Files
serai/crypto/frost/src/tests/nonces.rs
Luke Parker 93b1656f86 Meaningful changes from aggressive-clippy
I do want to enable a few specific lints, yet aggressive-clippy as a whole
isn't worthwhile.
2023-07-08 11:29:07 -04:00

232 lines
7.5 KiB
Rust

use std::io::{self, Read};
use zeroize::Zeroizing;
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha20Rng;
use transcript::{Transcript, RecommendedTranscript};
use ciphersuite::group::{ff::Field, Group, GroupEncoding};
use dleq::MultiDLEqProof;
pub use dkg::tests::{key_gen, recover_key};
use crate::{
Curve, Participant, ThresholdView, ThresholdKeys, FrostError,
algorithm::Algorithm,
sign::{Writable, SignMachine},
tests::{algorithm_machines, preprocess, sign},
};
#[derive(Clone)]
struct MultiNonce<C: Curve> {
transcript: RecommendedTranscript,
nonces: Option<Vec<Vec<C::G>>>,
}
impl<C: Curve> MultiNonce<C> {
fn new() -> MultiNonce<C> {
MultiNonce {
transcript: RecommendedTranscript::new(b"FROST MultiNonce Algorithm Test"),
nonces: None,
}
}
}
fn nonces<C: Curve>() -> Vec<Vec<C::G>> {
vec![
vec![C::generator(), C::generator().double()],
vec![C::generator(), C::generator() * C::F::from(3), C::generator() * C::F::from(4)],
]
}
fn verify_nonces<C: Curve>(nonces: &[Vec<C::G>]) {
assert_eq!(nonces.len(), 2);
// Each nonce should be a series of commitments, over some generators, which share a discrete log
// Since they share a discrete log, their only distinction should be the generator
// Above, the generators were created with a known relationship
// Accordingly, we can check here that relationship holds to make sure these commitments are well
// formed
assert_eq!(nonces[0].len(), 2);
assert_eq!(nonces[0][0].double(), nonces[0][1]);
assert_eq!(nonces[1].len(), 3);
assert_eq!(nonces[1][0] * C::F::from(3), nonces[1][1]);
assert_eq!(nonces[1][0] * C::F::from(4), nonces[1][2]);
assert!(nonces[0][0] != nonces[1][0]);
}
impl<C: Curve> Algorithm<C> for MultiNonce<C> {
type Transcript = RecommendedTranscript;
type Addendum = ();
type Signature = ();
fn transcript(&mut self) -> &mut Self::Transcript {
&mut self.transcript
}
fn nonces(&self) -> Vec<Vec<C::G>> {
nonces::<C>()
}
fn preprocess_addendum<R: RngCore + CryptoRng>(&mut self, _: &mut R, _: &ThresholdKeys<C>) {}
fn read_addendum<R: Read>(&self, _: &mut R) -> io::Result<Self::Addendum> {
Ok(())
}
fn process_addendum(
&mut self,
_: &ThresholdView<C>,
_: Participant,
_: (),
) -> Result<(), FrostError> {
Ok(())
}
fn sign_share(
&mut self,
_: &ThresholdView<C>,
nonce_sums: &[Vec<C::G>],
nonces: Vec<Zeroizing<C::F>>,
_: &[u8],
) -> C::F {
// Verify the nonce sums are as expected
verify_nonces::<C>(nonce_sums);
// Verify we actually have two nonces and that they're distinct
assert_eq!(nonces.len(), 2);
assert!(nonces[0] != nonces[1]);
// Save the nonce sums for later so we can check they're consistent with the call to verify
assert!(self.nonces.is_none());
self.nonces = Some(nonce_sums.to_vec());
// Sum the nonces so we can later check they actually have a relationship to nonce_sums
let mut res = C::F::ZERO;
// Weight each nonce
// This is probably overkill, since their unweighted forms would practically still require
// some level of crafting to pass a naive sum via malleability, yet this makes it more robust
for nonce in nonce_sums {
self.transcript.domain_separate(b"nonce");
for commitment in nonce {
self.transcript.append_message(b"commitment", commitment.to_bytes());
}
}
let mut rng = ChaCha20Rng::from_seed(self.transcript.clone().rng_seed(b"weight"));
for nonce in nonces {
res += *nonce * C::F::random(&mut rng);
}
res
}
#[must_use]
fn verify(&self, _: C::G, nonces: &[Vec<C::G>], sum: C::F) -> Option<Self::Signature> {
verify_nonces::<C>(nonces);
assert_eq!(&self.nonces.clone().unwrap(), nonces);
// Make sure the nonce sums actually relate to the nonces
let mut res = C::G::identity();
let mut rng = ChaCha20Rng::from_seed(self.transcript.clone().rng_seed(b"weight"));
for nonce in nonces {
res += nonce[0] * C::F::random(&mut rng);
}
assert_eq!(res, C::generator() * sum);
Some(())
}
fn verify_share(&self, _: C::G, _: &[Vec<C::G>], _: C::F) -> Result<Vec<(C::F, C::G)>, ()> {
panic!("share verification triggered");
}
}
/// Test a multi-nonce, multi-generator algorithm.
// Specifically verifies this library can:
// 1) Generate multiple nonces
// 2) Provide the group nonces (nonce_sums) across multiple generators, still with the same
// discrete log
// 3) Provide algorithms with nonces which match the group nonces
pub fn test_multi_nonce<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
let keys = key_gen::<R, C>(&mut *rng);
let machines = algorithm_machines(&mut *rng, MultiNonce::<C>::new(), &keys);
sign(&mut *rng, MultiNonce::<C>::new(), keys.clone(), machines, &[]);
}
/// Test malleating a commitment for a nonce across generators causes the preprocess to error.
pub fn test_invalid_commitment<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
let keys = key_gen::<R, C>(&mut *rng);
let machines = algorithm_machines(&mut *rng, MultiNonce::<C>::new(), &keys);
let (machines, mut preprocesses) = preprocess(&mut *rng, machines, |_, _| {});
// Select a random participant to give an invalid commitment
let participants = preprocesses.keys().collect::<Vec<_>>();
let faulty = *participants
[usize::try_from(rng.next_u64() % u64::try_from(participants.len()).unwrap()).unwrap()];
// Grab their preprocess
let mut preprocess = preprocesses.remove(&faulty).unwrap();
// Mutate one of the commitments
let nonce =
preprocess.commitments.nonces.get_mut(usize::try_from(rng.next_u64()).unwrap() % 2).unwrap();
let generators_len = nonce.generators.len();
nonce.generators[usize::try_from(rng.next_u64()).unwrap() % generators_len].0
[usize::try_from(rng.next_u64()).unwrap() % 2] = C::G::random(&mut *rng);
// The commitments are validated at time of deserialization (read_preprocess)
// Accordingly, serialize it and read it again to make sure that errors
assert!(machines
.iter()
.next()
.unwrap()
.1
.read_preprocess::<&[u8]>(&mut preprocess.serialize().as_ref())
.is_err());
}
/// Test malleating the DLEq proof for a preprocess causes it to error.
pub fn test_invalid_dleq_proof<R: RngCore + CryptoRng, C: Curve>(rng: &mut R) {
let keys = key_gen::<R, C>(&mut *rng);
let machines = algorithm_machines(&mut *rng, MultiNonce::<C>::new(), &keys);
let (machines, mut preprocesses) = preprocess(&mut *rng, machines, |_, _| {});
// Select a random participant to give an invalid DLEq proof
let participants = preprocesses.keys().collect::<Vec<_>>();
let faulty = *participants
[usize::try_from(rng.next_u64() % u64::try_from(participants.len()).unwrap()).unwrap()];
// Invalidate it by replacing it with a completely different proof
let dlogs = [Zeroizing::new(C::F::random(&mut *rng)), Zeroizing::new(C::F::random(&mut *rng))];
let mut preprocess = preprocesses.remove(&faulty).unwrap();
preprocess.commitments.dleq = Some(MultiDLEqProof::prove(
&mut *rng,
&mut RecommendedTranscript::new(b"Invalid DLEq Proof"),
&nonces::<C>(),
&dlogs,
));
assert!(machines
.iter()
.next()
.unwrap()
.1
.read_preprocess::<&[u8]>(&mut preprocess.serialize().as_ref())
.is_err());
// Also test None for a proof will cause an error
preprocess.commitments.dleq = None;
assert!(machines
.iter()
.next()
.unwrap()
.1
.read_preprocess::<&[u8]>(&mut preprocess.serialize().as_ref())
.is_err());
}