Files
serai/processor/ethereum/src/primitives/output.rs
Luke Parker a141deaf36 Smash the singular Ciphersuite trait into multiple
This helps identify where the various functionalities are used, or rather, not
used. The `Ciphersuite` trait present in `patches/ciphersuite`, facilitating
the entire FCMP++ tree, only requires the markers _and_ canonical point
decoding. I've opened a PR to upstream such a trait into `group`
(https://github.com/zkcrypto/group/pull/68).

`WrappedGroup` is still justified for as long as `Group::generator` exists.
Moving `::generator()` to its own trait, on an independent structure (upstream)
would be massively appreciated. @tarcieri also wanted to update from
`fn generator()` to `const GENERATOR`, which would encourage further discussion
on https://github.com/zkcrypto/group/issues/32 and
https://github.com/zkcrypto/group/issues/45, which have been stagnant.

The `Id` trait is occasionally used yet really should be first off the chopping
block.

Finally, `WithPreferredHash` is only actually used around a third of the time,
which more than justifies it being a separate trait.

---

Updates `dalek_ff_group::Scalar` to directly re-export
`curve25519_dalek::Scalar`, as without issue. `dalek_ff_group::RistrettoPoint`
also could be replaced with an export of `curve25519_dalek::RistrettoPoint`,
yet the coordinator relies on how we implemented `Hash` on it for the hell of
it so it isn't worth it at this time. `dalek_ff_group::EdwardsPoint` can't be
replaced for an re-export of `curve25519_dalek::SubgroupPoint` as it doesn't
implement `zeroize`, `subtle` traits within a released, non-yanked version.
Relevance to https://github.com/serai-dex/serai/issues/201 and
https://github.com/dalek-cryptography/curve25519-dalek/issues/811#issuecomment-3247732746.

Also updates the `Ristretto` ciphersuite to prefer `Blake2b-512` over
`SHA2-512`. In order to maintain compliance with FROST's IETF standard,
`modular-frost` defines its own ciphersuite for Ristretto which still uses
`SHA2-512`.
2025-09-03 13:50:20 -04:00

184 lines
5.4 KiB
Rust

use std::io;
use ciphersuite::{group::GroupEncoding, *};
use ciphersuite_kp256::Secp256k1;
use alloy_core::primitives::U256;
use scale::{Encode, Decode};
use borsh::{BorshSerialize, BorshDeserialize};
use serai_client::{
primitives::{ExternalNetworkId, ExternalCoin, Amount, ExternalBalance},
networks::ethereum::Address,
};
use primitives::{OutputType, ReceivedOutput};
use ethereum_router::{Coin as EthereumCoin, InInstruction as EthereumInInstruction};
use crate::{DAI, ETHER_DUST};
fn coin_to_serai_coin(coin: &EthereumCoin) -> Option<ExternalCoin> {
match coin {
EthereumCoin::Ether => Some(ExternalCoin::Ether),
EthereumCoin::Erc20(token) => {
if *token == DAI {
return Some(ExternalCoin::Dai);
}
None
}
}
}
fn amount_to_serai_amount(coin: ExternalCoin, amount: U256) -> Amount {
assert_eq!(coin.network(), ExternalNetworkId::Ethereum);
assert_eq!(coin.decimals(), 8);
// Remove 10 decimals so we go from 18 decimals to 8 decimals
let divisor = U256::from(10_000_000_000u64);
// This is valid up to 184b, which is assumed for the coins allowed
Amount(u64::try_from(amount / divisor).unwrap())
}
#[derive(
Clone, Copy, PartialEq, Eq, Hash, Debug, Encode, Decode, BorshSerialize, BorshDeserialize,
)]
pub(crate) struct OutputId(pub(crate) [u8; 40]);
impl Default for OutputId {
fn default() -> Self {
Self([0; 40])
}
}
impl AsRef<[u8]> for OutputId {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl AsMut<[u8]> for OutputId {
fn as_mut(&mut self) -> &mut [u8] {
self.0.as_mut()
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) enum Output {
Output { key: <Secp256k1 as WrappedGroup>::G, instruction: EthereumInInstruction },
Eventuality { key: <Secp256k1 as WrappedGroup>::G, nonce: u64 },
}
impl ReceivedOutput<<Secp256k1 as WrappedGroup>::G, Address> for Output {
type Id = OutputId;
type TransactionId = [u8; 32];
fn kind(&self) -> OutputType {
match self {
// All outputs received are External
Output::Output { .. } => OutputType::External,
// Yet upon Eventuality completions, we report a Change output to ensure synchrony per the
// scanner's documented bounds
Output::Eventuality { .. } => OutputType::Change,
}
}
fn id(&self) -> Self::Id {
match self {
Output::Output { key: _, instruction } => {
let mut id = [0; 40];
id[.. 32].copy_from_slice(&instruction.id.block_hash);
id[32 ..].copy_from_slice(&instruction.id.index_within_block.to_le_bytes());
OutputId(id)
}
// Yet upon Eventuality completions, we report a Change output to ensure synchrony per the
// scanner's documented bounds
Output::Eventuality { key: _, nonce } => {
let mut id = [0; 40];
id[.. 8].copy_from_slice(&nonce.to_le_bytes());
OutputId(id)
}
}
}
fn transaction_id(&self) -> Self::TransactionId {
match self {
Output::Output { key: _, instruction } => instruction.transaction_hash,
Output::Eventuality { key: _, nonce } => {
let mut id = [0; 32];
id[.. 8].copy_from_slice(&nonce.to_le_bytes());
id
}
}
}
fn key(&self) -> <Secp256k1 as WrappedGroup>::G {
match self {
Output::Output { key, .. } | Output::Eventuality { key, .. } => *key,
}
}
fn presumed_origin(&self) -> Option<Address> {
match self {
Output::Output { key: _, instruction } => Some(Address::Address(*instruction.from.0)),
Output::Eventuality { .. } => None,
}
}
fn balance(&self) -> ExternalBalance {
match self {
Output::Output { key: _, instruction } => {
let coin = coin_to_serai_coin(&instruction.coin).unwrap_or_else(|| {
panic!(
"mapping coin from an EthereumInInstruction with coin {}, which we don't handle.",
"this never should have been yielded"
)
});
ExternalBalance { coin, amount: amount_to_serai_amount(coin, instruction.amount) }
}
Output::Eventuality { .. } => {
ExternalBalance { coin: ExternalCoin::Ether, amount: ETHER_DUST }
}
}
}
fn data(&self) -> &[u8] {
match self {
Output::Output { key: _, instruction } => &instruction.data,
Output::Eventuality { .. } => &[],
}
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
match self {
Output::Output { key, instruction } => {
writer.write_all(&[0])?;
writer.write_all(key.to_bytes().as_ref())?;
instruction.serialize(writer)
}
Output::Eventuality { key, nonce } => {
writer.write_all(&[1])?;
writer.write_all(key.to_bytes().as_ref())?;
writer.write_all(&nonce.to_le_bytes())
}
}
}
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut kind = [0xff];
reader.read_exact(&mut kind)?;
if kind[0] >= 2 {
Err(io::Error::other("unknown Output type"))?;
}
Ok(match kind[0] {
0 => {
let key = Secp256k1::read_G(reader)?;
let instruction = EthereumInInstruction::deserialize_reader(reader)?;
Self::Output { key, instruction }
}
1 => {
let key = Secp256k1::read_G(reader)?;
let mut nonce = [0; 8];
reader.read_exact(&mut nonce)?;
let nonce = u64::from_le_bytes(nonce);
Self::Eventuality { key, nonce }
}
_ => unreachable!(),
})
}
}