mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 12:19:24 +00:00
358 lines
12 KiB
Rust
358 lines
12 KiB
Rust
use std::{
|
|
marker::PhantomData,
|
|
io::{Read, Cursor},
|
|
collections::HashMap,
|
|
};
|
|
|
|
use rand_core::{RngCore, CryptoRng};
|
|
|
|
use zeroize::Zeroize;
|
|
|
|
use group::{
|
|
ff::{Field, PrimeField},
|
|
GroupEncoding,
|
|
};
|
|
|
|
use multiexp::{multiexp_vartime, BatchVerifier};
|
|
|
|
use crate::{
|
|
curve::Curve,
|
|
FrostError, FrostParams, FrostCore,
|
|
schnorr::{self, SchnorrSignature},
|
|
validate_map,
|
|
};
|
|
|
|
#[allow(non_snake_case)]
|
|
fn challenge<C: Curve>(context: &str, l: u16, R: &[u8], Am: &[u8]) -> C::F {
|
|
const DST: &[u8] = b"FROST Schnorr Proof of Knowledge";
|
|
|
|
// Uses hash_msg to get a fixed size value out of the context string
|
|
let mut transcript = C::hash_msg(context.as_bytes());
|
|
transcript.extend(l.to_be_bytes());
|
|
transcript.extend(R);
|
|
transcript.extend(Am);
|
|
C::hash_to_F(DST, &transcript)
|
|
}
|
|
|
|
// Implements steps 1 through 3 of round 1 of FROST DKG. Returns the coefficients, commitments, and
|
|
// the serialized commitments to be broadcasted over an authenticated channel to all parties
|
|
fn generate_key_r1<R: RngCore + CryptoRng, C: Curve>(
|
|
rng: &mut R,
|
|
params: &FrostParams,
|
|
context: &str,
|
|
) -> (Vec<C::F>, Vec<C::G>, Vec<u8>) {
|
|
let t = usize::from(params.t);
|
|
let mut coefficients = Vec::with_capacity(t);
|
|
let mut commitments = Vec::with_capacity(t);
|
|
let mut serialized = Vec::with_capacity((C::G_len() * t) + C::G_len() + C::F_len());
|
|
|
|
for i in 0 .. t {
|
|
// Step 1: Generate t random values to form a polynomial with
|
|
coefficients.push(C::F::random(&mut *rng));
|
|
// Step 3: Generate public commitments
|
|
commitments.push(C::generator() * coefficients[i]);
|
|
// Serialize them for publication
|
|
serialized.extend(commitments[i].to_bytes().as_ref());
|
|
}
|
|
|
|
// Step 2: Provide a proof of knowledge
|
|
let mut r = C::F::random(rng);
|
|
serialized.extend(
|
|
schnorr::sign::<C>(
|
|
coefficients[0],
|
|
// This could be deterministic as the PoK is a singleton never opened up to cooperative
|
|
// discussion
|
|
// There's no reason to spend the time and effort to make this deterministic besides a
|
|
// general obsession with canonicity and determinism though
|
|
r,
|
|
challenge::<C>(context, params.i(), (C::generator() * r).to_bytes().as_ref(), &serialized),
|
|
)
|
|
.serialize(),
|
|
);
|
|
r.zeroize();
|
|
|
|
// Step 4: Broadcast
|
|
(coefficients, commitments, serialized)
|
|
}
|
|
|
|
// Verify the received data from the first round of key generation
|
|
fn verify_r1<Re: Read, R: RngCore + CryptoRng, C: Curve>(
|
|
rng: &mut R,
|
|
params: &FrostParams,
|
|
context: &str,
|
|
our_commitments: Vec<C::G>,
|
|
mut serialized: HashMap<u16, Re>,
|
|
) -> Result<HashMap<u16, Vec<C::G>>, FrostError> {
|
|
validate_map(&mut serialized, &(1 ..= params.n()).collect::<Vec<_>>(), params.i())?;
|
|
|
|
let mut commitments = HashMap::new();
|
|
commitments.insert(params.i, our_commitments);
|
|
|
|
let mut signatures = Vec::with_capacity(usize::from(params.n() - 1));
|
|
for l in 1 ..= params.n() {
|
|
if l == params.i {
|
|
continue;
|
|
}
|
|
|
|
let invalid = FrostError::InvalidCommitment(l);
|
|
|
|
// Read the entire list of commitments as the key we're providing a PoK for (A) and the message
|
|
#[allow(non_snake_case)]
|
|
let mut Am = vec![0; usize::from(params.t()) * C::G_len()];
|
|
serialized.get_mut(&l).unwrap().read_exact(&mut Am).map_err(|_| invalid)?;
|
|
|
|
let mut these_commitments = vec![];
|
|
let mut cursor = Cursor::new(&Am);
|
|
for _ in 0 .. usize::from(params.t()) {
|
|
these_commitments.push(C::read_G(&mut cursor).map_err(|_| invalid)?);
|
|
}
|
|
|
|
// Don't bother validating our own proof of knowledge
|
|
if l != params.i() {
|
|
let cursor = serialized.get_mut(&l).unwrap();
|
|
#[allow(non_snake_case)]
|
|
let R = C::read_G(cursor).map_err(|_| FrostError::InvalidProofOfKnowledge(l))?;
|
|
let s = C::read_F(cursor).map_err(|_| FrostError::InvalidProofOfKnowledge(l))?;
|
|
|
|
// Step 5: Validate each proof of knowledge
|
|
// This is solely the prep step for the latter batch verification
|
|
signatures.push((
|
|
l,
|
|
these_commitments[0],
|
|
challenge::<C>(context, l, R.to_bytes().as_ref(), &Am),
|
|
SchnorrSignature::<C> { R, s },
|
|
));
|
|
}
|
|
|
|
commitments.insert(l, these_commitments);
|
|
}
|
|
|
|
schnorr::batch_verify(rng, &signatures).map_err(FrostError::InvalidProofOfKnowledge)?;
|
|
|
|
Ok(commitments)
|
|
}
|
|
|
|
fn polynomial<F: PrimeField>(coefficients: &[F], l: u16) -> F {
|
|
let l = F::from(u64::from(l));
|
|
let mut share = F::zero();
|
|
for (idx, coefficient) in coefficients.iter().rev().enumerate() {
|
|
share += coefficient;
|
|
if idx != (coefficients.len() - 1) {
|
|
share *= l;
|
|
}
|
|
}
|
|
share
|
|
}
|
|
|
|
// Implements round 1, step 5 and round 2, step 1 of FROST key generation
|
|
// Returns our secret share part, commitments for the next step, and a vector for each
|
|
// counterparty to receive
|
|
fn generate_key_r2<Re: Read, R: RngCore + CryptoRng, C: Curve>(
|
|
rng: &mut R,
|
|
params: &FrostParams,
|
|
context: &str,
|
|
coefficients: &mut Vec<C::F>,
|
|
our_commitments: Vec<C::G>,
|
|
commitments: HashMap<u16, Re>,
|
|
) -> Result<(C::F, HashMap<u16, Vec<C::G>>, HashMap<u16, Vec<u8>>), FrostError> {
|
|
let commitments = verify_r1::<_, _, C>(rng, params, context, our_commitments, commitments)?;
|
|
|
|
// Step 1: Generate secret shares for all other parties
|
|
let mut res = HashMap::new();
|
|
for l in 1 ..= params.n() {
|
|
// Don't insert our own shares to the byte buffer which is meant to be sent around
|
|
// An app developer could accidentally send it. Best to keep this black boxed
|
|
if l == params.i() {
|
|
continue;
|
|
}
|
|
|
|
res.insert(l, polynomial(coefficients, l).to_repr().as_ref().to_vec());
|
|
}
|
|
|
|
// Calculate our own share
|
|
let share = polynomial(coefficients, params.i());
|
|
|
|
coefficients.zeroize();
|
|
|
|
Ok((share, commitments, res))
|
|
}
|
|
|
|
/// Finishes round 2 and returns both the secret share and the serialized public key.
|
|
/// This key is not usable until all parties confirm they have completed the protocol without
|
|
/// issue, yet simply confirming protocol completion without issue is enough to confirm the same
|
|
/// key was generated as long as a lack of duplicated commitments was also confirmed when they were
|
|
/// broadcasted initially
|
|
fn complete_r2<Re: Read, R: RngCore + CryptoRng, C: Curve>(
|
|
rng: &mut R,
|
|
params: FrostParams,
|
|
mut secret_share: C::F,
|
|
commitments: &mut HashMap<u16, Vec<C::G>>,
|
|
mut serialized: HashMap<u16, Re>,
|
|
) -> Result<FrostCore<C>, FrostError> {
|
|
validate_map(&mut serialized, &(1 ..= params.n()).collect::<Vec<_>>(), params.i())?;
|
|
|
|
// Step 2. Verify each share
|
|
let mut shares = HashMap::new();
|
|
// TODO: Clear serialized
|
|
for (l, share) in serialized.iter_mut() {
|
|
shares.insert(*l, C::read_F(share).map_err(|_| FrostError::InvalidShare(*l))?);
|
|
}
|
|
|
|
// Calculate the exponent for a given participant and apply it to a series of commitments
|
|
// Initially used with the actual commitments to verify the secret share, later used with stripes
|
|
// to generate the verification shares
|
|
let exponential = |i: u16, values: &[_]| {
|
|
let i = C::F::from(i.into());
|
|
let mut res = Vec::with_capacity(params.t().into());
|
|
(0 .. usize::from(params.t())).into_iter().fold(C::F::one(), |exp, l| {
|
|
res.push((exp, values[l]));
|
|
exp * i
|
|
});
|
|
res
|
|
};
|
|
|
|
let mut batch = BatchVerifier::new(shares.len());
|
|
for (l, share) in shares.iter_mut() {
|
|
if *l == params.i() {
|
|
continue;
|
|
}
|
|
|
|
secret_share += *share;
|
|
|
|
// This can be insecurely linearized from n * t to just n using the below sums for a given
|
|
// stripe. Doing so uses naive addition which is subject to malleability. The only way to
|
|
// ensure that malleability isn't present is to use this n * t algorithm, which runs
|
|
// per sender and not as an aggregate of all senders, which also enables blame
|
|
let mut values = exponential(params.i, &commitments[l]);
|
|
values.push((-*share, C::generator()));
|
|
share.zeroize();
|
|
|
|
batch.queue(rng, *l, values);
|
|
}
|
|
batch.verify_with_vartime_blame().map_err(FrostError::InvalidCommitment)?;
|
|
|
|
// Stripe commitments per t and sum them in advance. Calculating verification shares relies on
|
|
// these sums so preprocessing them is a massive speedup
|
|
// If these weren't just sums, yet the tables used in multiexp, this would be further optimized
|
|
// As of right now, each multiexp will regenerate them
|
|
let mut stripes = Vec::with_capacity(usize::from(params.t()));
|
|
for t in 0 .. usize::from(params.t()) {
|
|
stripes.push(commitments.values().map(|commitments| commitments[t]).sum());
|
|
}
|
|
|
|
// Calculate each user's verification share
|
|
let mut verification_shares = HashMap::new();
|
|
for i in 1 ..= params.n() {
|
|
verification_shares.insert(i, multiexp_vartime(&exponential(i, &stripes)));
|
|
}
|
|
// Removing this check would enable optimizing the above from t + (n * t) to t + ((n - 1) * t)
|
|
debug_assert_eq!(C::generator() * secret_share, verification_shares[¶ms.i()]);
|
|
|
|
Ok(FrostCore { params, secret_share, group_key: stripes[0], verification_shares })
|
|
}
|
|
|
|
pub struct KeyGenMachine<C: Curve> {
|
|
params: FrostParams,
|
|
context: String,
|
|
_curve: PhantomData<C>,
|
|
}
|
|
|
|
#[derive(Zeroize)]
|
|
pub struct SecretShareMachine<C: Curve> {
|
|
#[zeroize(skip)]
|
|
params: FrostParams,
|
|
context: String,
|
|
coefficients: Vec<C::F>,
|
|
#[zeroize(skip)]
|
|
our_commitments: Vec<C::G>,
|
|
}
|
|
|
|
impl<C: Curve> Drop for SecretShareMachine<C> {
|
|
fn drop(&mut self) {
|
|
self.zeroize()
|
|
}
|
|
}
|
|
|
|
#[derive(Zeroize)]
|
|
pub struct KeyMachine<C: Curve> {
|
|
#[zeroize(skip)]
|
|
params: FrostParams,
|
|
secret: C::F,
|
|
#[zeroize(skip)]
|
|
commitments: HashMap<u16, Vec<C::G>>,
|
|
}
|
|
|
|
impl<C: Curve> Drop for KeyMachine<C> {
|
|
fn drop(&mut self) {
|
|
self.zeroize()
|
|
}
|
|
}
|
|
|
|
impl<C: Curve> KeyGenMachine<C> {
|
|
/// Creates a new machine to generate a key for the specified curve in the specified multisig
|
|
// The context string must be unique among multisigs
|
|
pub fn new(params: FrostParams, context: String) -> KeyGenMachine<C> {
|
|
KeyGenMachine { params, context, _curve: PhantomData }
|
|
}
|
|
|
|
/// Start generating a key according to the FROST DKG spec
|
|
/// Returns a serialized list of commitments to be sent to all parties over an authenticated
|
|
/// channel. If any party submits multiple sets of commitments, they MUST be treated as malicious
|
|
pub fn generate_coefficients<R: RngCore + CryptoRng>(
|
|
self,
|
|
rng: &mut R,
|
|
) -> (SecretShareMachine<C>, Vec<u8>) {
|
|
let (coefficients, our_commitments, serialized) =
|
|
generate_key_r1::<_, C>(rng, &self.params, &self.context);
|
|
|
|
(
|
|
SecretShareMachine {
|
|
params: self.params,
|
|
context: self.context,
|
|
coefficients,
|
|
our_commitments,
|
|
},
|
|
serialized,
|
|
)
|
|
}
|
|
}
|
|
|
|
impl<C: Curve> SecretShareMachine<C> {
|
|
/// Continue generating a key
|
|
/// Takes in everyone else's commitments, which are expected to be in a Vec where participant
|
|
/// index = Vec index. An empty vector is expected at index 0 to allow for this. An empty vector
|
|
/// is also expected at index i which is locally handled. Returns a byte vector representing a
|
|
/// secret share for each other participant which should be encrypted before sending
|
|
pub fn generate_secret_shares<Re: Read, R: RngCore + CryptoRng>(
|
|
mut self,
|
|
rng: &mut R,
|
|
commitments: HashMap<u16, Re>,
|
|
) -> Result<(KeyMachine<C>, HashMap<u16, Vec<u8>>), FrostError> {
|
|
let (secret, commitments, shares) = generate_key_r2::<_, _, C>(
|
|
rng,
|
|
&self.params,
|
|
&self.context,
|
|
&mut self.coefficients,
|
|
self.our_commitments.clone(),
|
|
commitments,
|
|
)?;
|
|
Ok((KeyMachine { params: self.params, secret, commitments }, shares))
|
|
}
|
|
}
|
|
|
|
impl<C: Curve> KeyMachine<C> {
|
|
/// Complete key generation
|
|
/// Takes in everyone elses' shares submitted to us as a Vec, expecting participant index =
|
|
/// Vec index with an empty vector at index 0 and index i. Returns a byte vector representing the
|
|
/// group's public key, while setting a valid secret share inside the machine. > t participants
|
|
/// must report completion without issue before this key can be considered usable, yet you should
|
|
/// wait for all participants to report as such
|
|
pub fn complete<Re: Read, R: RngCore + CryptoRng>(
|
|
mut self,
|
|
rng: &mut R,
|
|
shares: HashMap<u16, Re>,
|
|
) -> Result<FrostCore<C>, FrostError> {
|
|
complete_r2(rng, self.params, self.secret, &mut self.commitments, shares)
|
|
}
|
|
}
|