mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 12:19:24 +00:00
Online validators should inherently have them. Offline validators will receive from the sync protocol. This does somewhat eliminate the class of nodes who would follow the blockchain (without validating it), yet that's fine for the performance benefit.
440 lines
14 KiB
Rust
440 lines
14 KiB
Rust
use core::ops::Deref;
|
|
use std::{
|
|
sync::Arc,
|
|
collections::{VecDeque, HashMap},
|
|
};
|
|
|
|
use async_trait::async_trait;
|
|
|
|
use subtle::ConstantTimeEq;
|
|
use zeroize::{Zeroize, Zeroizing};
|
|
|
|
use rand::{SeedableRng, seq::SliceRandom};
|
|
use rand_chacha::ChaCha12Rng;
|
|
|
|
use transcript::{Transcript, RecommendedTranscript};
|
|
|
|
use ciphersuite::{
|
|
group::{
|
|
GroupEncoding,
|
|
ff::{Field, PrimeField},
|
|
},
|
|
Ciphersuite, Ristretto,
|
|
};
|
|
use schnorr::{
|
|
SchnorrSignature,
|
|
aggregate::{SchnorrAggregator, SchnorrAggregate},
|
|
};
|
|
|
|
use serai_db::Db;
|
|
|
|
use scale::{Encode, Decode};
|
|
use tendermint::{
|
|
SignedMessageFor,
|
|
ext::{
|
|
BlockNumber, RoundNumber, Signer as SignerTrait, SignatureScheme, Weights, Block as BlockTrait,
|
|
BlockError as TendermintBlockError, Commit, Network,
|
|
},
|
|
SlashEvent,
|
|
};
|
|
|
|
use tokio::sync::RwLock;
|
|
|
|
use crate::{
|
|
TENDERMINT_MESSAGE, TRANSACTION_MESSAGE, ReadWrite,
|
|
transaction::Transaction as TransactionTrait, Transaction, BlockHeader, Block, BlockError,
|
|
Blockchain, P2p,
|
|
};
|
|
|
|
pub mod tx;
|
|
use tx::TendermintTx;
|
|
|
|
const DST: &[u8] = b"Tributary Tendermint Commit Aggregator";
|
|
|
|
fn challenge(
|
|
genesis: [u8; 32],
|
|
key: [u8; 32],
|
|
nonce: &[u8],
|
|
msg: &[u8],
|
|
) -> <Ristretto as Ciphersuite>::F {
|
|
let mut transcript = RecommendedTranscript::new(b"Tributary Chain Tendermint Message");
|
|
transcript.append_message(b"genesis", genesis);
|
|
transcript.append_message(b"key", key);
|
|
transcript.append_message(b"nonce", nonce);
|
|
transcript.append_message(b"message", msg);
|
|
|
|
<Ristretto as Ciphersuite>::F::from_bytes_mod_order_wide(&transcript.challenge(b"schnorr").into())
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub struct Signer {
|
|
genesis: [u8; 32],
|
|
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
|
|
}
|
|
|
|
impl Signer {
|
|
pub(crate) fn new(genesis: [u8; 32], key: Zeroizing<<Ristretto as Ciphersuite>::F>) -> Signer {
|
|
Signer { genesis, key }
|
|
}
|
|
}
|
|
|
|
#[async_trait]
|
|
impl SignerTrait for Signer {
|
|
type ValidatorId = [u8; 32];
|
|
type Signature = [u8; 64];
|
|
|
|
/// Returns the validator's current ID. Returns None if they aren't a current validator.
|
|
async fn validator_id(&self) -> Option<Self::ValidatorId> {
|
|
Some((Ristretto::generator() * self.key.deref()).to_bytes())
|
|
}
|
|
|
|
/// Sign a signature with the current validator's private key.
|
|
async fn sign(&self, msg: &[u8]) -> Self::Signature {
|
|
let mut nonce = Zeroizing::new(RecommendedTranscript::new(b"Tributary Chain Tendermint Nonce"));
|
|
nonce.append_message(b"genesis", self.genesis);
|
|
nonce.append_message(b"key", Zeroizing::new(self.key.deref().to_repr()).as_ref());
|
|
nonce.append_message(b"message", msg);
|
|
let mut nonce = nonce.challenge(b"nonce");
|
|
|
|
let mut nonce_arr = [0; 64];
|
|
nonce_arr.copy_from_slice(nonce.as_ref());
|
|
|
|
let nonce_ref: &mut [u8] = nonce.as_mut();
|
|
nonce_ref.zeroize();
|
|
let nonce_ref: &[u8] = nonce.as_ref();
|
|
assert_eq!(nonce_ref, [0; 64].as_ref());
|
|
|
|
let nonce =
|
|
Zeroizing::new(<Ristretto as Ciphersuite>::F::from_bytes_mod_order_wide(&nonce_arr));
|
|
nonce_arr.zeroize();
|
|
|
|
assert!(!bool::from(nonce.ct_eq(&<Ristretto as Ciphersuite>::F::ZERO)));
|
|
|
|
let challenge = challenge(
|
|
self.genesis,
|
|
(Ristretto::generator() * self.key.deref()).to_bytes(),
|
|
(Ristretto::generator() * nonce.deref()).to_bytes().as_ref(),
|
|
msg,
|
|
);
|
|
|
|
let sig = SchnorrSignature::<Ristretto>::sign(&self.key, nonce, challenge).serialize();
|
|
|
|
let mut res = [0; 64];
|
|
res.copy_from_slice(&sig);
|
|
res
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub struct Validators {
|
|
genesis: [u8; 32],
|
|
total_weight: u64,
|
|
weights: HashMap<[u8; 32], u64>,
|
|
robin: Vec<[u8; 32]>,
|
|
}
|
|
|
|
impl Validators {
|
|
pub(crate) fn new(
|
|
genesis: [u8; 32],
|
|
validators: Vec<(<Ristretto as Ciphersuite>::G, u64)>,
|
|
) -> Option<Validators> {
|
|
let mut total_weight = 0;
|
|
let mut weights = HashMap::new();
|
|
|
|
let mut transcript = RecommendedTranscript::new(b"Round Robin Randomization");
|
|
let mut robin = vec![];
|
|
for (validator, weight) in validators {
|
|
let validator = validator.to_bytes();
|
|
if weight == 0 {
|
|
return None;
|
|
}
|
|
total_weight += weight;
|
|
weights.insert(validator, weight);
|
|
|
|
transcript.append_message(b"validator", validator);
|
|
transcript.append_message(b"weight", weight.to_le_bytes());
|
|
robin.extend(vec![validator; usize::try_from(weight).unwrap()]);
|
|
}
|
|
robin.shuffle(&mut ChaCha12Rng::from_seed(transcript.rng_seed(b"robin")));
|
|
|
|
Some(Validators { genesis, total_weight, weights, robin })
|
|
}
|
|
}
|
|
|
|
impl SignatureScheme for Validators {
|
|
type ValidatorId = [u8; 32];
|
|
type Signature = [u8; 64];
|
|
type AggregateSignature = Vec<u8>;
|
|
type Signer = Arc<Signer>;
|
|
|
|
#[must_use]
|
|
fn verify(&self, validator: Self::ValidatorId, msg: &[u8], sig: &Self::Signature) -> bool {
|
|
if !self.weights.contains_key(&validator) {
|
|
return false;
|
|
}
|
|
let Ok(validator_point) = Ristretto::read_G::<&[u8]>(&mut validator.as_ref()) else {
|
|
return false;
|
|
};
|
|
let Ok(actual_sig) = SchnorrSignature::<Ristretto>::read::<&[u8]>(&mut sig.as_ref()) else {
|
|
return false;
|
|
};
|
|
actual_sig.verify(validator_point, challenge(self.genesis, validator, &sig[.. 32], msg))
|
|
}
|
|
|
|
fn aggregate(
|
|
&self,
|
|
validators: &[Self::ValidatorId],
|
|
msg: &[u8],
|
|
sigs: &[Self::Signature],
|
|
) -> Self::AggregateSignature {
|
|
assert_eq!(validators.len(), sigs.len());
|
|
|
|
let mut aggregator = SchnorrAggregator::<Ristretto>::new(DST);
|
|
for (key, sig) in validators.iter().zip(sigs) {
|
|
let actual_sig = SchnorrSignature::<Ristretto>::read::<&[u8]>(&mut sig.as_ref()).unwrap();
|
|
let challenge = challenge(self.genesis, *key, actual_sig.R.to_bytes().as_ref(), msg);
|
|
aggregator.aggregate(challenge, actual_sig);
|
|
}
|
|
|
|
let aggregate = aggregator.complete().unwrap();
|
|
aggregate.serialize()
|
|
}
|
|
|
|
#[must_use]
|
|
fn verify_aggregate(
|
|
&self,
|
|
signers: &[Self::ValidatorId],
|
|
msg: &[u8],
|
|
sig: &Self::AggregateSignature,
|
|
) -> bool {
|
|
let Ok(aggregate) = SchnorrAggregate::<Ristretto>::read::<&[u8]>(&mut sig.as_slice()) else {
|
|
return false;
|
|
};
|
|
|
|
if signers.len() != aggregate.Rs().len() {
|
|
return false;
|
|
}
|
|
|
|
let mut challenges = vec![];
|
|
for (key, nonce) in signers.iter().zip(aggregate.Rs()) {
|
|
challenges.push(challenge(self.genesis, *key, nonce.to_bytes().as_ref(), msg));
|
|
}
|
|
|
|
aggregate.verify(
|
|
DST,
|
|
signers
|
|
.iter()
|
|
.zip(challenges)
|
|
.map(|(s, c)| (<Ristretto as Ciphersuite>::read_G(&mut s.as_slice()).unwrap(), c))
|
|
.collect::<Vec<_>>()
|
|
.as_slice(),
|
|
)
|
|
}
|
|
}
|
|
|
|
impl Weights for Validators {
|
|
type ValidatorId = [u8; 32];
|
|
|
|
fn total_weight(&self) -> u64 {
|
|
self.total_weight
|
|
}
|
|
fn weight(&self, validator: Self::ValidatorId) -> u64 {
|
|
self.weights[&validator]
|
|
}
|
|
fn proposer(&self, block: BlockNumber, round: RoundNumber) -> Self::ValidatorId {
|
|
let block = usize::try_from(block.0).unwrap();
|
|
let round = usize::try_from(round.0).unwrap();
|
|
// If multiple rounds are used, a naive block + round would cause the same index to be chosen
|
|
// in quick succession.
|
|
// Accordingly, if we use additional rounds, jump halfway around.
|
|
// While this is still game-able, it's not explicitly reusing indexes immediately after each
|
|
// other.
|
|
self.robin
|
|
[(block + (if round == 0 { 0 } else { round + (self.robin.len() / 2) })) % self.robin.len()]
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug, Encode, Decode)]
|
|
pub struct TendermintBlock(pub Vec<u8>);
|
|
impl BlockTrait for TendermintBlock {
|
|
type Id = [u8; 32];
|
|
fn id(&self) -> Self::Id {
|
|
BlockHeader::read::<&[u8]>(&mut self.0.as_ref()).unwrap().hash()
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct TendermintNetwork<D: Db, T: TransactionTrait, P: P2p> {
|
|
pub(crate) genesis: [u8; 32],
|
|
|
|
pub(crate) signer: Arc<Signer>,
|
|
pub(crate) validators: Arc<Validators>,
|
|
pub(crate) blockchain: Arc<RwLock<Blockchain<D, T>>>,
|
|
|
|
pub(crate) to_rebroadcast: Arc<RwLock<VecDeque<Vec<u8>>>>,
|
|
|
|
pub(crate) p2p: P,
|
|
}
|
|
|
|
pub const BLOCK_PROCESSING_TIME: u32 = 999;
|
|
pub const LATENCY_TIME: u32 = 1667;
|
|
pub const TARGET_BLOCK_TIME: u32 = BLOCK_PROCESSING_TIME + (3 * LATENCY_TIME);
|
|
|
|
#[async_trait]
|
|
impl<D: Db, T: TransactionTrait, P: P2p> Network for TendermintNetwork<D, T, P> {
|
|
type Db = D;
|
|
|
|
type ValidatorId = [u8; 32];
|
|
type SignatureScheme = Arc<Validators>;
|
|
type Weights = Arc<Validators>;
|
|
type Block = TendermintBlock;
|
|
|
|
// These are in milliseconds and create a six-second block time.
|
|
// The block time is the latency on message delivery (where a message is some piece of data
|
|
// embedded in a transaction) times three plus the block processing time, hence why it should be
|
|
// kept low.
|
|
const BLOCK_PROCESSING_TIME: u32 = BLOCK_PROCESSING_TIME;
|
|
const LATENCY_TIME: u32 = LATENCY_TIME;
|
|
|
|
fn signer(&self) -> Arc<Signer> {
|
|
self.signer.clone()
|
|
}
|
|
fn signature_scheme(&self) -> Arc<Validators> {
|
|
self.validators.clone()
|
|
}
|
|
fn weights(&self) -> Arc<Validators> {
|
|
self.validators.clone()
|
|
}
|
|
|
|
async fn broadcast(&mut self, msg: SignedMessageFor<Self>) {
|
|
let mut to_broadcast = vec![TENDERMINT_MESSAGE];
|
|
to_broadcast.extend(msg.encode());
|
|
|
|
// Since we're broadcasting a Tendermint message, set it to be re-broadcasted every second
|
|
// until the block it's trying to build is complete
|
|
// If the P2P layer drops a message before all nodes obtained access, or a node had an
|
|
// intermittent failure, this will ensure reconcilliation
|
|
// This is atrocious if there's no content-based deduplication protocol for messages actively
|
|
// being gossiped
|
|
// LibP2p, as used by Serai, is configured to content-based deduplicate
|
|
{
|
|
let mut to_rebroadcast_lock = self.to_rebroadcast.write().await;
|
|
to_rebroadcast_lock.push_back(to_broadcast.clone());
|
|
// We should have, ideally, 3 * validators messages within a round
|
|
// Therefore, this should keep the most recent 2-rounds
|
|
// TODO: This isn't perfect. Each participant should just rebroadcast their latest round of
|
|
// messages
|
|
while to_rebroadcast_lock.len() > (6 * self.validators.weights.len()) {
|
|
to_rebroadcast_lock.pop_front();
|
|
}
|
|
}
|
|
|
|
self.p2p.broadcast(self.genesis, to_broadcast).await
|
|
}
|
|
|
|
async fn slash(&mut self, validator: Self::ValidatorId, slash_event: SlashEvent) {
|
|
log::error!(
|
|
"validator {} triggered a slash event on tributary {} (with evidence: {})",
|
|
hex::encode(validator),
|
|
hex::encode(self.genesis),
|
|
matches!(slash_event, SlashEvent::WithEvidence(_)),
|
|
);
|
|
|
|
let signer = self.signer();
|
|
let Some(tx) = (match slash_event {
|
|
SlashEvent::WithEvidence(evidence) => {
|
|
// create an unsigned evidence tx
|
|
Some(TendermintTx::SlashEvidence(evidence))
|
|
}
|
|
SlashEvent::Id(_reason, _block, _round) => {
|
|
// TODO: Increase locally observed slash points
|
|
None
|
|
}
|
|
}) else {
|
|
return;
|
|
};
|
|
|
|
// add tx to blockchain and broadcast to peers
|
|
let mut to_broadcast = vec![TRANSACTION_MESSAGE];
|
|
tx.write(&mut to_broadcast).unwrap();
|
|
if self.blockchain.write().await.add_transaction::<Self>(
|
|
true,
|
|
Transaction::Tendermint(tx),
|
|
&self.signature_scheme(),
|
|
) == Ok(true)
|
|
{
|
|
self.p2p.broadcast(signer.genesis, to_broadcast).await;
|
|
}
|
|
}
|
|
|
|
async fn validate(&mut self, block: &Self::Block) -> Result<(), TendermintBlockError> {
|
|
let block =
|
|
Block::read::<&[u8]>(&mut block.0.as_ref()).map_err(|_| TendermintBlockError::Fatal)?;
|
|
self
|
|
.blockchain
|
|
.read()
|
|
.await
|
|
.verify_block::<Self>(&block, &self.signature_scheme(), false)
|
|
.map_err(|e| match e {
|
|
BlockError::NonLocalProvided(_) => TendermintBlockError::Temporal,
|
|
_ => {
|
|
log::warn!("Tributary Tendermint validate returning BlockError::Fatal due to {e:?}");
|
|
TendermintBlockError::Fatal
|
|
}
|
|
})
|
|
}
|
|
|
|
async fn add_block(
|
|
&mut self,
|
|
serialized_block: Self::Block,
|
|
commit: Commit<Self::SignatureScheme>,
|
|
) -> Option<Self::Block> {
|
|
let invalid_block = || {
|
|
// There's a fatal flaw in the code, it's behind a hard fork, or the validators turned
|
|
// malicious
|
|
// All justify a halt to then achieve social consensus from
|
|
// TODO: Under multiple validator sets, a small validator set turning malicious knocks
|
|
// off the entire network. That's an unacceptable DoS.
|
|
panic!("validators added invalid block to tributary {}", hex::encode(self.genesis));
|
|
};
|
|
|
|
// Tendermint should only produce valid commits
|
|
assert!(self.verify_commit(serialized_block.id(), &commit));
|
|
|
|
let Ok(block) = Block::read::<&[u8]>(&mut serialized_block.0.as_ref()) else {
|
|
return invalid_block();
|
|
};
|
|
|
|
let encoded_commit = commit.encode();
|
|
loop {
|
|
let block_res = self.blockchain.write().await.add_block::<Self>(
|
|
&block,
|
|
encoded_commit.clone(),
|
|
&self.signature_scheme(),
|
|
);
|
|
match block_res {
|
|
Ok(()) => {
|
|
// If we successfully added this block, break
|
|
break;
|
|
}
|
|
Err(BlockError::NonLocalProvided(hash)) => {
|
|
log::error!(
|
|
"missing provided transaction {} which other validators on tributary {} had",
|
|
hex::encode(hash),
|
|
hex::encode(self.genesis)
|
|
);
|
|
tokio::time::sleep(core::time::Duration::from_secs(5)).await;
|
|
}
|
|
_ => return invalid_block(),
|
|
}
|
|
}
|
|
|
|
// Since we've added a valid block, clear to_rebroadcast
|
|
*self.to_rebroadcast.write().await = VecDeque::new();
|
|
|
|
Some(TendermintBlock(
|
|
self.blockchain.write().await.build_block::<Self>(&self.signature_scheme()).serialize(),
|
|
))
|
|
}
|
|
}
|