("encryption", &self.encryption)
.finish_non_exhaustive()
}
}
impl<C: Ciphersuite> Zeroize for KeyMachine<C> {
fn zeroize(&mut self) {
self.params.zeroize();
self.secret.zeroize();
for (_, commitments) in self.commitments.iter_mut() {
commitments.zeroize();
}
self.encryption.zeroize();
}
}
// Calculate the exponent for a given participant and apply it to a series of commitments
// Initially used with the actual commitments to verify the secret share, later used with
// stripes to generate the verification shares
fn exponential<C: Ciphersuite>(i: Participant, values: &[C::G]) -> Vec<(C::F, C::G)> {
let i = C::F::from(u16::from(i).into());
let mut res = Vec::with_capacity(values.len());
(0 .. values.len()).fold(C::F::one(), |exp, l| {
res.push((exp, values[l]));
exp * i
});
res
}
fn share_verification_statements<C: Ciphersuite>(
target: Participant,
commitments: &[C::G],
mut share: Zeroizing<C::F>,
) -> Vec<(C::F, C::G)> {
// This can be insecurely linearized from n * t to just n using the below sums for a given
// stripe. Doing so uses naive addition which is subject to malleability. The only way to
// ensure that malleability isn't present is to use this n * t algorithm, which runs
// per sender and not as an aggregate of all senders, which also enables blame
let mut values = exponential::<C>(target, commitments);
// Perform the share multiplication outside of the multiexp to minimize stack copying
// While the multiexp BatchVerifier does zeroize its flattened multiexp, and itself, it still
// converts whatever we give to an iterator and then builds a Vec internally, welcoming copies
let neg_share_pub = C::generator() * -*share;
share.zeroize();
values.push((C::F::one(), neg_share_pub));
values
}
#[derive(Clone, Copy, Hash, Debug, Zeroize)]
enum BatchId {
Decryption(Participant),
Share(Participant),
}
impl<C: Ciphersuite> KeyMachine<C> {
/// Calculate our share given the shares sent to us.
/// Returns a BlameMachine usable to determine if faults in the protocol occurred.
/// Will error on, and return a blame proof for, the first-observed case of faulty behavior.
pub fn calculate_share<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
mut shares: HashMap<Participant, EncryptedMessage<C, SecretShare<C::F>>>,
) -> Result<BlameMachine<C>, FrostError<C>> {
validate_map(
&shares,
&(1 ..= self.params.n()).map(Participant).collect::<Vec<_>>(),
self.params.i(),
)?;
let mut batch = BatchVerifier::new(shares.len());
let mut blames = HashMap::new();
for (l, share_bytes) in shares.drain() {
let (mut share_bytes, blame) =
self.encryption.decrypt(rng, &mut batch, BatchId::Decryption(l), l, share_bytes);
let share =
Zeroizing::new(Option::<C::F>::from(C::F::from_repr(share_bytes.0)).ok_or_else(|| {
FrostError::InvalidShare { participant: l, blame: Some(blame.clone()) }
})?);
share_bytes.zeroize();
*self.secret += share.deref();
blames.insert(l, blame);
batch.queue(
rng,
BatchId::Share(l),
share_verification_statements::<C>(self.params.i(), &self.commitments[&l], share),
);
}
batch.verify_with_vartime_blame().map_err(|id| {
let (l, blame) = match id {
BatchId::Decryption(l) => (l, None),
BatchId::Share(l) => (l, Some(blames.remove(&l).unwrap())),
};
FrostError::InvalidShare { participant: l, blame }
})?;
// Stripe commitments per t and sum them in advance. Calculating verification shares relies on
// these sums so preprocessing them is a massive speedup
// If these weren't just sums, yet the tables used in multiexp, this would be further optimized
// As of right now, each multiexp will regenerate them
let mut stripes = Vec::with_capacity(usize::from(self.params.t()));
for t in 0 .. usize::from(self.params.t()) {
stripes.push(self.commitments.values().map(|commitments| commitments[t]).sum());
}
// Calculate each user's verification share
let mut verification_shares = HashMap::new();
for i in (1 ..= self.params.n()).map(Participant) {
verification_shares.insert(
i,
if i == self.params.i() {
C::generator() * self.secret.deref()
} else {
multiexp_vartime(&exponential::<C>(i, &stripes))
},
);
}
let KeyMachine { commitments, encryption, params, secret } = self;
Ok(BlameMachine {
commitments,
encryption,
result: ThresholdCore {
params,
secret_share: secret,
group_key: stripes[0],
verification_shares,
},
})
}
}
pub struct BlameMachine<C: Ciphersuite> {
commitments: HashMap<Participant, Vec<C::G>>,
encryption: Encryption<C>,
result: ThresholdCore<C>,
}
impl<C: Ciphersuite> fmt::Debug for BlameMachine<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("BlameMachine")
.field("commitments", &self.commitments)
.field("encryption", &self.encryption)
.finish_non_exhaustive()
}
}
impl<C: Ciphersuite> Zeroize for BlameMachine<C> {
fn zeroize(&mut self) {
for (_, commitments) in self.commitments.iter_mut() {
commitments.zeroize();
}
self.encryption.zeroize();
self.result.zeroize();
}
}
impl<C: Ciphersuite> BlameMachine<C> {
/// Mark the protocol as having been successfully completed, returning the generated keys.
/// This should only be called after having confirmed, with all participants, successful
/// completion.
///
/// Confirming successful completion is not necessarily as simple as everyone reporting their
/// completion. Everyone must also receive everyone's report of completion, entering into the
/// territory of consensus protocols. This library does not handle that nor does it provide any
/// tooling to do so. This function is solely intended to force users to acknowledge they're
/// completing the protocol, not processing any blame.
pub fn complete(self) -> ThresholdCore<C> {
self.result
}
fn blame_internal(
&self,
sender: Participant,
recipient: Participant,
msg: EncryptedMessage<C, SecretShare<C::F>>,
proof: Option<EncryptionKeyProof<C>>,
) -> Participant {
let share_bytes = match self.encryption.decrypt_with_proof(sender, recipient, msg, proof) {
Ok(share_bytes) => share_bytes,
// If there's an invalid signature, the sender did not send a properly formed message
Err(DecryptionError::InvalidSignature) => return sender,
// Decryption will fail if the provided ECDH key wasn't correct for the given message
Err(DecryptionError::InvalidProof) => return recipient,
};
let share = match Option::<C::F>::from(C::F::from_repr(share_bytes.0)) {
Some(share) => share,
// If this isn't a valid scalar, the sender is faulty
None => return sender,
};
// If this isn't a valid share, the sender is faulty
if !bool::from(
multiexp_vartime(&share_verification_statements::<C>(
recipient,
&self.commitments[&sender],
Zeroizing::new(share),
))
.is_identity(),
) {
return sender;
}
// The share was canonical and valid
recipient
}
/// Given an accusation of fault, determine the faulty party (either the sender, who sent an
/// invalid secret share, or the receiver, who claimed a valid secret share was invalid). No
/// matter which, prevent completion of the machine, forcing an abort of the protocol.
///
/// The message should be a copy of the encrypted secret share from the accused sender to the
/// accusing recipient. This message must have been authenticated as actually having come from
/// the sender in question.
///
/// In order to enable detecting multiple faults, an `AdditionalBlameMachine` is returned, which
/// can be used to determine further blame. These machines will process the same blame statements
/// multiple times, always identifying blame. It is the caller's job to ensure they're unique in
/// order to prevent multiple instances of blame over a single incident.
pub fn blame(
self,
sender: Participant,
recipient: Participant,
msg: EncryptedMessage<C, SecretShare<C::F>>,
proof: Option<EncryptionKeyProof<C>>,
) -> (AdditionalBlameMachine<C>, Participant) {
let faulty = self.blame_internal(sender, recipient, msg, proof);
(AdditionalBlameMachine(self), faulty)
}
}
#[derive(Debug, Zeroize)]
pub struct AdditionalBlameMachine<C: Ciphersuite>(BlameMachine<C>);
impl<C: Ciphersuite> AdditionalBlameMachine<C> {
/// Given an accusation of fault, determine the faulty party (either the sender, who sent an
/// invalid secret share, or the receiver, who claimed a valid secret share was invalid).
///
/// The message should be a copy of the encrypted secret share from the accused sender to the
/// accusing recipient. This message must have been authenticated as actually having come from
/// the sender in question.
///
/// This will process the same blame statement multiple times, always identifying blame. It is
/// the caller's job to ensure they're unique in order to prevent multiple instances of blame
/// over a single incident.
pub fn blame(
self,
sender: Participant,
recipient: Participant,
msg: EncryptedMessage<C, SecretShare<C::F>>,
proof: Option<EncryptionKeyProof<C>>,
) -> Participant {
self.0.blame_internal(sender, recipient, msg, proof)
}
}