Files
serai/crypto/dkg/src/evrf/proof.rs
Luke Parker 2f564c230e Finish routing the new key gen in the processor
Doesn't touch the tests, coordinator, nor Substrate yet.
`cargo +nightly fmt && cargo +nightly-2024-07-01 clippy --all-features -p serai-processor`
does pass.
2024-08-02 00:53:24 -04:00

862 lines
32 KiB
Rust

use core::{marker::PhantomData, ops::Deref, fmt};
use subtle::*;
use zeroize::{Zeroize, Zeroizing};
use rand_core::{RngCore, CryptoRng, SeedableRng};
use rand_chacha::ChaCha20Rng;
use generic_array::{typenum::Unsigned, ArrayLength, GenericArray};
use blake2::{Digest, Blake2s256};
use ciphersuite::{
group::{
ff::{Field, PrimeField, PrimeFieldBits},
Group, GroupEncoding,
},
Ciphersuite,
};
use generalized_bulletproofs::{
*,
transcript::{Transcript as ProverTranscript, VerifierTranscript},
arithmetic_circuit_proof::*,
};
use generalized_bulletproofs_circuit_abstraction::*;
use ec_divisors::{DivisorCurve, new_divisor};
use generalized_bulletproofs_ec_gadgets::*;
/// A pair of curves to perform the eVRF with.
pub trait EvrfCurve: Ciphersuite {
type EmbeddedCurve: Ciphersuite<G: DivisorCurve<FieldElement = <Self as Ciphersuite>::F>>;
type EmbeddedCurveParameters: DiscreteLogParameters;
}
#[cfg(feature = "evrf-secp256k1")]
impl EvrfCurve for ciphersuite::Secp256k1 {
type EmbeddedCurve = secq256k1::Secq256k1;
type EmbeddedCurveParameters = secq256k1::Secq256k1;
}
#[cfg(feature = "evrf-ed25519")]
impl EvrfCurve for ciphersuite::Ed25519 {
type EmbeddedCurve = embedwards25519::Embedwards25519;
type EmbeddedCurveParameters = embedwards25519::Embedwards25519;
}
#[cfg(feature = "evrf-ristretto")]
impl EvrfCurve for ciphersuite::Ristretto {
type EmbeddedCurve = embedwards25519::Embedwards25519;
type EmbeddedCurveParameters = embedwards25519::Embedwards25519;
}
fn sample_point<C: Ciphersuite>(rng: &mut (impl RngCore + CryptoRng)) -> C::G {
let mut repr = <C::G as GroupEncoding>::Repr::default();
loop {
rng.fill_bytes(repr.as_mut());
if let Ok(point) = C::read_G(&mut repr.as_ref()) {
if bool::from(!point.is_identity()) {
return point;
}
}
}
}
/// Generators for eVRF proof.
#[derive(Clone, Debug)]
pub struct EvrfGenerators<C: EvrfCurve>(pub(crate) Generators<C>);
impl<C: EvrfCurve> EvrfGenerators<C> {
/// Create a new set of generators.
pub fn new(max_threshold: u16, max_participants: u16) -> EvrfGenerators<C> {
let g = C::generator();
let mut rng = ChaCha20Rng::from_seed(Blake2s256::digest(g.to_bytes()).into());
let h = sample_point::<C>(&mut rng);
let (_, generators) =
Evrf::<C>::muls_and_generators_to_use(max_threshold.into(), max_participants.into());
let mut g_bold = vec![];
let mut h_bold = vec![];
for _ in 0 .. generators {
g_bold.push(sample_point::<C>(&mut rng));
h_bold.push(sample_point::<C>(&mut rng));
}
Self(Generators::new(g, h, g_bold, h_bold).unwrap())
}
}
/// The result of proving for an eVRF.
pub(crate) struct EvrfProveResult<C: Ciphersuite> {
/// The coefficients for use in the DKG.
pub(crate) coefficients: Vec<Zeroizing<C::F>>,
/// The masks to encrypt secret shares with.
pub(crate) encryption_masks: Vec<Zeroizing<C::F>>,
/// The proof itself.
pub(crate) proof: Vec<u8>,
}
/// The result of verifying an eVRF.
pub(crate) struct EvrfVerifyResult<C: EvrfCurve> {
/// The commitments to the coefficients for use in the DKG.
pub(crate) coefficients: Vec<C::G>,
/// The ephemeral public keys to perform ECDHs with
pub(crate) ecdh_keys: Vec<[<C::EmbeddedCurve as Ciphersuite>::G; 2]>,
/// The commitments to the masks used to encrypt secret shares with.
pub(crate) encryption_commitments: Vec<C::G>,
}
impl<C: EvrfCurve> fmt::Debug for EvrfVerifyResult<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("EvrfVerifyResult").finish_non_exhaustive()
}
}
/// A struct to prove/verify eVRFs with.
pub(crate) struct Evrf<C: EvrfCurve>(PhantomData<C>);
impl<C: EvrfCurve> Evrf<C> {
// Sample uniform points (via rejection-sampling) on the embedded elliptic curve
fn transcript_to_points(
seed: [u8; 32],
coefficients: usize,
) -> Vec<<C::EmbeddedCurve as Ciphersuite>::G> {
// We need to do two Diffie-Hellman's per coefficient in order to achieve an unbiased result
let quantity = 2 * coefficients;
let mut rng = ChaCha20Rng::from_seed(seed);
let mut res = Vec::with_capacity(quantity);
for _ in 0 .. quantity {
res.push(sample_point::<C::EmbeddedCurve>(&mut rng));
}
res
}
/// Read a Variable from a theoretical vector commitment tape
fn read_one_from_tape(generators_to_use: usize, start: &mut usize) -> Variable {
// Each commitment has twice as many variables as generators in use
let commitment = *start / (2 * generators_to_use);
// The index will be less than the amount of generators in use, as half are left and half are
// right
let index = *start % generators_to_use;
let res = if (*start / generators_to_use) % 2 == 0 {
Variable::CG { commitment, index }
} else {
Variable::CH { commitment, index }
};
*start += 1;
res
}
/// Read a set of variables from a theoretical vector commitment tape
fn read_from_tape<N: ArrayLength>(
generators_to_use: usize,
start: &mut usize,
) -> GenericArray<Variable, N> {
let mut buf = Vec::with_capacity(N::USIZE);
for _ in 0 .. N::USIZE {
buf.push(Self::read_one_from_tape(generators_to_use, start));
}
GenericArray::from_slice(&buf).clone()
}
/// Read `PointWithDlog`s, which share a discrete logarithm, from the theoretical vector
/// commitment tape.
fn point_with_dlogs(
start: &mut usize,
quantity: usize,
generators_to_use: usize,
) -> Vec<PointWithDlog<C::EmbeddedCurveParameters>> {
// We define a serialized tape of the discrete logarithm, then for each divisor/point, we push:
// zero, x**i, y x**i, y, x_coord, y_coord
// We then chunk that into vector commitments
// Here, we take the assumed layout and generate the expected `Variable`s for this layout
let dlog = Self::read_from_tape(generators_to_use, start);
let mut res = Vec::with_capacity(quantity);
let mut read_point_with_dlog = || {
let zero = Self::read_one_from_tape(generators_to_use, start);
let x_from_power_of_2 = Self::read_from_tape(generators_to_use, start);
let yx = Self::read_from_tape(generators_to_use, start);
let y = Self::read_one_from_tape(generators_to_use, start);
let divisor = Divisor { zero, x_from_power_of_2, yx, y };
let point = (
Self::read_one_from_tape(generators_to_use, start),
Self::read_one_from_tape(generators_to_use, start),
);
res.push(PointWithDlog { dlog: dlog.clone(), divisor, point });
};
for _ in 0 .. quantity {
read_point_with_dlog();
}
res
}
fn muls_and_generators_to_use(coefficients: usize, ecdhs: usize) -> (usize, usize) {
const MULS_PER_DH: usize = 7;
// 1 DH to prove the discrete logarithm corresponds to the eVRF public key
// 2 DHs per generated coefficient
// 2 DHs per generated ECDH
let expected_muls = MULS_PER_DH * (1 + (2 * coefficients) + (2 * 2 * ecdhs));
let generators_to_use = {
let mut padded_pow_of_2 = 1;
while padded_pow_of_2 < expected_muls {
padded_pow_of_2 <<= 1;
}
// This may as small as 16, which would create an excessive amount of vector commitments
// We set a floor of 1024 rows for bandwidth reasons
padded_pow_of_2.max(1024)
};
(expected_muls, generators_to_use)
}
fn circuit(
curve_spec: &CurveSpec<C::F>,
evrf_public_key: (C::F, C::F),
coefficients: usize,
ecdh_commitments: &[[(C::F, C::F); 2]],
generator_tables: &[GeneratorTable<C::F, C::EmbeddedCurveParameters>],
circuit: &mut Circuit<C>,
transcript: &mut impl Transcript,
) {
let (expected_muls, generators_to_use) =
Self::muls_and_generators_to_use(coefficients, ecdh_commitments.len());
let (challenge, challenged_generators) =
circuit.discrete_log_challenge(transcript, curve_spec, generator_tables);
debug_assert_eq!(challenged_generators.len(), 1 + (2 * coefficients) + ecdh_commitments.len());
// The generators tables/challenged generators are expected to have the following layouts
// G, coefficients * [A, B], ecdhs * [P]
#[allow(non_snake_case)]
let challenged_G = &challenged_generators[0];
// Execute the circuit for the coefficients
let mut tape_pos = 0;
{
let mut point_with_dlogs =
Self::point_with_dlogs(&mut tape_pos, 1 + (2 * coefficients), generators_to_use)
.into_iter();
// Verify the discrete logarithm is in the fact the discrete logarithm of the eVRF public key
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_G,
);
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(evrf_public_key.0));
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(evrf_public_key.1));
// Verify the DLog claims against the sampled points
for (i, pair) in challenged_generators[1 ..].chunks(2).take(coefficients).enumerate() {
let mut lincomb = LinComb::empty();
debug_assert_eq!(pair.len(), 2);
for challenged_generator in pair {
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_generator,
);
// For each point in this pair, add its x coordinate to a lincomb
lincomb = lincomb.term(C::F::ONE, point.x());
}
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
// commitment
circuit.equality(lincomb, &LinComb::from(Variable::V(i)));
}
debug_assert!(point_with_dlogs.next().is_none());
}
// Now execute the circuit for the ECDHs
let mut challenged_generators = challenged_generators.iter().skip(1 + (2 * coefficients));
for (i, ecdh) in ecdh_commitments.iter().enumerate() {
let challenged_generator = challenged_generators.next().unwrap();
let mut lincomb = LinComb::empty();
for ecdh in ecdh {
let mut point_with_dlogs =
Self::point_with_dlogs(&mut tape_pos, 2, generators_to_use).into_iter();
// One proof of the ECDH secret * G for the commitment published
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_G,
);
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(ecdh.0));
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(ecdh.1));
// One proof of the ECDH secret * P for the ECDH
let point = circuit.discrete_log(
curve_spec,
point_with_dlogs.next().unwrap(),
&challenge,
challenged_generator,
);
// For each point in this pair, add its x coordinate to a lincomb
lincomb = lincomb.term(C::F::ONE, point.x());
}
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
// commitment
circuit.equality(lincomb, &LinComb::from(Variable::V(coefficients + i)));
}
debug_assert_eq!(expected_muls, circuit.muls());
debug_assert!(challenged_generators.next().is_none());
}
/// Convert a scalar to a sequence of coefficients for the polynomial 2**i, where the sum of the
/// coefficients is F::NUM_BITS.
///
/// Despite the name, the returned coefficients are not guaranteed to be bits (0 or 1).
///
/// This scalar will presumably be used in a discrete log proof. That requires calculating a
/// divisor which is variable time to the amount of points interpolated. Since the amount of
/// points interpolated is equal to the sum of the coefficients in the polynomial, we need all
/// scalars to have a constant sum of their coefficients (instead of one variable to its bits).
///
/// We achieve this by finding the highest non-0 coefficient, decrementing it, and increasing the
/// immediately less significant coefficient by 2. This increases the sum of the coefficients by
/// 1 (-1+2=1).
fn scalar_to_bits(scalar: &<C::EmbeddedCurve as Ciphersuite>::F) -> Vec<u64> {
let num_bits = u64::from(<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F::NUM_BITS);
// Obtain the bits of the private key
let num_bits_usize = usize::try_from(num_bits).unwrap();
let mut decomposition = vec![0; num_bits_usize];
for (i, bit) in scalar.to_le_bits().into_iter().take(num_bits_usize).enumerate() {
let bit = u64::from(u8::from(bit));
decomposition[i] = bit;
}
// The following algorithm only works if the value of the scalar exceeds num_bits
// If it isn't, we increase it by the modulus such that it does exceed num_bits
{
let mut less_than_num_bits = Choice::from(0);
for i in 0 .. num_bits {
less_than_num_bits |= scalar.ct_eq(&<C::EmbeddedCurve as Ciphersuite>::F::from(i));
}
let mut decomposition_of_modulus = vec![0; num_bits_usize];
// Decompose negative one
for (i, bit) in (-<C::EmbeddedCurve as Ciphersuite>::F::ONE)
.to_le_bits()
.into_iter()
.take(num_bits_usize)
.enumerate()
{
let bit = u64::from(u8::from(bit));
decomposition_of_modulus[i] = bit;
}
// Increment it by one
decomposition_of_modulus[0] += 1;
// Add the decomposition onto the decomposition of the modulus
for i in 0 .. num_bits_usize {
let new_decomposition = <_>::conditional_select(
&decomposition[i],
&(decomposition[i] + decomposition_of_modulus[i]),
less_than_num_bits,
);
decomposition[i] = new_decomposition;
}
}
// Calculcate the sum of the coefficients
let mut sum_of_coefficients: u64 = 0;
for decomposition in &decomposition {
sum_of_coefficients += *decomposition;
}
/*
Now, because we added a log2(k)-bit number to a k-bit number, we may have our sum of
coefficients be *too high*. We attempt to reduce the sum of the coefficients accordingly.
This algorithm is guaranteed to complete as expected. Take the sequence `222`. `222` becomes
`032` becomes `013`. Even if the next coefficient in the sequence is `2`, the third
coefficient will be reduced once and the next coefficient (`2`, increased to `3`) will only
be eligible for reduction once. This demonstrates, even for a worst case of log2(k) `2`s
followed by `1`s (as possible if the modulus is a Mersenne prime), the log2(k) `2`s can be
reduced as necessary so long as there is a single coefficient after (requiring the entire
sequence be at least of length log2(k) + 1). For a 2-bit number, log2(k) + 1 == 2, so this
holds for any odd prime field.
To fully type out the demonstration for the Mersenne prime 3, with scalar to encode 1 (the
highest value less than the number of bits):
10 - Little-endian bits of 1
21 - Little-endian bits of 1, plus the modulus
02 - After one reduction, where the sum of the coefficients does in fact equal 2 (the target)
*/
{
let mut log2_num_bits = 0;
while (1 << log2_num_bits) < num_bits {
log2_num_bits += 1;
}
for _ in 0 .. log2_num_bits {
// If the sum of coefficients is the amount of bits, we're done
let mut done = sum_of_coefficients.ct_eq(&num_bits);
for i in 0 .. (num_bits_usize - 1) {
let should_act = (!done) & decomposition[i].ct_gt(&1);
// Subtract 2 from this coefficient
let amount_to_sub = <_>::conditional_select(&0, &2, should_act);
decomposition[i] -= amount_to_sub;
// Add 1 to the next coefficient
let amount_to_add = <_>::conditional_select(&0, &1, should_act);
decomposition[i + 1] += amount_to_add;
// Also update the sum of coefficients
sum_of_coefficients -= <_>::conditional_select(&0, &1, should_act);
// If we updated the coefficients this loop iter, we're done for this loop iter
done |= should_act;
}
}
}
for _ in 0 .. num_bits {
// If the sum of coefficients is the amount of bits, we're done
let mut done = sum_of_coefficients.ct_eq(&num_bits);
// Find the highest coefficient currently non-zero
for i in (1 .. decomposition.len()).rev() {
// If this is non-zero, we should decrement this coefficient if we haven't already
// decremented a coefficient this round
let is_non_zero = !(0.ct_eq(&decomposition[i]));
let should_act = (!done) & is_non_zero;
// Update this coefficient and the prior coefficient
let amount_to_sub = <_>::conditional_select(&0, &1, should_act);
decomposition[i] -= amount_to_sub;
let amount_to_add = <_>::conditional_select(&0, &2, should_act);
// i must be at least 1, so i - 1 will be at least 0 (meaning it's safe to index with)
decomposition[i - 1] += amount_to_add;
// Also update the sum of coefficients
sum_of_coefficients += <_>::conditional_select(&0, &1, should_act);
// If we updated the coefficients this loop iter, we're done for this loop iter
done |= should_act;
}
}
debug_assert!(bool::from(decomposition.iter().sum::<u64>().ct_eq(&num_bits)));
decomposition
}
/// Prove a point on an elliptic curve had its discrete logarithm generated via an eVRF.
pub(crate) fn prove(
rng: &mut (impl RngCore + CryptoRng),
generators: &Generators<C>,
transcript: [u8; 32],
coefficients: usize,
ecdh_public_keys: &[<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G],
evrf_private_key: &Zeroizing<<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F>,
) -> Result<EvrfProveResult<C>, AcError> {
let curve_spec = CurveSpec {
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
};
// A tape of the discrete logarithm, then [zero, x**i, y x**i, y, x_coord, y_coord]
let mut vector_commitment_tape = vec![];
let mut generator_tables = Vec::with_capacity(1 + (2 * coefficients) + ecdh_public_keys.len());
// A function to calculate a divisor and push it onto the tape
// This defines a vec, divisor_points, outside of the fn to reuse its allocation
let mut divisor_points =
Vec::with_capacity((<C::EmbeddedCurve as Ciphersuite>::F::NUM_BITS as usize) + 1);
let mut divisor =
|vector_commitment_tape: &mut Vec<_>,
dlog: &[u64],
push_generator: bool,
generator: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
dh: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G| {
if push_generator {
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
{
let mut generator = generator;
for coefficient in dlog {
let mut coefficient = *coefficient;
while coefficient != 0 {
coefficient -= 1;
divisor_points.push(generator);
}
generator = generator.double();
}
debug_assert_eq!(
dlog.iter().sum::<u64>(),
u64::from(<C::EmbeddedCurve as Ciphersuite>::F::NUM_BITS)
);
}
divisor_points.push(-dh);
let mut divisor = new_divisor(&divisor_points).unwrap().normalize_x_coefficient();
divisor_points.zeroize();
vector_commitment_tape.push(divisor.zero_coefficient);
for coefficient in divisor.x_coefficients.iter().skip(1) {
vector_commitment_tape.push(*coefficient);
}
for _ in divisor.x_coefficients.len() ..
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE
{
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
}
for coefficient in divisor.yx_coefficients.first().unwrap_or(&vec![]) {
vector_commitment_tape.push(*coefficient);
}
for _ in divisor.yx_coefficients.first().unwrap_or(&vec![]).len() ..
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE
{
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
}
vector_commitment_tape
.push(divisor.y_coefficients.first().copied().unwrap_or(<C as Ciphersuite>::F::ZERO));
divisor.zeroize();
drop(divisor);
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(dh).unwrap();
vector_commitment_tape.push(x);
vector_commitment_tape.push(y);
(x, y)
};
// Start with the coefficients
let evrf_public_key;
let mut actual_coefficients = Vec::with_capacity(coefficients);
{
let mut dlog = Self::scalar_to_bits(evrf_private_key);
let points = Self::transcript_to_points(transcript, coefficients);
// Start by pushing the discrete logarithm onto the tape
for coefficient in &dlog {
vector_commitment_tape.push(<_>::from(*coefficient));
}
// Push a divisor for proving that we're using the correct scalar
evrf_public_key = divisor(
&mut vector_commitment_tape,
&dlog,
true,
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator(),
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key.deref(),
);
// Push a divisor for each point we use in the eVRF
for pair in points.chunks(2) {
let mut res = Zeroizing::new(C::F::ZERO);
for point in pair {
let (dh_x, _) = divisor(
&mut vector_commitment_tape,
&dlog,
true,
*point,
*point * evrf_private_key.deref(),
);
*res += dh_x;
}
actual_coefficients.push(res);
}
debug_assert_eq!(actual_coefficients.len(), coefficients);
dlog.zeroize();
}
// Now do the ECDHs for the encryption
let mut encryption_masks = Vec::with_capacity(ecdh_public_keys.len());
let mut ecdh_commitments = Vec::with_capacity(2 * ecdh_public_keys.len());
let mut ecdh_commitments_xy = Vec::with_capacity(ecdh_public_keys.len());
for ecdh_public_key in ecdh_public_keys {
ecdh_commitments_xy.push([(C::F::ZERO, C::F::ZERO); 2]);
let mut res = Zeroizing::new(C::F::ZERO);
for j in 0 .. 2 {
let mut ecdh_private_key;
loop {
ecdh_private_key = <C::EmbeddedCurve as Ciphersuite>::F::random(&mut *rng);
// Generate a non-0 ECDH private key, as necessary to not produce an identity output
// Identity isn't representable with the divisors, hence the explicit effort
if bool::from(!ecdh_private_key.is_zero()) {
break;
}
}
let mut dlog = Self::scalar_to_bits(&ecdh_private_key);
let ecdh_commitment = <C::EmbeddedCurve as Ciphersuite>::generator() * ecdh_private_key;
ecdh_commitments.push(ecdh_commitment);
ecdh_commitments_xy.last_mut().unwrap()[j] =
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_commitment).unwrap();
// Start by pushing the discrete logarithm onto the tape
for coefficient in &dlog {
vector_commitment_tape.push(<_>::from(*coefficient));
}
// Push a divisor for proving that we're using the correct scalar for the commitment
divisor(
&mut vector_commitment_tape,
&dlog,
false,
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator(),
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * ecdh_private_key,
);
// Push a divisor for the key we're performing the ECDH with
let (dh_x, _) = divisor(
&mut vector_commitment_tape,
&dlog,
j == 0,
*ecdh_public_key,
*ecdh_public_key * ecdh_private_key,
);
*res += dh_x;
ecdh_private_key.zeroize();
dlog.zeroize();
}
encryption_masks.push(res);
}
debug_assert_eq!(encryption_masks.len(), ecdh_public_keys.len());
// Now that we have the vector commitment tape, chunk it
let (_, generators_to_use) =
Self::muls_and_generators_to_use(coefficients, ecdh_public_keys.len());
let mut vector_commitments =
Vec::with_capacity(vector_commitment_tape.len().div_ceil(2 * generators_to_use));
for chunk in vector_commitment_tape.chunks(2 * generators_to_use) {
let g_values = chunk[.. generators_to_use.min(chunk.len())].to_vec().into();
let h_values = chunk[generators_to_use.min(chunk.len()) ..].to_vec().into();
vector_commitments.push(PedersenVectorCommitment {
g_values,
h_values,
mask: C::F::random(&mut *rng),
});
}
vector_commitment_tape.zeroize();
drop(vector_commitment_tape);
let mut commitments = Vec::with_capacity(coefficients + ecdh_public_keys.len());
for coefficient in &actual_coefficients {
commitments.push(PedersenCommitment { value: **coefficient, mask: C::F::random(&mut *rng) });
}
for enc_mask in &encryption_masks {
commitments.push(PedersenCommitment { value: **enc_mask, mask: C::F::random(&mut *rng) });
}
let mut transcript = ProverTranscript::new(transcript);
let commited_commitments = transcript.write_commitments(
vector_commitments
.iter()
.map(|commitment| {
commitment
.commit(generators.g_bold_slice(), generators.h_bold_slice(), generators.h())
.ok_or(AcError::NotEnoughGenerators)
})
.collect::<Result<_, _>>()?,
commitments
.iter()
.map(|commitment| commitment.commit(generators.g(), generators.h()))
.collect(),
);
for ecdh_commitment in ecdh_commitments {
transcript.push_point(ecdh_commitment);
}
let mut circuit = Circuit::prove(vector_commitments, commitments.clone());
Self::circuit(
&curve_spec,
evrf_public_key,
coefficients,
&ecdh_commitments_xy,
&generator_tables,
&mut circuit,
&mut transcript,
);
let (statement, Some(witness)) = circuit
.statement(
generators.reduce(generators_to_use).ok_or(AcError::NotEnoughGenerators)?,
commited_commitments,
)
.unwrap()
else {
panic!("proving yet wasn't yielded the witness");
};
statement.prove(&mut *rng, &mut transcript, witness).unwrap();
// Push the reveal onto the transcript
for commitment in &commitments {
transcript.push_point(generators.g() * commitment.value);
}
// Define a weight to aggregate the commitments with
let mut agg_weights = Vec::with_capacity(commitments.len());
agg_weights.push(C::F::ONE);
while agg_weights.len() < commitments.len() {
agg_weights.push(transcript.challenge::<C::F>());
}
let mut x = commitments
.iter()
.zip(&agg_weights)
.map(|(commitment, weight)| commitment.mask * *weight)
.sum::<C::F>();
// Do a Schnorr PoK for the randomness of the aggregated Pedersen commitment
let mut r = C::F::random(&mut *rng);
transcript.push_point(generators.h() * r);
let c = transcript.challenge::<C::F>();
transcript.push_scalar(r + (c * x));
r.zeroize();
x.zeroize();
Ok(EvrfProveResult {
coefficients: actual_coefficients,
encryption_masks,
proof: transcript.complete(),
})
}
/// Verify an eVRF proof, returning the commitments output.
#[allow(clippy::too_many_arguments)]
pub(crate) fn verify(
rng: &mut (impl RngCore + CryptoRng),
generators: &Generators<C>,
verifier: &mut BatchVerifier<C>,
transcript: [u8; 32],
coefficients: usize,
ecdh_public_keys: &[<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G],
evrf_public_key: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
proof: &[u8],
) -> Result<EvrfVerifyResult<C>, ()> {
let curve_spec = CurveSpec {
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
};
let mut generator_tables = Vec::with_capacity(1 + (2 * coefficients) + ecdh_public_keys.len());
{
let (x, y) =
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(<C::EmbeddedCurve as Ciphersuite>::generator())
.unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
let points = Self::transcript_to_points(transcript, coefficients);
for generator in points {
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
for generator in ecdh_public_keys {
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(*generator).unwrap();
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
}
let (_, generators_to_use) =
Self::muls_and_generators_to_use(coefficients, ecdh_public_keys.len());
let mut transcript = VerifierTranscript::new(transcript, proof);
let dlog_len = <C::EmbeddedCurveParameters as DiscreteLogParameters>::ScalarBits::USIZE;
let divisor_len = 1 +
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE +
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE +
1;
let dlog_proof_len = divisor_len + 2;
let coeffs_vc_variables = dlog_len + ((1 + (2 * coefficients)) * dlog_proof_len);
let ecdhs_vc_variables = ((2 * ecdh_public_keys.len()) * dlog_len) +
((2 * 2 * ecdh_public_keys.len()) * dlog_proof_len);
let vcs = (coeffs_vc_variables + ecdhs_vc_variables).div_ceil(2 * generators_to_use);
let all_commitments =
transcript.read_commitments(vcs, coefficients + ecdh_public_keys.len()).map_err(|_| ())?;
let commitments = all_commitments.V().to_vec();
let mut ecdh_keys = Vec::with_capacity(ecdh_public_keys.len());
let mut ecdh_keys_xy = Vec::with_capacity(ecdh_public_keys.len());
for _ in 0 .. ecdh_public_keys.len() {
let ecdh_keys_i = [
transcript.read_point::<C::EmbeddedCurve>().map_err(|_| ())?,
transcript.read_point::<C::EmbeddedCurve>().map_err(|_| ())?,
];
ecdh_keys.push(ecdh_keys_i);
// This bans zero ECDH keys
ecdh_keys_xy.push([
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_keys_i[0]).ok_or(())?,
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_keys_i[1]).ok_or(())?,
]);
}
let mut circuit = Circuit::verify();
Self::circuit(
&curve_spec,
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(evrf_public_key).ok_or(())?,
coefficients,
&ecdh_keys_xy,
&generator_tables,
&mut circuit,
&mut transcript,
);
let (statement, None) =
circuit.statement(generators.reduce(generators_to_use).ok_or(())?, all_commitments).unwrap()
else {
panic!("verifying yet was yielded a witness");
};
statement.verify(rng, verifier, &mut transcript).map_err(|_| ())?;
// Read the openings for the commitments
let mut openings = Vec::with_capacity(commitments.len());
for _ in 0 .. commitments.len() {
openings.push(transcript.read_point::<C>().map_err(|_| ())?);
}
// Verify the openings of the commitments
let mut agg_weights = Vec::with_capacity(commitments.len());
agg_weights.push(C::F::ONE);
while agg_weights.len() < commitments.len() {
agg_weights.push(transcript.challenge::<C::F>());
}
let sum_points =
openings.iter().zip(&agg_weights).map(|(point, weight)| *point * *weight).sum::<C::G>();
let sum_commitments =
commitments.into_iter().zip(agg_weights).map(|(point, weight)| point * weight).sum::<C::G>();
#[allow(non_snake_case)]
let A = sum_commitments - sum_points;
#[allow(non_snake_case)]
let R = transcript.read_point::<C>().map_err(|_| ())?;
let c = transcript.challenge::<C::F>();
let s = transcript.read_scalar::<C>().map_err(|_| ())?;
// Doesn't batch verify this as we can't access the internals of the GBP batch verifier
if (R + (A * c)) != (generators.h() * s) {
Err(())?;
}
if !transcript.complete().is_empty() {
Err(())?
};
let encryption_commitments = openings[coefficients ..].to_vec();
let coefficients = openings[.. coefficients].to_vec();
Ok(EvrfVerifyResult { coefficients, ecdh_keys, encryption_commitments })
}
}