Files
serai/crypto/dalek-ff-group/src/field.rs
2023-03-17 15:31:04 -04:00

285 lines
8.1 KiB
Rust

use core::ops::{DerefMut, Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign};
use zeroize::Zeroize;
use rand_core::RngCore;
use subtle::{
Choice, CtOption, ConstantTimeEq, ConstantTimeLess, ConditionallyNegatable,
ConditionallySelectable,
};
use crypto_bigint::{Integer, NonZero, Encoding, U256, U512};
use group::ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
use crate::{u8_from_bool, constant_time, math, from_uint};
// 2^255 - 19
// Uses saturating_sub because checked_sub isn't available at compile time
const MODULUS: U256 = U256::from_u8(1).shl_vartime(255).saturating_sub(&U256::from_u8(19));
const WIDE_MODULUS: U512 = U256::ZERO.concat(&MODULUS);
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
pub struct FieldElement(U256);
/*
The following is a valid const definition of sqrt(-1) yet exceeds the const_eval_limit by 24x.
Accordingly, it'd only be usable on a nightly compiler with the following crate attributes:
#![feature(const_eval_limit)]
#![const_eval_limit = "24000000"]
const SQRT_M1: FieldElement = {
// Formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
// 2 ** ((MODULUS - 1) // 4) % MODULUS
let base = U256::from_u8(2);
let exp = MODULUS.saturating_sub(&U256::from_u8(1)).wrapping_div(&U256::from_u8(4));
const fn mul(x: U256, y: U256) -> U256 {
let wide = U256::mul_wide(&x, &y);
let wide = U256::concat(&wide.1, &wide.0);
wide.wrapping_rem(&WIDE_MODULUS).split().1
}
// Perform the pow via multiply and square
let mut res = U256::ONE;
// Iterate from highest bit to lowest bit
let mut bit = 255;
loop {
if bit != 255 {
res = mul(res, res);
}
// Reverse from little endian to big endian
if exp.bit_vartime(bit) == 1 {
res = mul(res, base);
}
if bit == 0 {
break;
}
bit -= 1;
}
FieldElement(res)
};
*/
// Use a constant since we can't calculate it at compile-time without a nightly compiler
// Even without const_eval_limit, it'd take ~30s to calculate, which isn't worth it
const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex(
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
));
// Constant useful in calculating square roots (RFC-8032 sqrt8k5's exponent used to calculate y)
const MOD_3_8: FieldElement =
FieldElement(MODULUS.saturating_add(&U256::from_u8(3)).wrapping_div(&U256::from_u8(8)));
// Constant useful in sqrt_ratio_i (sqrt(u / v))
const MOD_5_8: FieldElement = FieldElement(MOD_3_8.0.saturating_sub(&U256::ONE));
fn reduce(x: U512) -> U256 {
U256::from_le_slice(&x.rem(&NonZero::new(WIDE_MODULUS).unwrap()).to_le_bytes()[.. 32])
}
constant_time!(FieldElement, U256);
math!(
FieldElement,
FieldElement,
|x, y| U256::add_mod(&x, &y, &MODULUS),
|x, y| U256::sub_mod(&x, &y, &MODULUS),
|x, y| reduce(U512::from(U256::mul_wide(&x, &y)))
);
from_uint!(FieldElement, U256);
impl Neg for FieldElement {
type Output = Self;
fn neg(self) -> Self::Output {
Self(self.0.neg_mod(&MODULUS))
}
}
impl<'a> Neg for &'a FieldElement {
type Output = FieldElement;
fn neg(self) -> Self::Output {
(*self).neg()
}
}
impl Field for FieldElement {
fn random(mut rng: impl RngCore) -> Self {
let mut bytes = [0; 64];
rng.fill_bytes(&mut bytes);
FieldElement(reduce(U512::from_le_bytes(bytes)))
}
fn zero() -> Self {
Self(U256::ZERO)
}
fn one() -> Self {
Self(U256::ONE)
}
fn square(&self) -> Self {
FieldElement(reduce(self.0.square()))
}
fn double(&self) -> Self {
FieldElement((self.0 << 1).rem(&NonZero::new(MODULUS).unwrap()))
}
fn invert(&self) -> CtOption<Self> {
const NEG_2: FieldElement = FieldElement(MODULUS.saturating_sub(&U256::from_u8(2)));
CtOption::new(self.pow(NEG_2), !self.is_zero())
}
// RFC-8032 sqrt8k5
fn sqrt(&self) -> CtOption<Self> {
let tv1 = self.pow(MOD_3_8);
let tv2 = tv1 * SQRT_M1;
let candidate = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self));
CtOption::new(candidate, candidate.square().ct_eq(self))
}
}
impl PrimeField for FieldElement {
type Repr = [u8; 32];
const NUM_BITS: u32 = 255;
const CAPACITY: u32 = 254;
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
let res = Self(U256::from_le_bytes(bytes));
CtOption::new(res, res.0.ct_lt(&MODULUS))
}
fn to_repr(&self) -> [u8; 32] {
self.0.to_le_bytes()
}
// This was set per the specification in the ff crate docs
// The number of leading zero bits in the little-endian bit representation of (modulus - 1)
const S: u32 = 2;
fn is_odd(&self) -> Choice {
self.0.is_odd()
}
fn multiplicative_generator() -> Self {
// This was calculated with the method from the ff crate docs
// SageMath GF(modulus).primitive_element()
2u64.into()
}
fn root_of_unity() -> Self {
// This was calculated via the formula from the ff crate docs
// Self::multiplicative_generator() ** ((modulus - 1) >> Self::S)
FieldElement(U256::from_be_hex(
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
))
}
}
impl PrimeFieldBits for FieldElement {
type ReprBits = [u8; 32];
fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
self.to_repr().into()
}
fn char_le_bits() -> FieldBits<Self::ReprBits> {
MODULUS.to_le_bytes().into()
}
}
impl FieldElement {
pub fn from_square(value: [u8; 32]) -> FieldElement {
let value = U256::from_le_bytes(value);
FieldElement(value) * FieldElement(value)
}
pub fn pow(&self, other: FieldElement) -> FieldElement {
let mut table = [FieldElement::one(); 16];
table[1] = *self;
for i in 2 .. 16 {
table[i] = table[i - 1] * self;
}
let mut res = FieldElement::one();
let mut bits = 0;
for (i, mut bit) in other.to_le_bits().iter_mut().rev().enumerate() {
bits <<= 1;
let mut bit = u8_from_bool(bit.deref_mut());
bits |= bit;
bit.zeroize();
if ((i + 1) % 4) == 0 {
if i != 3 {
for _ in 0 .. 4 {
res *= res;
}
}
res *= table[usize::from(bits)];
bits = 0;
}
}
res
}
/// The square root of u/v, as used for Ed25519 point decoding (RFC 8032 5.1.3) and within
/// Ristretto (5.1 Extracting an Inverse Square Root).
///
/// The result is only a valid square root if the Choice is true.
/// RFC 8032 simply fails if there isn't a square root, leaving any return value undefined.
/// Ristretto explicitly returns 0 or sqrt((SQRT_M1 * u) / v).
pub fn sqrt_ratio_i(u: FieldElement, v: FieldElement) -> (Choice, FieldElement) {
let i = SQRT_M1;
let v3 = v.square() * v;
let v7 = v3.square() * v;
// Candidate root
let mut r = (u * v3) * (u * v7).pow(MOD_5_8);
// 8032 3.1
let check = v * r.square();
let correct_sign = check.ct_eq(&u);
// 8032 3.2 conditional
let neg_u = -u;
let flipped_sign = check.ct_eq(&neg_u);
// Ristretto Step 5
let flipped_sign_i = check.ct_eq(&(neg_u * i));
// 3.2 set
r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i);
// Always return the even root, per Ristretto
// This doesn't break Ed25519 point decoding as that doesn't expect these steps to return a
// specific root
// Ed25519 points include a dedicated sign bit to determine which root to use, so at worst
// this is a pointless inefficiency
r.conditional_negate(r.is_odd());
(correct_sign | flipped_sign, r)
}
}
#[test]
fn test_wide_modulus() {
let mut wide = [0; 64];
wide[.. 32].copy_from_slice(&MODULUS.to_le_bytes());
assert_eq!(wide, WIDE_MODULUS.to_le_bytes());
}
#[test]
fn test_sqrt_m1() {
// Test equivalence against the known constant value
const SQRT_M1_MAGIC: U256 =
U256::from_be_hex("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0");
assert_eq!(SQRT_M1.0, SQRT_M1_MAGIC);
// Also test equivalence against the result of the formula from RFC-8032 (modp_sqrt_m1/sqrt8k5 z)
// 2 ** ((MODULUS - 1) // 4) % MODULUS
assert_eq!(
SQRT_M1,
FieldElement::from(2u8).pow(FieldElement(
(FieldElement::zero() - FieldElement::one()).0.wrapping_div(&U256::from(4u8))
))
);
}
#[test]
fn test_field() {
ff_group_tests::prime_field::test_prime_field_bits::<_, FieldElement>(&mut rand_core::OsRng);
}