Files
serai/crypto/evrf/circuit-abstraction/src/lib.rs

193 lines
5.8 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
#![allow(non_snake_case)]
use zeroize::{Zeroize, ZeroizeOnDrop};
use ciphersuite::{
group::ff::{Field, PrimeField},
Ciphersuite,
};
use generalized_bulletproofs::{
ScalarVector, PedersenCommitment, PedersenVectorCommitment, ProofGenerators,
transcript::{Transcript as ProverTranscript, VerifierTranscript, Commitments},
arithmetic_circuit_proof::{AcError, ArithmeticCircuitStatement, ArithmeticCircuitWitness},
};
pub use generalized_bulletproofs::arithmetic_circuit_proof::{Variable, LinComb};
mod gadgets;
/// A trait for the transcript, whether proving for verifying, as necessary for sampling
/// challenges.
pub trait Transcript {
/// Sample a challenge from the transacript.
///
/// It is the caller's responsibility to have properly transcripted all variables prior to
/// sampling this challenge.
fn challenge<F: PrimeField>(&mut self) -> F;
}
impl Transcript for ProverTranscript {
fn challenge<F: PrimeField>(&mut self) -> F {
self.challenge()
}
}
impl Transcript for VerifierTranscript<'_> {
fn challenge<F: PrimeField>(&mut self) -> F {
self.challenge()
}
}
/// The witness for the satisfaction of this circuit.
#[derive(Clone, PartialEq, Eq, Debug, Zeroize, ZeroizeOnDrop)]
struct ProverData<C: Ciphersuite> {
aL: Vec<C::F>,
aR: Vec<C::F>,
C: Vec<PedersenVectorCommitment<C>>,
V: Vec<PedersenCommitment<C>>,
}
/// A struct representing a circuit.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Circuit<C: Ciphersuite> {
muls: usize,
// A series of linear combinations which must evaluate to 0.
constraints: Vec<LinComb<C::F>>,
prover: Option<ProverData<C>>,
}
impl<C: Ciphersuite> Circuit<C> {
/// Returns the amount of multiplications used by this circuit.
pub fn muls(&self) -> usize {
self.muls
}
/// Create an instance to prove satisfaction of a circuit with.
// TODO: Take the transcript here
#[allow(clippy::type_complexity)]
pub fn prove(
vector_commitments: Vec<PedersenVectorCommitment<C>>,
commitments: Vec<PedersenCommitment<C>>,
) -> Self {
Self {
muls: 0,
constraints: vec![],
prover: Some(ProverData { aL: vec![], aR: vec![], C: vector_commitments, V: commitments }),
}
}
/// Create an instance to verify a proof with.
// TODO: Take the transcript here
pub fn verify() -> Self {
Self { muls: 0, constraints: vec![], prover: None }
}
/// Evaluate a linear combination.
///
/// Yields WL aL + WR aR + WO aO + WCG CG + WCH CH + WV V + c.
///
/// May panic if the linear combination references non-existent terms.
///
/// Returns None if not a prover.
pub fn eval(&self, lincomb: &LinComb<C::F>) -> Option<C::F> {
self.prover.as_ref().map(|prover| {
let mut res = lincomb.c();
for (index, weight) in lincomb.WL() {
res += prover.aL[*index] * weight;
}
for (index, weight) in lincomb.WR() {
res += prover.aR[*index] * weight;
}
for (index, weight) in lincomb.WO() {
res += prover.aL[*index] * prover.aR[*index] * weight;
}
for (WCG, C) in lincomb.WCG().iter().zip(&prover.C) {
for (j, weight) in WCG {
res += C.g_values[*j] * weight;
}
}
for (WCH, C) in lincomb.WCH().iter().zip(&prover.C) {
for (j, weight) in WCH {
res += C.h_values[*j] * weight;
}
}
for (index, weight) in lincomb.WV() {
res += prover.V[*index].value * weight;
}
res
})
}
/// Multiply two values, optionally constrained, returning the constrainable left/right/out
/// terms.
///
/// May panic if any linear combinations reference non-existent terms or if the witness isn't
/// provided when proving/is provided when verifying.
pub fn mul(
&mut self,
a: Option<LinComb<C::F>>,
b: Option<LinComb<C::F>>,
witness: Option<(C::F, C::F)>,
) -> (Variable, Variable, Variable) {
let l = Variable::aL(self.muls);
let r = Variable::aR(self.muls);
let o = Variable::aO(self.muls);
self.muls += 1;
debug_assert_eq!(self.prover.is_some(), witness.is_some());
if let Some(witness) = witness {
let prover = self.prover.as_mut().unwrap();
prover.aL.push(witness.0);
prover.aR.push(witness.1);
}
if let Some(a) = a {
self.constrain_equal_to_zero(a.term(-C::F::ONE, l));
}
if let Some(b) = b {
self.constrain_equal_to_zero(b.term(-C::F::ONE, r));
}
(l, r, o)
}
/// Constrain a linear combination to be equal to 0.
///
/// May panic if the linear combination references non-existent terms.
pub fn constrain_equal_to_zero(&mut self, lincomb: LinComb<C::F>) {
self.constraints.push(lincomb);
}
/// Obtain the statement for this circuit.
///
/// If configured as the prover, the witness to use is also returned.
#[allow(clippy::type_complexity)]
pub fn statement(
self,
generators: ProofGenerators<'_, C>,
commitments: Commitments<C>,
) -> Result<(ArithmeticCircuitStatement<'_, C>, Option<ArithmeticCircuitWitness<C>>), AcError> {
let statement = ArithmeticCircuitStatement::new(generators, self.constraints, commitments)?;
let witness = self
.prover
.map(|mut prover| {
// We can't deconstruct the witness as it implements Drop (per ZeroizeOnDrop)
// Accordingly, we take the values within it and move forward with those
let mut aL = vec![];
std::mem::swap(&mut prover.aL, &mut aL);
let mut aR = vec![];
std::mem::swap(&mut prover.aR, &mut aR);
let mut C = vec![];
std::mem::swap(&mut prover.C, &mut C);
let mut V = vec![];
std::mem::swap(&mut prover.V, &mut V);
ArithmeticCircuitWitness::new(ScalarVector::from(aL), ScalarVector::from(aR), C, V)
})
.transpose()?;
Ok((statement, witness))
}
}