Files
serai/crypto/multiexp/src/lib.rs
Luke Parker ad470bc969 \#242 Expand usage of black_box/zeroize
This commit greatly expands the usage of black_box/zeroize on bits, as it
originally should have. It is likely overkill, leading to less efficient
code generation, yet does its best to be comprehensive where comprehensiveness
is extremely annoying to achieve.

In the future, this usage of black_box may be desirable to move to its own
crate.

Credit to @AaronFeickert for identifying the original commit was incomplete.
2023-03-10 06:27:44 -05:00

201 lines
5.2 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
use core::ops::DerefMut;
use zeroize::Zeroize;
use ff::PrimeFieldBits;
use group::Group;
mod straus;
use straus::*;
mod pippenger;
use pippenger::*;
#[cfg(feature = "batch")]
mod batch;
#[cfg(feature = "batch")]
pub use batch::BatchVerifier;
#[cfg(test)]
mod tests;
// Feature gated due to MSRV requirements
#[cfg(feature = "black_box")]
pub(crate) fn black_box<T>(val: T) -> T {
core::hint::black_box(val)
}
#[cfg(not(feature = "black_box"))]
pub(crate) fn black_box<T>(val: T) -> T {
val
}
fn u8_from_bool(bit_ref: &mut bool) -> u8 {
let bit_ref = black_box(bit_ref);
let mut bit = black_box(*bit_ref);
let res = black_box(bit as u8);
bit.zeroize();
debug_assert!((res | 1) == 1);
bit_ref.zeroize();
res
}
// Convert scalars to `window`-sized bit groups, as needed to index a table
// This algorithm works for `window <= 8`
pub(crate) fn prep_bits<G: Group>(pairs: &[(G::Scalar, G)], window: u8) -> Vec<Vec<u8>>
where
G::Scalar: PrimeFieldBits,
{
let w_usize = usize::from(window);
let mut groupings = vec![];
for pair in pairs {
let p = groupings.len();
let mut bits = pair.0.to_le_bits();
groupings.push(vec![0; (bits.len() + (w_usize - 1)) / w_usize]);
for (i, mut bit) in bits.iter_mut().enumerate() {
let mut bit = u8_from_bool(bit.deref_mut());
groupings[p][i / w_usize] |= bit << (i % w_usize);
bit.zeroize();
}
}
groupings
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
enum Algorithm {
Null,
Single,
Straus(u8),
Pippenger(u8),
}
/*
Release (with runs 20, so all of these are off by 20x):
k256
Straus 3 is more efficient at 5 with 678µs per
Straus 4 is more efficient at 10 with 530µs per
Straus 5 is more efficient at 35 with 467µs per
Pippenger 5 is more efficient at 125 with 431µs per
Pippenger 6 is more efficient at 275 with 349µs per
Pippenger 7 is more efficient at 375 with 360µs per
dalek
Straus 3 is more efficient at 5 with 519µs per
Straus 4 is more efficient at 10 with 376µs per
Straus 5 is more efficient at 170 with 330µs per
Pippenger 5 is more efficient at 125 with 305µs per
Pippenger 6 is more efficient at 275 with 250µs per
Pippenger 7 is more efficient at 450 with 205µs per
Pippenger 8 is more efficient at 800 with 213µs per
Debug (with runs 5, so...):
k256
Straus 3 is more efficient at 5 with 2532µs per
Straus 4 is more efficient at 10 with 1930µs per
Straus 5 is more efficient at 80 with 1632µs per
Pippenger 5 is more efficient at 150 with 1441µs per
Pippenger 6 is more efficient at 300 with 1235µs per
Pippenger 7 is more efficient at 475 with 1182µs per
Pippenger 8 is more efficient at 625 with 1170µs per
dalek:
Straus 3 is more efficient at 5 with 971µs per
Straus 4 is more efficient at 10 with 782µs per
Straus 5 is more efficient at 75 with 778µs per
Straus 6 is more efficient at 165 with 867µs per
Pippenger 5 is more efficient at 125 with 677µs per
Pippenger 6 is more efficient at 250 with 655µs per
Pippenger 7 is more efficient at 475 with 500µs per
Pippenger 8 is more efficient at 875 with 499µs per
*/
fn algorithm(len: usize) -> Algorithm {
#[cfg(not(debug_assertions))]
if len == 0 {
Algorithm::Null
} else if len == 1 {
Algorithm::Single
} else if len < 10 {
// Straus 2 never showed a performance benefit, even with just 2 elements
Algorithm::Straus(3)
} else if len < 20 {
Algorithm::Straus(4)
} else if len < 50 {
Algorithm::Straus(5)
} else if len < 100 {
Algorithm::Pippenger(4)
} else if len < 125 {
Algorithm::Pippenger(5)
} else if len < 275 {
Algorithm::Pippenger(6)
} else if len < 400 {
Algorithm::Pippenger(7)
} else {
Algorithm::Pippenger(8)
}
#[cfg(debug_assertions)]
if len == 0 {
Algorithm::Null
} else if len == 1 {
Algorithm::Single
} else if len < 10 {
Algorithm::Straus(3)
} else if len < 80 {
Algorithm::Straus(4)
} else if len < 100 {
Algorithm::Straus(5)
} else if len < 125 {
Algorithm::Pippenger(4)
} else if len < 275 {
Algorithm::Pippenger(5)
} else if len < 475 {
Algorithm::Pippenger(6)
} else if len < 750 {
Algorithm::Pippenger(7)
} else {
Algorithm::Pippenger(8)
}
}
/// Performs a multiexponentation, automatically selecting the optimal algorithm based on the
/// amount of pairs.
pub fn multiexp<G: Group>(pairs: &[(G::Scalar, G)]) -> G
where
G::Scalar: PrimeFieldBits + Zeroize,
{
match algorithm(pairs.len()) {
Algorithm::Null => Group::identity(),
Algorithm::Single => pairs[0].1 * pairs[0].0,
// These functions panic if called without any pairs
Algorithm::Straus(window) => straus(pairs, window),
Algorithm::Pippenger(window) => pippenger(pairs, window),
}
}
/// Performs a multiexponentation in variable time, automatically selecting the optimal algorithm
/// based on the amount of pairs.
pub fn multiexp_vartime<G: Group>(pairs: &[(G::Scalar, G)]) -> G
where
G::Scalar: PrimeFieldBits,
{
match algorithm(pairs.len()) {
Algorithm::Null => Group::identity(),
Algorithm::Single => pairs[0].1 * pairs[0].0,
Algorithm::Straus(window) => straus_vartime(pairs, window),
Algorithm::Pippenger(window) => pippenger_vartime(pairs, window),
}
}