mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 20:29:23 +00:00
288 lines
8.3 KiB
Rust
288 lines
8.3 KiB
Rust
use core::ops::{DerefMut, Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign};
|
|
|
|
use zeroize::Zeroize;
|
|
use rand_core::RngCore;
|
|
|
|
use subtle::{
|
|
Choice, CtOption, ConstantTimeEq, ConstantTimeLess, ConditionallyNegatable,
|
|
ConditionallySelectable,
|
|
};
|
|
|
|
use crypto_bigint::{Integer, NonZero, Encoding, U256, U512};
|
|
|
|
use group::ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
|
|
|
|
use crate::{u8_from_bool, constant_time, math, from_uint};
|
|
|
|
// 2^255 - 19
|
|
// Uses saturating_sub because checked_sub isn't available at compile time
|
|
const MODULUS: U256 = U256::from_u8(1).shl_vartime(255).saturating_sub(&U256::from_u8(19));
|
|
const WIDE_MODULUS: U512 = U256::ZERO.concat(&MODULUS);
|
|
|
|
/// A constant-time implementation of the Ed25519 field.
|
|
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
|
|
pub struct FieldElement(U256);
|
|
|
|
/*
|
|
The following is a valid const definition of sqrt(-1) yet exceeds the const_eval_limit by 24x.
|
|
Accordingly, it'd only be usable on a nightly compiler with the following crate attributes:
|
|
#![feature(const_eval_limit)]
|
|
#![const_eval_limit = "24000000"]
|
|
|
|
const SQRT_M1: FieldElement = {
|
|
// Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
|
|
// 2 ** ((MODULUS - 1) // 4) % MODULUS
|
|
let base = U256::from_u8(2);
|
|
let exp = MODULUS.saturating_sub(&U256::from_u8(1)).wrapping_div(&U256::from_u8(4));
|
|
|
|
const fn mul(x: U256, y: U256) -> U256 {
|
|
let wide = U256::mul_wide(&x, &y);
|
|
let wide = U256::concat(&wide.1, &wide.0);
|
|
wide.wrapping_rem(&WIDE_MODULUS).split().1
|
|
}
|
|
|
|
// Perform the pow via multiply and square
|
|
let mut res = U256::ONE;
|
|
// Iterate from highest bit to lowest bit
|
|
let mut bit = 255;
|
|
loop {
|
|
if bit != 255 {
|
|
res = mul(res, res);
|
|
}
|
|
|
|
// Reverse from little endian to big endian
|
|
if exp.bit_vartime(bit) == 1 {
|
|
res = mul(res, base);
|
|
}
|
|
|
|
if bit == 0 {
|
|
break;
|
|
}
|
|
bit -= 1;
|
|
}
|
|
|
|
FieldElement(res)
|
|
};
|
|
*/
|
|
|
|
// Use a constant since we can't calculate it at compile-time without a nightly compiler
|
|
// Even without const_eval_limit, it'd take ~30s to calculate, which isn't worth it
|
|
const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex(
|
|
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
|
|
));
|
|
|
|
// Constant useful in calculating square roots (RFC-8032 sqrt8k5's exponent used to calculate y)
|
|
const MOD_3_8: FieldElement =
|
|
FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)));
|
|
|
|
// Constant useful in sqrt_ratio_i (sqrt(u / v))
|
|
const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE));
|
|
|
|
fn reduce(x: U512) -> U256 {
|
|
U256::from_le_slice(&x.rem(&NonZero::new(WIDE_MODULUS).unwrap()).to_le_bytes()[.. 32])
|
|
}
|
|
|
|
constant_time!(FieldElement, U256);
|
|
math!(
|
|
FieldElement,
|
|
FieldElement,
|
|
|x, y| U256::add_mod(&x, &y, &MODULUS),
|
|
|x, y| U256::sub_mod(&x, &y, &MODULUS),
|
|
|x, y| reduce(U512::from(U256::mul_wide(&x, &y)))
|
|
);
|
|
from_uint!(FieldElement, U256);
|
|
|
|
impl Neg for FieldElement {
|
|
type Output = Self;
|
|
fn neg(self) -> Self::Output {
|
|
Self(self.0.neg_mod(&MODULUS))
|
|
}
|
|
}
|
|
|
|
impl<'a> Neg for &'a FieldElement {
|
|
type Output = FieldElement;
|
|
fn neg(self) -> Self::Output {
|
|
(*self).neg()
|
|
}
|
|
}
|
|
|
|
impl Field for FieldElement {
|
|
fn random(mut rng: impl RngCore) -> Self {
|
|
let mut bytes = [0; 64];
|
|
rng.fill_bytes(&mut bytes);
|
|
FieldElement(reduce(U512::from_le_bytes(bytes)))
|
|
}
|
|
|
|
fn zero() -> Self {
|
|
Self(U256::ZERO)
|
|
}
|
|
fn one() -> Self {
|
|
Self(U256::ONE)
|
|
}
|
|
fn square(&self) -> Self {
|
|
FieldElement(reduce(self.0.square()))
|
|
}
|
|
fn double(&self) -> Self {
|
|
FieldElement((self.0 << 1).rem(&NonZero::new(MODULUS).unwrap()))
|
|
}
|
|
|
|
fn invert(&self) -> CtOption<Self> {
|
|
const NEG_2: FieldElement = FieldElement(MODULUS.saturating_sub(&U256::from_u8(2)));
|
|
CtOption::new(self.pow(NEG_2), !self.is_zero())
|
|
}
|
|
|
|
// RFC-8032 sqrt8k5
|
|
fn sqrt(&self) -> CtOption<Self> {
|
|
let tv1 = self.pow(MOD_3_8);
|
|
let tv2 = tv1 * SQRT_M1;
|
|
let candidate = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self));
|
|
CtOption::new(candidate, candidate.square().ct_eq(self))
|
|
}
|
|
}
|
|
|
|
impl PrimeField for FieldElement {
|
|
type Repr = [u8; 32];
|
|
const NUM_BITS: u32 = 255;
|
|
const CAPACITY: u32 = 254;
|
|
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
|
|
let res = Self(U256::from_le_bytes(bytes));
|
|
CtOption::new(res, res.0.ct_lt(&MODULUS))
|
|
}
|
|
fn to_repr(&self) -> [u8; 32] {
|
|
self.0.to_le_bytes()
|
|
}
|
|
|
|
// This was set per the specification in the ff crate docs
|
|
// The number of leading zero bits in the little-endian bit representation of (modulus - 1)
|
|
const S: u32 = 2;
|
|
fn is_odd(&self) -> Choice {
|
|
self.0.is_odd()
|
|
}
|
|
fn multiplicative_generator() -> Self {
|
|
// This was calculated with the method from the ff crate docs
|
|
// SageMath GF(modulus).primitive_element()
|
|
2u64.into()
|
|
}
|
|
fn root_of_unity() -> Self {
|
|
// This was calculated via the formula from the ff crate docs
|
|
// Self::multiplicative_generator() ** ((modulus - 1) >> Self::S)
|
|
FieldElement(U256::from_be_hex(
|
|
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
|
|
))
|
|
}
|
|
}
|
|
|
|
impl PrimeFieldBits for FieldElement {
|
|
type ReprBits = [u8; 32];
|
|
|
|
fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
|
|
self.to_repr().into()
|
|
}
|
|
|
|
fn char_le_bits() -> FieldBits<Self::ReprBits> {
|
|
MODULUS.to_le_bytes().into()
|
|
}
|
|
}
|
|
|
|
impl FieldElement {
|
|
/// Interpret the value as a little-endian integer, square it, and reduce it into a FieldElement.
|
|
pub fn from_square(value: [u8; 32]) -> FieldElement {
|
|
let value = U256::from_le_bytes(value);
|
|
FieldElement(value) * FieldElement(value)
|
|
}
|
|
|
|
/// Perform an exponentation.
|
|
pub fn pow(&self, other: FieldElement) -> FieldElement {
|
|
let mut table = [FieldElement::one(); 16];
|
|
table[1] = *self;
|
|
for i in 2 .. 16 {
|
|
table[i] = table[i - 1] * self;
|
|
}
|
|
|
|
let mut res = FieldElement::one();
|
|
let mut bits = 0;
|
|
for (i, mut bit) in other.to_le_bits().iter_mut().rev().enumerate() {
|
|
bits <<= 1;
|
|
let mut bit = u8_from_bool(bit.deref_mut());
|
|
bits |= bit;
|
|
bit.zeroize();
|
|
|
|
if ((i + 1) % 4) == 0 {
|
|
if i != 3 {
|
|
for _ in 0 .. 4 {
|
|
res *= res;
|
|
}
|
|
}
|
|
res *= table[usize::from(bits)];
|
|
bits = 0;
|
|
}
|
|
}
|
|
res
|
|
}
|
|
|
|
/// The square root of u/v, as used for Ed25519 point decoding (RFC 8032 5.1.3) and within
|
|
/// Ristretto (5.1 Extracting an Inverse Square Root).
|
|
///
|
|
/// The result is only a valid square root if the Choice is true.
|
|
/// RFC 8032 simply fails if there isn't a square root, leaving any return value undefined.
|
|
/// Ristretto explicitly returns 0 or sqrt((SQRT_M1 * u) / v).
|
|
pub fn sqrt_ratio_i(u: FieldElement, v: FieldElement) -> (Choice, FieldElement) {
|
|
let i = SQRT_M1;
|
|
|
|
let v3 = v.square() * v;
|
|
let v7 = v3.square() * v;
|
|
// Candidate root
|
|
let mut r = (u * v3) * (u * v7).pow(MOD_5_8);
|
|
|
|
// 8032 3.1
|
|
let check = v * r.square();
|
|
let correct_sign = check.ct_eq(&u);
|
|
// 8032 3.2 conditional
|
|
let neg_u = -u;
|
|
let flipped_sign = check.ct_eq(&neg_u);
|
|
// Ristretto Step 5
|
|
let flipped_sign_i = check.ct_eq(&(neg_u * i));
|
|
|
|
// 3.2 set
|
|
r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i);
|
|
|
|
// Always return the even root, per Ristretto
|
|
// This doesn't break Ed25519 point decoding as that doesn't expect these steps to return a
|
|
// specific root
|
|
// Ed25519 points include a dedicated sign bit to determine which root to use, so at worst
|
|
// this is a pointless inefficiency
|
|
r.conditional_negate(r.is_odd());
|
|
|
|
(correct_sign | flipped_sign, r)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_wide_modulus() {
|
|
let mut wide = [0; 64];
|
|
wide[.. 32].copy_from_slice(&MODULUS.to_le_bytes());
|
|
assert_eq!(wide, WIDE_MODULUS.to_le_bytes());
|
|
}
|
|
|
|
#[test]
|
|
fn test_sqrt_m1() {
|
|
// Test equivalence against the known constant value
|
|
const SQRT_M1_MAGIC: U256 =
|
|
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0");
|
|
assert_eq!(SQRT_M1.0, SQRT_M1_MAGIC);
|
|
|
|
// Also test equivalence against the result of the formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
|
|
// 2 ** ((MODULUS - 1) // 4) % MODULUS
|
|
assert_eq!(
|
|
SQRT_M1,
|
|
FieldElement::from(2u8).pow(FieldElement(
|
|
(FieldElement::zero() - FieldElement::one()).0.wrapping_div(&U256::from(4u8))
|
|
))
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_field() {
|
|
ff_group_tests::prime_field::test_prime_field_bits::<_, FieldElement>(&mut rand_core::OsRng);
|
|
}
|