Files
serai/coins/monero/src/ringct/bulletproofs/scalar_vector.rs
Luke Parker a30568ff57 Add init function for BP statics
Considering they take 7 seconds to generate, thanks to #68, the ability 
to generate them at the start instead of on first BP is greatly 
appreciated.

Also performs minor cleanups regarding BPs.
2022-08-02 15:52:27 -04:00

135 lines
3.5 KiB
Rust

use core::ops::{Add, Sub, Mul, Index};
use group::ff::Field;
use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::multiexp;
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) struct ScalarVector(pub(crate) Vec<Scalar>);
macro_rules! math_op {
($Op: ident, $op: ident, $f: expr) => {
impl $Op<Scalar> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
impl $Op<Scalar> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: Scalar) -> ScalarVector {
ScalarVector(self.0.iter().map(|a| $f((a, &b))).collect())
}
}
impl $Op<ScalarVector> for ScalarVector {
type Output = ScalarVector;
fn $op(self, b: ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
impl $Op<&ScalarVector> for &ScalarVector {
type Output = ScalarVector;
fn $op(self, b: &ScalarVector) -> ScalarVector {
debug_assert_eq!(self.len(), b.len());
ScalarVector(self.0.iter().zip(b.0.iter()).map($f).collect())
}
}
};
}
math_op!(Add, add, |(a, b): (&Scalar, &Scalar)| *a + *b);
math_op!(Sub, sub, |(a, b): (&Scalar, &Scalar)| *a - *b);
math_op!(Mul, mul, |(a, b): (&Scalar, &Scalar)| *a * *b);
impl ScalarVector {
pub(crate) fn new(len: usize) -> ScalarVector {
ScalarVector(vec![Scalar::zero(); len])
}
pub(crate) fn powers(x: Scalar, len: usize) -> ScalarVector {
debug_assert!(len != 0);
let mut res = Vec::with_capacity(len);
res.push(Scalar::one());
for i in 1 .. len {
res.push(res[i - 1] * x);
}
ScalarVector(res)
}
pub(crate) fn even_powers(x: Scalar, pow: usize) -> ScalarVector {
debug_assert!(pow != 0);
// Verify pow is a power of two
debug_assert_eq!(((pow - 1) & pow), 0);
let xsq = x * x;
let mut res = ScalarVector(Vec::with_capacity(pow / 2));
res.0.push(xsq);
let mut prev = 2;
while prev < pow {
res.0.push(res[res.len() - 1] * xsq);
prev += 2;
}
res
}
pub(crate) fn sum(mut self) -> Scalar {
self.0.drain(..).sum()
}
pub(crate) fn len(&self) -> usize {
self.0.len()
}
pub(crate) fn split(self) -> (ScalarVector, ScalarVector) {
let (l, r) = self.0.split_at(self.0.len() / 2);
(ScalarVector(l.to_vec()), ScalarVector(r.to_vec()))
}
}
impl Index<usize> for ScalarVector {
type Output = Scalar;
fn index(&self, index: usize) -> &Scalar {
&self.0[index]
}
}
pub(crate) fn inner_product(a: &ScalarVector, b: &ScalarVector) -> Scalar {
(a * b).sum()
}
pub(crate) fn weighted_powers(x: Scalar, len: usize) -> ScalarVector {
ScalarVector(ScalarVector::powers(x, len + 1).0[1 ..].to_vec())
}
pub(crate) fn weighted_inner_product(a: &ScalarVector, b: &ScalarVector, y: Scalar) -> Scalar {
// y ** 0 is not used as a power
(a * b * weighted_powers(y, a.len())).sum()
}
impl Mul<&[EdwardsPoint]> for &ScalarVector {
type Output = EdwardsPoint;
fn mul(self, b: &[EdwardsPoint]) -> EdwardsPoint {
debug_assert_eq!(self.len(), b.len());
multiexp(&self.0.iter().cloned().zip(b.iter().cloned()).collect::<Vec<_>>())
}
}
pub(crate) fn hadamard_fold(
l: &[EdwardsPoint],
r: &[EdwardsPoint],
a: Scalar,
b: Scalar,
) -> Vec<EdwardsPoint> {
let mut res = Vec::with_capacity(l.len() / 2);
for i in 0 .. l.len() {
res.push(multiexp(&[(a, l[i]), (b, r[i])]));
}
res
}