Files
serai/tests/processor/src/networks.rs
Luke Parker e4e4245ee3 One Round DKG (#589)
* Upstream GBP, divisor, circuit abstraction, and EC gadgets from FCMP++

* Initial eVRF implementation

Not quite done yet. It needs to communicate the resulting points and proofs to
extract them from the Pedersen Commitments in order to return those, and then
be tested.

* Add the openings of the PCs to the eVRF as necessary

* Add implementation of secq256k1

* Make DKG Encryption a bit more flexible

No longer requires the use of an EncryptionKeyMessage, and allows pre-defined
keys for encryption.

* Make NUM_BITS an argument for the field macro

* Have the eVRF take a Zeroizing private key

* Initial eVRF-based DKG

* Add embedwards25519 curve

* Inline the eVRF into the DKG library

Due to how we're handling share encryption, we'd either need two circuits or to
dedicate this circuit to the DKG. The latter makes sense at this time.

* Add documentation to the eVRF-based DKG

* Add paragraph claiming robustness

* Update to the new eVRF proof

* Finish routing the eVRF functionality

Still needs errors and serialization, along with a few other TODOs.

* Add initial eVRF DKG test

* Improve eVRF DKG

Updates how we calculcate verification shares, improves performance when
extracting multiple sets of keys, and adds more to the test for it.

* Start using a proper error for the eVRF DKG

* Resolve various TODOs

Supports recovering multiple key shares from the eVRF DKG.

Inlines two loops to save 2**16 iterations.

Adds support for creating a constant time representation of scalars < NUM_BITS.

* Ban zero ECDH keys, document non-zero requirements

* Implement eVRF traits, all the way up to the DKG, for secp256k1/ed25519

* Add Ristretto eVRF trait impls

* Support participating multiple times in the eVRF DKG

* Only participate once per key, not once per key share

* Rewrite processor key-gen around the eVRF DKG

Still a WIP.

* Finish routing the new key gen in the processor

Doesn't touch the tests, coordinator, nor Substrate yet.
`cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor`
does pass.

* Deduplicate and better document in processor key_gen

* Update serai-processor tests to the new key gen

* Correct amount of yx coefficients, get processor key gen test to pass

* Add embedded elliptic curve keys to Substrate

* Update processor key gen tests to the eVRF DKG

* Have set_keys take signature_participants, not removed_participants

Now no one is removed from the DKG. Only `t` people publish the key however.

Uses a BitVec for an efficient encoding of the participants.

* Update the coordinator binary for the new DKG

This does not yet update any tests.

* Add sensible Debug to key_gen::[Processor, Coordinator]Message

* Have the DKG explicitly declare how to interpolate its shares

Removes the hack for MuSig where we multiply keys by the inverse of their
lagrange interpolation factor.

* Replace Interpolation::None with Interpolation::Constant

Allows the MuSig DKG to keep the secret share as the original private key,
enabling deriving FROST nonces consistently regardless of the MuSig context.

* Get coordinator tests to pass

* Update spec to the new DKG

* Get clippy to pass across the repo

* cargo machete

* Add an extra sleep to ensure expected ordering of `Participation`s

* Update orchestration

* Remove bad panic in coordinator

It expected ConfirmationShare to be n-of-n, not t-of-n.

* Improve documentation on  functions

* Update TX size limit

We now no longer have to support the ridiculous case of having 49 DKG
participations within a 101-of-150 DKG. It does remain quite high due to
needing to _sign_ so many times. It'd may be optimal for parties with multiple
key shares to independently send their preprocesses/shares (despite the
overhead that'll cause with signatures and the transaction structure).

* Correct error in the Processor spec document

* Update a few comments in the validator-sets pallet

* Send/Recv Participation one at a time

Sending all, then attempting to receive all in an expected order, wasn't working
even with notable delays between sending messages. This points to the mempool
not working as expected...

* Correct ThresholdKeys serialization in modular-frost test

* Updating existing TX size limit test for the new DKG parameters

* Increase time allowed for the DKG on the GH CI

* Correct construction of signature_participants in serai-client tests

Fault identified by akil.

* Further contextualize DkgConfirmer by ValidatorSet

Caught by a safety check we wouldn't reuse preprocesses across messages. That
raises the question of we were prior reusing preprocesses (reusing keys)?
Except that'd have caused a variety of signing failures (suggesting we had some
staggered timing avoiding it in practice but yes, this was possible in theory).

* Add necessary calls to set_embedded_elliptic_curve_key in coordinator set rotation tests

* Correct shimmed setting of a secq256k1 key

* cargo fmt

* Don't use `[0; 32]` for the embedded keys in the coordinator rotation test

The key_gen function expects the random values already decided.

* Big-endian secq256k1 scalars

Also restores the prior, safer, Encryption::register function.
2024-09-19 21:43:26 -04:00

522 lines
17 KiB
Rust

use zeroize::Zeroizing;
use rand_core::{RngCore, OsRng};
use scale::Encode;
use serai_client::{
primitives::{Amount, NetworkId, Coin, Balance, ExternalAddress},
validator_sets::primitives::ExternalKey,
in_instructions::primitives::{InInstruction, RefundableInInstruction, Shorthand},
};
use dockertest::{PullPolicy, Image, StartPolicy, TestBodySpecification, DockerOperations};
use crate::*;
pub const RPC_USER: &str = "serai";
pub const RPC_PASS: &str = "seraidex";
pub const BTC_PORT: u32 = 8332;
pub const ETH_PORT: u32 = 8545;
pub const XMR_PORT: u32 = 18081;
pub fn bitcoin_instance() -> (TestBodySpecification, u32) {
serai_docker_tests::build("bitcoin".to_string());
let composition = TestBodySpecification::with_image(
Image::with_repository("serai-dev-bitcoin").pull_policy(PullPolicy::Never),
)
.set_publish_all_ports(true);
(composition, BTC_PORT)
}
pub fn ethereum_instance() -> (TestBodySpecification, u32) {
serai_docker_tests::build("ethereum".to_string());
let composition = TestBodySpecification::with_image(
Image::with_repository("serai-dev-ethereum").pull_policy(PullPolicy::Never),
)
.set_start_policy(StartPolicy::Strict)
.set_publish_all_ports(true);
(composition, ETH_PORT)
}
pub fn monero_instance() -> (TestBodySpecification, u32) {
serai_docker_tests::build("monero".to_string());
let composition = TestBodySpecification::with_image(
Image::with_repository("serai-dev-monero").pull_policy(PullPolicy::Never),
)
.set_start_policy(StartPolicy::Strict)
.set_publish_all_ports(true);
(composition, XMR_PORT)
}
pub fn network_instance(network: NetworkId) -> (TestBodySpecification, u32) {
match network {
NetworkId::Bitcoin => bitcoin_instance(),
NetworkId::Ethereum => ethereum_instance(),
NetworkId::Monero => monero_instance(),
NetworkId::Serai => {
panic!("Serai is not a valid network to spawn an instance of for a processor")
}
}
}
pub fn network_rpc(network: NetworkId, ops: &DockerOperations, handle: &str) -> String {
let (ip, port) = ops
.handle(handle)
.host_port(match network {
NetworkId::Bitcoin => BTC_PORT,
NetworkId::Ethereum => ETH_PORT,
NetworkId::Monero => XMR_PORT,
NetworkId::Serai => panic!("getting port for external network yet it was Serai"),
})
.unwrap();
format!("http://{RPC_USER}:{RPC_PASS}@{ip}:{port}")
}
pub fn confirmations(network: NetworkId) -> usize {
use processor::networks::*;
match network {
NetworkId::Bitcoin => Bitcoin::CONFIRMATIONS,
NetworkId::Ethereum => Ethereum::<serai_db::MemDb>::CONFIRMATIONS,
NetworkId::Monero => Monero::CONFIRMATIONS,
NetworkId::Serai => panic!("getting confirmations required for Serai"),
}
}
#[derive(Clone)]
pub enum Wallet {
Bitcoin {
private_key: bitcoin_serai::bitcoin::PrivateKey,
public_key: bitcoin_serai::bitcoin::PublicKey,
input_tx: bitcoin_serai::bitcoin::Transaction,
},
Ethereum {
rpc_url: String,
key: <ciphersuite::Secp256k1 as Ciphersuite>::F,
nonce: u64,
},
Monero {
handle: String,
spend_key: Zeroizing<curve25519_dalek::scalar::Scalar>,
view_pair: monero_wallet::ViewPair,
last_tx: (usize, [u8; 32]),
},
}
// TODO: Merge these functions with the processor's tests, which offers very similar functionality
impl Wallet {
pub async fn new(network: NetworkId, ops: &DockerOperations, handle: String) -> Wallet {
let rpc_url = network_rpc(network, ops, &handle);
match network {
NetworkId::Bitcoin => {
use bitcoin_serai::{
bitcoin::{
secp256k1::{SECP256K1, SecretKey},
PrivateKey, PublicKey, ScriptBuf, Network, Address,
},
rpc::Rpc,
};
let secret_key = SecretKey::new(&mut rand_core::OsRng);
let private_key = PrivateKey::new(secret_key, Network::Regtest);
let public_key = PublicKey::from_private_key(SECP256K1, &private_key);
let main_addr = Address::p2pkh(public_key, Network::Regtest);
let rpc = Rpc::new(rpc_url).await.expect("couldn't connect to the Bitcoin RPC");
let new_block = rpc.get_latest_block_number().await.unwrap() + 1;
rpc
.rpc_call::<Vec<String>>("generatetoaddress", serde_json::json!([1, main_addr]))
.await
.unwrap();
// Mine it to maturity
rpc
.rpc_call::<Vec<String>>(
"generatetoaddress",
serde_json::json!([100, Address::p2sh(&ScriptBuf::new(), Network::Regtest).unwrap()]),
)
.await
.unwrap();
let funds = rpc
.get_block(&rpc.get_block_hash(new_block).await.unwrap())
.await
.unwrap()
.txdata
.swap_remove(0);
Wallet::Bitcoin { private_key, public_key, input_tx: funds }
}
NetworkId::Ethereum => {
use ciphersuite::{group::ff::Field, Secp256k1};
use ethereum_serai::alloy::{
primitives::{U256, Address},
simple_request_transport::SimpleRequest,
rpc_client::ClientBuilder,
provider::{Provider, RootProvider},
network::Ethereum,
};
let key = <Secp256k1 as Ciphersuite>::F::random(&mut OsRng);
let address =
ethereum_serai::crypto::address(&(<Secp256k1 as Ciphersuite>::generator() * key));
let provider = RootProvider::<_, Ethereum>::new(
ClientBuilder::default().transport(SimpleRequest::new(rpc_url.clone()), true),
);
provider
.raw_request::<_, ()>(
"anvil_setBalance".into(),
[Address(address.into()).to_string(), {
let nine_decimals = U256::from(1_000_000_000u64);
(U256::from(100u64) * nine_decimals * nine_decimals).to_string()
}],
)
.await
.unwrap();
Wallet::Ethereum { rpc_url: rpc_url.clone(), key, nonce: 0 }
}
NetworkId::Monero => {
use curve25519_dalek::{constants::ED25519_BASEPOINT_POINT, scalar::Scalar};
use monero_simple_request_rpc::SimpleRequestRpc;
use monero_wallet::{rpc::Rpc, address::Network, ViewPair};
let spend_key = Scalar::random(&mut OsRng);
let view_key = Scalar::random(&mut OsRng);
let view_pair =
ViewPair::new(ED25519_BASEPOINT_POINT * spend_key, Zeroizing::new(view_key)).unwrap();
let rpc = SimpleRequestRpc::new(rpc_url).await.expect("couldn't connect to the Monero RPC");
let height = rpc.get_height().await.unwrap();
// Mines 200 blocks so sufficient decoys exist, as only 60 is needed for maturity
rpc.generate_blocks(&view_pair.legacy_address(Network::Mainnet), 200).await.unwrap();
let block = rpc.get_block(rpc.get_block_hash(height).await.unwrap()).await.unwrap();
Wallet::Monero {
handle,
spend_key: Zeroizing::new(spend_key),
view_pair,
last_tx: (height, block.miner_transaction.hash()),
}
}
NetworkId::Serai => panic!("creating a wallet for for Serai"),
}
}
pub async fn send_to_address(
&mut self,
ops: &DockerOperations,
to: &ExternalKey,
instruction: Option<InInstruction>,
) -> (Vec<u8>, Balance) {
match self {
Wallet::Bitcoin { private_key, public_key, ref mut input_tx } => {
use bitcoin_serai::bitcoin::{
secp256k1::{SECP256K1, Message},
key::{XOnlyPublicKey, TweakedPublicKey},
consensus::Encodable,
sighash::{EcdsaSighashType, SighashCache},
script::{PushBytesBuf, Script, ScriptBuf, Builder},
OutPoint, Sequence, Witness, TxIn, Amount, TxOut,
absolute::LockTime,
transaction::{Version, Transaction},
};
const AMOUNT: u64 = 100000000;
let mut tx = Transaction {
version: Version(2),
lock_time: LockTime::ZERO,
input: vec![TxIn {
previous_output: OutPoint { txid: input_tx.compute_txid(), vout: 0 },
script_sig: Script::new().into(),
sequence: Sequence(u32::MAX),
witness: Witness::default(),
}],
output: vec![
TxOut {
value: Amount::from_sat(input_tx.output[0].value.to_sat() - AMOUNT - 10000),
script_pubkey: input_tx.output[0].script_pubkey.clone(),
},
TxOut {
value: Amount::from_sat(AMOUNT),
script_pubkey: ScriptBuf::new_p2tr_tweaked(
TweakedPublicKey::dangerous_assume_tweaked(
XOnlyPublicKey::from_slice(&to[1 ..]).unwrap(),
),
),
},
],
};
if let Some(instruction) = instruction {
tx.output.push(TxOut {
value: Amount::ZERO,
script_pubkey: ScriptBuf::new_op_return(
PushBytesBuf::try_from(
Shorthand::Raw(RefundableInInstruction { origin: None, instruction }).encode(),
)
.unwrap(),
),
});
}
let mut der = SECP256K1
.sign_ecdsa_low_r(
&Message::from_digest_slice(
SighashCache::new(&tx)
.legacy_signature_hash(
0,
&input_tx.output[0].script_pubkey,
EcdsaSighashType::All.to_u32(),
)
.unwrap()
.to_raw_hash()
.as_ref(),
)
.unwrap(),
&private_key.inner,
)
.serialize_der()
.to_vec();
der.push(1);
tx.input[0].script_sig = Builder::new()
.push_slice(PushBytesBuf::try_from(der).unwrap())
.push_key(public_key)
.into_script();
let mut buf = vec![];
tx.consensus_encode(&mut buf).unwrap();
*input_tx = tx;
(buf, Balance { coin: Coin::Bitcoin, amount: Amount(AMOUNT) })
}
Wallet::Ethereum { rpc_url, key, ref mut nonce } => {
use std::sync::Arc;
use ethereum_serai::{
alloy::{
primitives::{U256, Signature, TxKind},
sol_types::SolCall,
simple_request_transport::SimpleRequest,
consensus::{TxLegacy, SignableTransaction},
rpc_client::ClientBuilder,
provider::{Provider, RootProvider},
network::Ethereum,
},
crypto::PublicKey,
deployer::Deployer,
};
let eight_decimals = U256::from(100_000_000u64);
let nine_decimals = eight_decimals * U256::from(10u64);
let eighteen_decimals = nine_decimals * nine_decimals;
let one_eth = eighteen_decimals;
let provider = Arc::new(RootProvider::<_, Ethereum>::new(
ClientBuilder::default().transport(SimpleRequest::new(rpc_url.clone()), true),
));
let to_as_key = PublicKey::new(
<ciphersuite::Secp256k1 as Ciphersuite>::read_G(&mut to.as_slice()).unwrap(),
)
.unwrap();
let router_addr = {
// Find the deployer
let deployer = Deployer::new(provider.clone()).await.unwrap().unwrap();
// Find the router, deploying if non-existent
let router = if let Some(router) =
deployer.find_router(provider.clone(), &to_as_key).await.unwrap()
{
router
} else {
let mut tx = deployer.deploy_router(&to_as_key);
tx.gas_price = 1_000_000_000u64.into();
let tx = ethereum_serai::crypto::deterministically_sign(&tx);
let signer = tx.recover_signer().unwrap();
let (tx, sig, _) = tx.into_parts();
provider
.raw_request::<_, ()>(
"anvil_setBalance".into(),
[signer.to_string(), (tx.gas_limit * tx.gas_price).to_string()],
)
.await
.unwrap();
let mut bytes = vec![];
tx.encode_with_signature_fields(&Signature::from(sig), &mut bytes);
let _ = provider.send_raw_transaction(&bytes).await.unwrap();
provider.raw_request::<_, ()>("anvil_mine".into(), [96]).await.unwrap();
deployer.find_router(provider.clone(), &to_as_key).await.unwrap().unwrap()
};
router.address()
};
let tx = TxLegacy {
chain_id: None,
nonce: *nonce,
gas_price: 1_000_000_000u128,
gas_limit: 200_000u128,
to: TxKind::Call(router_addr.into()),
// 1 ETH
value: one_eth,
input: ethereum_serai::router::abi::inInstructionCall::new((
[0; 20].into(),
one_eth,
if let Some(instruction) = instruction {
Shorthand::Raw(RefundableInInstruction { origin: None, instruction }).encode().into()
} else {
vec![].into()
},
))
.abi_encode()
.into(),
};
*nonce += 1;
let sig =
k256::ecdsa::SigningKey::from(k256::elliptic_curve::NonZeroScalar::new(*key).unwrap())
.sign_prehash_recoverable(tx.signature_hash().as_ref())
.unwrap();
let mut bytes = vec![];
tx.encode_with_signature_fields(&Signature::from(sig), &mut bytes);
// We drop the bottom 10 decimals
(
bytes,
Balance { coin: Coin::Ether, amount: Amount(u64::try_from(eight_decimals).unwrap()) },
)
}
Wallet::Monero { handle, ref spend_key, ref view_pair, ref mut last_tx } => {
use curve25519_dalek::constants::ED25519_BASEPOINT_POINT;
use monero_simple_request_rpc::SimpleRequestRpc;
use monero_wallet::{
io::decompress_point,
ringct::RctType,
rpc::{FeePriority, Rpc},
address::{Network, AddressType, Address},
Scanner, OutputWithDecoys,
send::{Change, SignableTransaction},
};
use processor::{additional_key, networks::Monero};
let rpc_url = network_rpc(NetworkId::Monero, ops, handle);
let rpc = SimpleRequestRpc::new(rpc_url).await.expect("couldn't connect to the Monero RPC");
// Prepare inputs
let current_height = rpc.get_height().await.unwrap();
let mut outputs = vec![];
for block in last_tx.0 .. current_height {
let block = rpc.get_block_by_number(block).await.unwrap();
if (block.miner_transaction.hash() == last_tx.1) ||
block.transactions.contains(&last_tx.1)
{
outputs = Scanner::new(view_pair.clone())
.scan(rpc.get_scannable_block(block).await.unwrap())
.unwrap()
.ignore_additional_timelock();
}
}
assert!(!outputs.is_empty());
let mut inputs = Vec::with_capacity(outputs.len());
for output in outputs {
inputs.push(
OutputWithDecoys::fingerprintable_deterministic_new(
&mut OsRng,
&rpc,
16,
rpc.get_height().await.unwrap(),
output,
)
.await
.unwrap(),
);
}
let to_spend_key = decompress_point(<[u8; 32]>::try_from(to.as_slice()).unwrap()).unwrap();
let to_view_key = additional_key::<Monero>(0);
let to_addr = Address::new(
Network::Mainnet,
AddressType::Featured { subaddress: false, payment_id: None, guaranteed: true },
to_spend_key,
ED25519_BASEPOINT_POINT * to_view_key.0,
);
// Create and sign the TX
const AMOUNT: u64 = 1_000_000_000_000;
let mut data = vec![];
if let Some(instruction) = instruction {
data.push(Shorthand::Raw(RefundableInInstruction { origin: None, instruction }).encode());
}
let mut outgoing_view_key = Zeroizing::new([0; 32]);
OsRng.fill_bytes(outgoing_view_key.as_mut());
let tx = SignableTransaction::new(
RctType::ClsagBulletproofPlus,
outgoing_view_key,
inputs,
vec![(to_addr, AMOUNT)],
Change::new(view_pair.clone(), None),
data,
rpc.get_fee_rate(FeePriority::Unimportant).await.unwrap(),
)
.unwrap()
.sign(&mut OsRng, spend_key)
.unwrap();
// Update the last TX to track the change output
last_tx.0 = current_height;
last_tx.1 = tx.hash();
(tx.serialize(), Balance { coin: Coin::Monero, amount: Amount(AMOUNT) })
}
}
}
pub fn address(&self) -> ExternalAddress {
use serai_client::networks;
match self {
Wallet::Bitcoin { public_key, .. } => {
use bitcoin_serai::bitcoin::ScriptBuf;
ExternalAddress::new(
networks::bitcoin::Address::new(ScriptBuf::new_p2pkh(&public_key.pubkey_hash()))
.unwrap()
.into(),
)
.unwrap()
}
Wallet::Ethereum { key, .. } => ExternalAddress::new(
ethereum_serai::crypto::address(&(ciphersuite::Secp256k1::generator() * key)).into(),
)
.unwrap(),
Wallet::Monero { view_pair, .. } => {
use monero_wallet::address::Network;
ExternalAddress::new(
networks::monero::Address::new(view_pair.legacy_address(Network::Mainnet))
.unwrap()
.into(),
)
.unwrap()
}
}
}
}