Files
serai/coins/monero/src/ringct/bulletproofs/plus/aggregate_range_proof.rs

258 lines
7.7 KiB
Rust

use std_shims::vec::Vec;
use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
use multiexp::{multiexp, multiexp_vartime, BatchVerifier};
use group::{
ff::{Field, PrimeField},
Group, GroupEncoding,
};
use dalek_ff_group::{Scalar, EdwardsPoint};
use crate::{
Commitment,
ringct::{
bulletproofs::core::{MAX_M, N},
bulletproofs::plus::{
ScalarVector, PointVector, GeneratorsList, Generators,
transcript::*,
weighted_inner_product::{WipStatement, WipWitness, WipProof},
padded_pow_of_2, u64_decompose,
},
},
};
// Figure 3
#[derive(Clone, Debug)]
pub(crate) struct AggregateRangeStatement {
generators: Generators,
V: Vec<EdwardsPoint>,
}
impl Zeroize for AggregateRangeStatement {
fn zeroize(&mut self) {
self.V.zeroize();
}
}
#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
pub(crate) struct AggregateRangeWitness {
values: Vec<u64>,
gammas: Vec<Scalar>,
}
impl AggregateRangeWitness {
pub(crate) fn new(commitments: &[Commitment]) -> Option<Self> {
if commitments.is_empty() || (commitments.len() > MAX_M) {
return None;
}
let mut values = Vec::with_capacity(commitments.len());
let mut gammas = Vec::with_capacity(commitments.len());
for commitment in commitments {
values.push(commitment.amount);
gammas.push(Scalar(commitment.mask));
}
Some(AggregateRangeWitness { values, gammas })
}
}
#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
pub struct AggregateRangeProof {
pub(crate) A: EdwardsPoint,
pub(crate) wip: WipProof,
}
impl AggregateRangeStatement {
pub(crate) fn new(V: Vec<EdwardsPoint>) -> Option<Self> {
if V.is_empty() || (V.len() > MAX_M) {
return None;
}
Some(Self { generators: Generators::new(), V })
}
fn transcript_A(transcript: &mut Scalar, A: EdwardsPoint) -> (Scalar, Scalar) {
let y = hash_to_scalar(&[transcript.to_repr().as_ref(), A.to_bytes().as_ref()].concat());
let z = hash_to_scalar(y.to_bytes().as_ref());
*transcript = z;
(y, z)
}
fn d_j(j: usize, m: usize) -> ScalarVector {
let mut d_j = Vec::with_capacity(m * N);
for _ in 0 .. (j - 1) * N {
d_j.push(Scalar::ZERO);
}
d_j.append(&mut ScalarVector::powers(Scalar::from(2u8), N).0);
for _ in 0 .. (m - j) * N {
d_j.push(Scalar::ZERO);
}
ScalarVector(d_j)
}
fn compute_A_hat(
mut V: PointVector,
generators: &Generators,
transcript: &mut Scalar,
mut A: EdwardsPoint,
) -> (Scalar, ScalarVector, Scalar, Scalar, ScalarVector, EdwardsPoint) {
let (y, z) = Self::transcript_A(transcript, A);
A = A.mul_by_cofactor();
while V.len() < padded_pow_of_2(V.len()) {
V.0.push(EdwardsPoint::identity());
}
let mn = V.len() * N;
let mut z_pow = Vec::with_capacity(V.len());
let mut d = ScalarVector::new(mn);
for j in 1 ..= V.len() {
z_pow.push(z.pow(Scalar::from(2 * u64::try_from(j).unwrap()))); // TODO: Optimize this
d = d + &(Self::d_j(j, V.len()) * (z_pow[j - 1]));
}
let mut ascending_y = ScalarVector(vec![y]);
for i in 1 .. d.len() {
ascending_y.0.push(ascending_y[i - 1] * y);
}
let y_pows = ascending_y.clone().sum();
let mut descending_y = ascending_y.clone();
descending_y.0.reverse();
let d_descending_y = d.clone() * &descending_y;
let d_descending_y_plus_z = d_descending_y + z;
let y_mn_plus_one = descending_y[0] * y;
let mut commitment_accum = EdwardsPoint::identity();
for (j, commitment) in V.0.iter().enumerate() {
commitment_accum += *commitment * z_pow[j];
}
let neg_z = -z;
let mut A_terms = Vec::with_capacity((generators.len() * 2) + 2);
for (i, d_y_z) in d_descending_y_plus_z.0.iter().enumerate() {
A_terms.push((neg_z, generators.generator(GeneratorsList::GBold1, i)));
A_terms.push((*d_y_z, generators.generator(GeneratorsList::HBold1, i)));
}
A_terms.push((y_mn_plus_one, commitment_accum));
A_terms.push((
((y_pows * z) - (d.sum() * y_mn_plus_one * z) - (y_pows * z.square())),
Generators::g(),
));
(
y,
d_descending_y_plus_z,
y_mn_plus_one,
z,
ScalarVector(z_pow),
A + multiexp_vartime(&A_terms),
)
}
pub(crate) fn prove<R: RngCore + CryptoRng>(
self,
rng: &mut R,
witness: &AggregateRangeWitness,
) -> Option<AggregateRangeProof> {
// Check for consistency with the witness
if self.V.len() != witness.values.len() {
return None;
}
for (commitment, (value, gamma)) in
self.V.iter().zip(witness.values.iter().zip(witness.gammas.iter()))
{
if Commitment::new(**gamma, *value).calculate() != **commitment {
return None;
}
}
let Self { generators, V } = self;
// Monero expects all of these points to be torsion-free
// Generally, for Bulletproofs, it sends points * INV_EIGHT and then performs a torsion clear
// by multiplying by 8
// This also restores the original value due to the preprocessing
// Commitments aren't transmitted INV_EIGHT though, so this multiplies by INV_EIGHT to enable
// clearing its cofactor without mutating the value
// For some reason, these values are transcripted * INV_EIGHT, not as transmitted
let mut V = V.into_iter().map(|V| EdwardsPoint(V.0 * crate::INV_EIGHT())).collect::<Vec<_>>();
let mut transcript = initial_transcript(V.iter());
V.iter_mut().for_each(|V| *V = V.mul_by_cofactor());
// Pad V
while V.len() < padded_pow_of_2(V.len()) {
V.push(EdwardsPoint::identity());
}
let generators = generators.reduce(V.len() * N);
let mut d_js = Vec::with_capacity(V.len());
let mut a_l = ScalarVector(Vec::with_capacity(V.len() * N));
for j in 1 ..= V.len() {
d_js.push(Self::d_j(j, V.len()));
a_l.0.append(&mut u64_decompose(*witness.values.get(j - 1).unwrap_or(&0)).0);
}
let a_r = a_l.clone() - Scalar::ONE;
let alpha = Scalar::random(&mut *rng);
let mut A_terms = Vec::with_capacity((generators.len() * 2) + 1);
for (i, a_l) in a_l.0.iter().enumerate() {
A_terms.push((*a_l, generators.generator(GeneratorsList::GBold1, i)));
}
for (i, a_r) in a_r.0.iter().enumerate() {
A_terms.push((*a_r, generators.generator(GeneratorsList::HBold1, i)));
}
A_terms.push((alpha, Generators::h()));
let mut A = multiexp(&A_terms);
A_terms.zeroize();
// Multiply by INV_EIGHT per earlier commentary
A.0 *= crate::INV_EIGHT();
let (y, d_descending_y_plus_z, y_mn_plus_one, z, z_pow, A_hat) =
Self::compute_A_hat(PointVector(V), &generators, &mut transcript, A);
let a_l = a_l - z;
let a_r = a_r + &d_descending_y_plus_z;
let mut alpha = alpha;
for j in 1 ..= witness.gammas.len() {
alpha += z_pow[j - 1] * witness.gammas[j - 1] * y_mn_plus_one;
}
Some(AggregateRangeProof {
A,
wip: WipStatement::new(generators, A_hat, y)
.prove(rng, transcript, &Zeroizing::new(WipWitness::new(a_l, a_r, alpha).unwrap()))
.unwrap(),
})
}
pub(crate) fn verify<Id: Copy + Zeroize, R: RngCore + CryptoRng>(
self,
rng: &mut R,
verifier: &mut BatchVerifier<Id, EdwardsPoint>,
id: Id,
proof: AggregateRangeProof,
) -> bool {
let Self { generators, V } = self;
let mut V = V.into_iter().map(|V| EdwardsPoint(V.0 * crate::INV_EIGHT())).collect::<Vec<_>>();
let mut transcript = initial_transcript(V.iter());
V.iter_mut().for_each(|V| *V = V.mul_by_cofactor());
let generators = generators.reduce(V.len() * N);
let (y, _, _, _, _, A_hat) =
Self::compute_A_hat(PointVector(V), &generators, &mut transcript, proof.A);
WipStatement::new(generators, A_hat, y).verify(rng, verifier, id, transcript, proof.wip)
}
}