Files
serai/crypto/multiexp/src/tests/batch.rs
Luke Parker 79aff5d4c8 ff 0.13 (#269)
* Partial move to ff 0.13

It turns out the newly released k256 0.12 isn't on ff 0.13, preventing further
work at this time.

* Update all crates to work on ff 0.13

The provided curves still need to be expanded to fit the new API.

* Finish adding dalek-ff-group ff 0.13 constants

* Correct FieldElement::product definition

Also stops exporting macros.

* Test most new parts of ff 0.13

* Additionally test ff-group-tests with BLS12-381 and the pasta curves

We only tested curves from RustCrypto. Now we test a curve offered by zk-crypto,
the group behind ff/group, and the pasta curves, which is by Zcash (though
Zcash developers are also behind zk-crypto).

* Finish Ed448

Fully specifies all constants, passes all tests in ff-group-tests, and finishes moving to ff-0.13.

* Add RustCrypto/elliptic-curves to allowed git repos

Needed due to k256/p256 incorrectly defining product.

* Finish writing ff 0.13 tests

* Add additional comments to dalek

* Further comments

* Update ethereum-serai to ff 0.13
2023-03-28 04:38:01 -04:00

94 lines
2.7 KiB
Rust

use rand_core::OsRng;
use zeroize::Zeroize;
use rand_core::RngCore;
use ff::{Field, PrimeFieldBits};
use group::Group;
use crate::BatchVerifier;
pub(crate) fn test_batch<G: Group + Zeroize>()
where
G::Scalar: PrimeFieldBits + Zeroize,
{
let valid = |batch: BatchVerifier<_, G>| {
assert!(batch.verify());
assert!(batch.verify_vartime());
assert_eq!(batch.blame_vartime(), None);
assert_eq!(batch.verify_with_vartime_blame(), Ok(()));
assert_eq!(batch.verify_vartime_with_vartime_blame(), Ok(()));
};
let invalid = |batch: BatchVerifier<_, G>, id| {
assert!(!batch.verify());
assert!(!batch.verify_vartime());
assert_eq!(batch.blame_vartime(), Some(id));
assert_eq!(batch.verify_with_vartime_blame(), Err(id));
assert_eq!(batch.verify_vartime_with_vartime_blame(), Err(id));
};
// Test an empty batch
let batch = BatchVerifier::new(0);
valid(batch);
// Test a batch with one set of statements
let valid_statements = vec![(-G::Scalar::ONE, G::generator()), (G::Scalar::ONE, G::generator())];
let mut batch = BatchVerifier::new(1);
batch.queue(&mut OsRng, 0, valid_statements.clone());
valid(batch);
// Test a batch with an invalid set of statements fails properly
let invalid_statements = vec![(-G::Scalar::ONE, G::generator())];
let mut batch = BatchVerifier::new(1);
batch.queue(&mut OsRng, 0, invalid_statements.clone());
invalid(batch, 0);
// Test blame can properly identify faulty participants
// Run with 17 statements, rotating which one is faulty
for i in 0 .. 17 {
let mut batch = BatchVerifier::new(17);
for j in 0 .. 17 {
batch.queue(
&mut OsRng,
j,
if i == j { invalid_statements.clone() } else { valid_statements.clone() },
);
}
invalid(batch, i);
}
// Test blame always identifies the left-most invalid statement
for i in 1 .. 32 {
for j in 1 .. i {
let mut batch = BatchVerifier::new(j);
let mut leftmost = None;
// Create j statements
for k in 0 .. j {
batch.queue(
&mut OsRng,
k,
// The usage of i / 10 makes this less likely to add invalid elements, and increases
// the space between them
// For high i values, yet low j values, this will make it likely that random elements
// are at/near the end
if ((OsRng.next_u64() % u64::try_from(1 + (i / 4)).unwrap()) == 0) ||
(leftmost.is_none() && (k == (j - 1)))
{
if leftmost.is_none() {
leftmost = Some(k);
}
invalid_statements.clone()
} else {
valid_statements.clone()
},
);
}
invalid(batch, leftmost.unwrap());
}
}
}