Files
serai/processor/src/networks/bitcoin.rs
akildemir d88aa90ec2 support input encoded data for bitcoin network (#486)
* add input script check

* add test

* optimizations

* bug fix

* fix pr comments

* Test SegWit-encoded data using a single output (not two)

* Remove TODO used as a question, document origins when SegWit encoding

---------

Co-authored-by: Luke Parker <lukeparker5132@gmail.com>
2024-02-18 07:43:44 -05:00

895 lines
28 KiB
Rust

use std::{sync::OnceLock, time::Duration, io, collections::HashMap};
use async_trait::async_trait;
use scale::{Encode, Decode};
use transcript::{Transcript, RecommendedTranscript};
use ciphersuite::group::ff::PrimeField;
use k256::{ProjectivePoint, Scalar};
use frost::{
curve::{Curve, Secp256k1},
ThresholdKeys,
};
use tokio::time::sleep;
use bitcoin_serai::{
bitcoin::{
hashes::Hash as HashTrait,
key::{Parity, XOnlyPublicKey},
consensus::{Encodable, Decodable},
script::Instruction,
address::{NetworkChecked, Address as BAddress},
Transaction, Block, Network as BNetwork, ScriptBuf,
opcodes::all::{OP_SHA256, OP_EQUALVERIFY},
},
wallet::{
tweak_keys, address_payload, ReceivedOutput, Scanner, TransactionError,
SignableTransaction as BSignableTransaction, TransactionMachine,
},
rpc::{RpcError, Rpc},
};
#[cfg(test)]
use bitcoin_serai::bitcoin::{
secp256k1::{SECP256K1, SecretKey, Message},
PrivateKey, PublicKey,
sighash::{EcdsaSighashType, SighashCache},
script::PushBytesBuf,
absolute::LockTime,
Amount as BAmount, Sequence, Script, Witness, OutPoint,
transaction::Version,
blockdata::transaction::{TxIn, TxOut},
};
use serai_client::{
primitives::{MAX_DATA_LEN, Coin, NetworkId, Amount, Balance},
networks::bitcoin::Address,
};
use crate::{
networks::{
NetworkError, Block as BlockTrait, OutputType, Output as OutputTrait,
Transaction as TransactionTrait, SignableTransaction as SignableTransactionTrait,
Eventuality as EventualityTrait, EventualitiesTracker, Network,
},
Payment,
};
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct OutputId(pub [u8; 36]);
impl Default for OutputId {
fn default() -> Self {
Self([0; 36])
}
}
impl AsRef<[u8]> for OutputId {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl AsMut<[u8]> for OutputId {
fn as_mut(&mut self) -> &mut [u8] {
self.0.as_mut()
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Output {
kind: OutputType,
presumed_origin: Option<Address>,
output: ReceivedOutput,
data: Vec<u8>,
}
impl OutputTrait<Bitcoin> for Output {
type Id = OutputId;
fn kind(&self) -> OutputType {
self.kind
}
fn id(&self) -> Self::Id {
let mut res = OutputId::default();
self.output.outpoint().consensus_encode(&mut res.as_mut()).unwrap();
debug_assert_eq!(
{
let mut outpoint = vec![];
self.output.outpoint().consensus_encode(&mut outpoint).unwrap();
outpoint
},
res.as_ref().to_vec()
);
res
}
fn tx_id(&self) -> [u8; 32] {
let mut hash = *self.output.outpoint().txid.as_raw_hash().as_byte_array();
hash.reverse();
hash
}
fn key(&self) -> ProjectivePoint {
let script = &self.output.output().script_pubkey;
assert!(script.is_p2tr());
let Instruction::PushBytes(key) = script.instructions_minimal().last().unwrap().unwrap() else {
panic!("last item in v1 Taproot script wasn't bytes")
};
let key = XOnlyPublicKey::from_slice(key.as_ref())
.expect("last item in v1 Taproot script wasn't x-only public key");
Secp256k1::read_G(&mut key.public_key(Parity::Even).serialize().as_slice()).unwrap() -
(ProjectivePoint::GENERATOR * self.output.offset())
}
fn presumed_origin(&self) -> Option<Address> {
self.presumed_origin.clone()
}
fn balance(&self) -> Balance {
Balance { coin: Coin::Bitcoin, amount: Amount(self.output.value()) }
}
fn data(&self) -> &[u8] {
&self.data
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
self.kind.write(writer)?;
let presumed_origin: Option<Vec<u8>> = self.presumed_origin.clone().map(Into::into);
writer.write_all(&presumed_origin.encode())?;
self.output.write(writer)?;
writer.write_all(&u16::try_from(self.data.len()).unwrap().to_le_bytes())?;
writer.write_all(&self.data)
}
fn read<R: io::Read>(mut reader: &mut R) -> io::Result<Self> {
Ok(Output {
kind: OutputType::read(reader)?,
presumed_origin: {
let mut io_reader = scale::IoReader(reader);
let res = Option::<Vec<u8>>::decode(&mut io_reader)
.unwrap()
.map(|address| Address::try_from(address).unwrap());
reader = io_reader.0;
res
},
output: ReceivedOutput::read(reader)?,
data: {
let mut data_len = [0; 2];
reader.read_exact(&mut data_len)?;
let mut data = vec![0; usize::from(u16::from_le_bytes(data_len))];
reader.read_exact(&mut data)?;
data
},
})
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Fee(u64);
#[async_trait]
impl TransactionTrait<Bitcoin> for Transaction {
type Id = [u8; 32];
fn id(&self) -> Self::Id {
let mut hash = *self.txid().as_raw_hash().as_byte_array();
hash.reverse();
hash
}
fn serialize(&self) -> Vec<u8> {
let mut buf = vec![];
self.consensus_encode(&mut buf).unwrap();
buf
}
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
Transaction::consensus_decode(reader).map_err(|e| io::Error::other(format!("{e}")))
}
#[cfg(test)]
async fn fee(&self, network: &Bitcoin) -> u64 {
let mut value = 0;
for input in &self.input {
let output = input.previous_output;
let mut hash = *output.txid.as_raw_hash().as_byte_array();
hash.reverse();
value += network.rpc.get_transaction(&hash).await.unwrap().output
[usize::try_from(output.vout).unwrap()]
.value
.to_sat();
}
for output in &self.output {
value -= output.value.to_sat();
}
value
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Eventuality([u8; 32]);
impl EventualityTrait for Eventuality {
fn lookup(&self) -> Vec<u8> {
self.0.to_vec()
}
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut id = [0; 32];
reader
.read_exact(&mut id)
.map_err(|_| io::Error::other("couldn't decode ID in eventuality"))?;
Ok(Eventuality(id))
}
fn serialize(&self) -> Vec<u8> {
self.0.to_vec()
}
}
#[derive(Clone, Debug)]
pub struct SignableTransaction {
transcript: RecommendedTranscript,
actual: BSignableTransaction,
}
impl PartialEq for SignableTransaction {
fn eq(&self, other: &SignableTransaction) -> bool {
self.actual == other.actual
}
}
impl Eq for SignableTransaction {}
impl SignableTransactionTrait for SignableTransaction {
fn fee(&self) -> u64 {
self.actual.fee()
}
}
#[async_trait]
impl BlockTrait<Bitcoin> for Block {
type Id = [u8; 32];
fn id(&self) -> Self::Id {
let mut hash = *self.block_hash().as_raw_hash().as_byte_array();
hash.reverse();
hash
}
fn parent(&self) -> Self::Id {
let mut hash = *self.header.prev_blockhash.as_raw_hash().as_byte_array();
hash.reverse();
hash
}
async fn time(&self, rpc: &Bitcoin) -> u64 {
// Use the network median time defined in BIP-0113 since the in-block time isn't guaranteed to
// be monotonic
let mut timestamps = vec![u64::from(self.header.time)];
let mut parent = self.parent();
// BIP-0113 uses a median of the prior 11 blocks
while timestamps.len() < 11 {
let mut parent_block;
while {
parent_block = rpc.rpc.get_block(&parent).await;
parent_block.is_err()
} {
log::error!("couldn't get parent block when trying to get block time: {parent_block:?}");
sleep(Duration::from_secs(5)).await;
}
let parent_block = parent_block.unwrap();
timestamps.push(u64::from(parent_block.header.time));
parent = parent_block.parent();
if parent == [0; 32] {
break;
}
}
timestamps.sort();
timestamps[timestamps.len() / 2]
}
}
const KEY_DST: &[u8] = b"Serai Bitcoin Output Offset";
static BRANCH_OFFSET: OnceLock<Scalar> = OnceLock::new();
static CHANGE_OFFSET: OnceLock<Scalar> = OnceLock::new();
static FORWARD_OFFSET: OnceLock<Scalar> = OnceLock::new();
// Always construct the full scanner in order to ensure there's no collisions
fn scanner(
key: ProjectivePoint,
) -> (Scanner, HashMap<OutputType, Scalar>, HashMap<Vec<u8>, OutputType>) {
let mut scanner = Scanner::new(key).unwrap();
let mut offsets = HashMap::from([(OutputType::External, Scalar::ZERO)]);
let zero = Scalar::ZERO.to_repr();
let zero_ref: &[u8] = zero.as_ref();
let mut kinds = HashMap::from([(zero_ref.to_vec(), OutputType::External)]);
let mut register = |kind, offset| {
let offset = scanner.register_offset(offset).expect("offset collision");
offsets.insert(kind, offset);
let offset = offset.to_repr();
let offset_ref: &[u8] = offset.as_ref();
kinds.insert(offset_ref.to_vec(), kind);
};
register(
OutputType::Branch,
*BRANCH_OFFSET.get_or_init(|| Secp256k1::hash_to_F(KEY_DST, b"branch")),
);
register(
OutputType::Change,
*CHANGE_OFFSET.get_or_init(|| Secp256k1::hash_to_F(KEY_DST, b"change")),
);
register(
OutputType::Forwarded,
*FORWARD_OFFSET.get_or_init(|| Secp256k1::hash_to_F(KEY_DST, b"forward")),
);
(scanner, offsets, kinds)
}
#[derive(Clone, Debug)]
pub struct Bitcoin {
pub(crate) rpc: Rpc,
}
// Shim required for testing/debugging purposes due to generic arguments also necessitating trait
// bounds
impl PartialEq for Bitcoin {
fn eq(&self, _: &Self) -> bool {
true
}
}
impl Eq for Bitcoin {}
impl Bitcoin {
pub async fn new(url: String) -> Bitcoin {
let mut res = Rpc::new(url.clone()).await;
while let Err(e) = res {
log::error!("couldn't connect to Bitcoin node: {e:?}");
sleep(Duration::from_secs(5)).await;
res = Rpc::new(url.clone()).await;
}
Bitcoin { rpc: res.unwrap() }
}
#[cfg(test)]
pub async fn fresh_chain(&self) {
if self.rpc.get_latest_block_number().await.unwrap() > 0 {
self
.rpc
.rpc_call(
"invalidateblock",
serde_json::json!([hex::encode(self.rpc.get_block_hash(1).await.unwrap())]),
)
.await
.unwrap()
}
}
// This function panics on a node which doesn't follow the Bitcoin protocol, which is deemed fine
async fn median_fee(&self, block: &Block) -> Result<Fee, NetworkError> {
let mut fees = vec![];
if block.txdata.len() > 1 {
for tx in &block.txdata[1 ..] {
let mut in_value = 0;
for input in &tx.input {
let mut input_tx = input.previous_output.txid.to_raw_hash().to_byte_array();
input_tx.reverse();
in_value += self.get_transaction(&input_tx).await?.output
[usize::try_from(input.previous_output.vout).unwrap()]
.value
.to_sat();
}
let out = tx.output.iter().map(|output| output.value.to_sat()).sum::<u64>();
fees.push((in_value - out) / tx.weight().to_wu());
}
}
fees.sort();
let fee = fees.get(fees.len() / 2).copied().unwrap_or(0);
// The DUST constant documentation notes a relay rule practically enforcing a
// 1000 sat/kilo-vbyte minimum fee.
//
// 1000 sat/kilo-vbyte is 1000 sat/4-kilo-weight (250 sat/kilo-weight).
// Since bitcoin-serai takes fee per weight, we'd need to pass 0.25 to achieve this fee rate.
// Accordingly, setting 1 is 4x the current relay rule minimum (and should be more than safe).
// TODO: Rewrite to fee_per_vbyte, not fee_per_weight?
Ok(Fee(fee.max(1)))
}
async fn make_signable_transaction(
&self,
block_number: usize,
inputs: &[Output],
payments: &[Payment<Self>],
change: &Option<Address>,
calculating_fee: bool,
) -> Result<Option<BSignableTransaction>, NetworkError> {
for payment in payments {
assert_eq!(payment.balance.coin, Coin::Bitcoin);
}
// TODO2: Use an fee representative of several blocks, cached inside Self
let block_for_fee = self.get_block(block_number).await?;
let fee = self.median_fee(&block_for_fee).await?;
let payments = payments
.iter()
.map(|payment| {
(
payment.address.clone().into(),
// If we're solely estimating the fee, don't specify the actual amount
// This won't affect the fee calculation yet will ensure we don't hit a not enough funds
// error
if calculating_fee { Self::DUST } else { payment.balance.amount.0 },
)
})
.collect::<Vec<_>>();
match BSignableTransaction::new(
inputs.iter().map(|input| input.output.clone()).collect(),
&payments,
change.as_ref().map(AsRef::as_ref),
None,
fee.0,
) {
Ok(signable) => Ok(Some(signable)),
Err(TransactionError::NoInputs) => {
panic!("trying to create a bitcoin transaction without inputs")
}
// No outputs left and the change isn't worth enough/not even enough funds to pay the fee
Err(TransactionError::NoOutputs | TransactionError::NotEnoughFunds) => Ok(None),
// amortize_fee removes payments which fall below the dust threshold
Err(TransactionError::DustPayment) => panic!("dust payment despite removing dust"),
Err(TransactionError::TooMuchData) => panic!("too much data despite not specifying data"),
Err(TransactionError::TooLowFee) => {
panic!("created a transaction whose fee is below the minimum")
}
Err(TransactionError::TooLargeTransaction) => {
panic!("created a too large transaction despite limiting inputs/outputs")
}
}
}
// Expected script has to start with SHA256 PUSH MSG_HASH OP_EQUALVERIFY ..
fn segwit_data_pattern(script: &ScriptBuf) -> Option<bool> {
let mut ins = script.instructions();
// first item should be SHA256 code
if ins.next()?.ok()?.opcode()? != OP_SHA256 {
return Some(false);
}
// next should be a data push
ins.next()?.ok()?.push_bytes()?;
// next should be a equality check
if ins.next()?.ok()?.opcode()? != OP_EQUALVERIFY {
return Some(false);
}
Some(true)
}
fn extract_serai_data(tx: &Transaction) -> Vec<u8> {
// check outputs
let mut data = (|| {
for output in &tx.output {
if output.script_pubkey.is_op_return() {
match output.script_pubkey.instructions_minimal().last() {
Some(Ok(Instruction::PushBytes(data))) => return data.as_bytes().to_vec(),
_ => continue,
}
}
}
vec![]
})();
// check inputs
if data.is_empty() {
for input in &tx.input {
let witness = input.witness.to_vec();
// expected witness at least has to have 2 items, msg and the redeem script.
if witness.len() >= 2 {
let redeem_script = ScriptBuf::from_bytes(witness.last().unwrap().clone());
if Self::segwit_data_pattern(&redeem_script) == Some(true) {
data = witness[witness.len() - 2].clone(); // len() - 1 is the redeem_script
break;
}
}
}
}
data.truncate(MAX_DATA_LEN.try_into().unwrap());
data
}
#[cfg(test)]
pub fn sign_btc_input_for_p2pkh(
tx: &Transaction,
input_index: usize,
private_key: &PrivateKey,
) -> ScriptBuf {
let public_key = PublicKey::from_private_key(SECP256K1, private_key);
let main_addr = BAddress::p2pkh(&public_key, BNetwork::Regtest);
let mut der = SECP256K1
.sign_ecdsa_low_r(
&Message::from(
SighashCache::new(tx)
.legacy_signature_hash(
input_index,
&main_addr.script_pubkey(),
EcdsaSighashType::All.to_u32(),
)
.unwrap()
.to_raw_hash(),
),
&private_key.inner,
)
.serialize_der()
.to_vec();
der.push(1);
ScriptBuf::builder()
.push_slice(PushBytesBuf::try_from(der).unwrap())
.push_key(&public_key)
.into_script()
}
}
#[async_trait]
impl Network for Bitcoin {
type Curve = Secp256k1;
type Transaction = Transaction;
type Block = Block;
type Output = Output;
type SignableTransaction = SignableTransaction;
type Eventuality = Eventuality;
type TransactionMachine = TransactionMachine;
type Address = Address;
const NETWORK: NetworkId = NetworkId::Bitcoin;
const ID: &'static str = "Bitcoin";
const ESTIMATED_BLOCK_TIME_IN_SECONDS: usize = 600;
const CONFIRMATIONS: usize = 6;
/*
A Taproot input is:
- 36 bytes for the OutPoint
- 0 bytes for the script (+1 byte for the length)
- 4 bytes for the sequence
Per https://developer.bitcoin.org/reference/transactions.html#raw-transaction-format
There's also:
- 1 byte for the witness length
- 1 byte for the signature length
- 64 bytes for the signature
which have the SegWit discount.
(4 * (36 + 1 + 4)) + (1 + 1 + 64) = 164 + 66 = 230 weight units
230 ceil div 4 = 57 vbytes
Bitcoin defines multiple minimum feerate constants *per kilo-vbyte*. Currently, these are:
- 1000 sat/kilo-vbyte for a transaction to be relayed
- Each output's value must exceed the fee of the TX spending it at 3000 sat/kilo-vbyte
The DUST constant needs to be determined by the latter.
Since these are solely relay rules, and may be raised, we require all outputs be spendable
under a 5000 sat/kilo-vbyte fee rate.
5000 sat/kilo-vbyte = 5 sat/vbyte
5 * 57 = 285 sats/spent-output
Even if an output took 100 bytes (it should be just ~29-43), taking 400 weight units, adding
100 vbytes, tripling the transaction size, then the sats/tx would be < 1000.
Increase by an order of magnitude, in order to ensure this is actually worth our time, and we
get 10,000 satoshis.
*/
const DUST: u64 = 10_000;
// 2 inputs should be 2 * 230 = 460 weight units
// The output should be ~36 bytes, or 144 weight units
// The overhead should be ~20 bytes at most, or 80 weight units
// 684 weight units, 171 vbytes, round up to 200
// 200 vbytes at 1 sat/weight (our current minimum fee, 4 sat/vbyte) = 800 sat fee for the
// aggregation TX
const COST_TO_AGGREGATE: u64 = 800;
// Bitcoin has a max weight of 400,000 (MAX_STANDARD_TX_WEIGHT)
// A non-SegWit TX will have 4 weight units per byte, leaving a max size of 100,000 bytes
// While our inputs are entirely SegWit, such fine tuning is not necessary and could create
// issues in the future (if the size decreases or we misevaluate it)
// It also offers a minimal amount of benefit when we are able to logarithmically accumulate
// inputs
// For 128-byte inputs (36-byte output specification, 64-byte signature, whatever overhead) and
// 64-byte outputs (40-byte script, 8-byte amount, whatever overhead), they together take up 192
// bytes
// 100,000 / 192 = 520
// 520 * 192 leaves 160 bytes of overhead for the transaction structure itself
const MAX_INPUTS: usize = 520;
const MAX_OUTPUTS: usize = 520;
fn tweak_keys(keys: &mut ThresholdKeys<Self::Curve>) {
*keys = tweak_keys(keys);
// Also create a scanner to assert these keys, and all expected paths, are usable
scanner(keys.group_key());
}
fn external_address(key: ProjectivePoint) -> Address {
Address::new(BAddress::<NetworkChecked>::new(BNetwork::Bitcoin, address_payload(key).unwrap()))
.unwrap()
}
fn branch_address(key: ProjectivePoint) -> Address {
let (_, offsets, _) = scanner(key);
Self::external_address(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Branch]))
}
fn change_address(key: ProjectivePoint) -> Address {
let (_, offsets, _) = scanner(key);
Self::external_address(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Change]))
}
fn forward_address(key: ProjectivePoint) -> Address {
let (_, offsets, _) = scanner(key);
Self::external_address(key + (ProjectivePoint::GENERATOR * offsets[&OutputType::Forwarded]))
}
async fn get_latest_block_number(&self) -> Result<usize, NetworkError> {
self.rpc.get_latest_block_number().await.map_err(|_| NetworkError::ConnectionError)
}
async fn get_block(&self, number: usize) -> Result<Self::Block, NetworkError> {
let block_hash =
self.rpc.get_block_hash(number).await.map_err(|_| NetworkError::ConnectionError)?;
self.rpc.get_block(&block_hash).await.map_err(|_| NetworkError::ConnectionError)
}
async fn get_outputs(&self, block: &Self::Block, key: ProjectivePoint) -> Vec<Output> {
let (scanner, _, kinds) = scanner(key);
let mut outputs = vec![];
// Skip the coinbase transaction which is burdened by maturity
for tx in &block.txdata[1 ..] {
for output in scanner.scan_transaction(tx) {
let offset_repr = output.offset().to_repr();
let offset_repr_ref: &[u8] = offset_repr.as_ref();
let kind = kinds[offset_repr_ref];
let output = Output { kind, presumed_origin: None, output, data: vec![] };
assert_eq!(output.tx_id(), tx.id());
outputs.push(output);
}
if outputs.is_empty() {
continue;
}
// populate the outputs with the origin and data
let presumed_origin = {
// This may identify the P2WSH output *embedding the InInstruction* as the origin, which
// would be a bit trickier to spend that a traditional output...
// There's no risk of the InInstruction going missing as it'd already be on-chain though
// We *could* parse out the script *without the InInstruction prefix* and declare that the
// origin
// TODO
let spent_output = {
let input = &tx.input[0];
let mut spent_tx = input.previous_output.txid.as_raw_hash().to_byte_array();
spent_tx.reverse();
let mut tx;
while {
tx = self.get_transaction(&spent_tx).await;
tx.is_err()
} {
log::error!("couldn't get transaction from bitcoin node: {tx:?}");
sleep(Duration::from_secs(5)).await;
}
tx.unwrap().output.swap_remove(usize::try_from(input.previous_output.vout).unwrap())
};
BAddress::from_script(&spent_output.script_pubkey, BNetwork::Bitcoin)
.ok()
.and_then(Address::new)
};
let data = Self::extract_serai_data(tx);
for output in &mut outputs {
if output.kind == OutputType::External {
output.data = data.clone();
}
output.presumed_origin = presumed_origin.clone();
}
}
outputs
}
async fn get_eventuality_completions(
&self,
eventualities: &mut EventualitiesTracker<Eventuality>,
block: &Self::Block,
) -> HashMap<[u8; 32], (usize, Transaction)> {
let mut res = HashMap::new();
if eventualities.map.is_empty() {
return res;
}
fn check_block(
eventualities: &mut EventualitiesTracker<Eventuality>,
block: &Block,
res: &mut HashMap<[u8; 32], (usize, Transaction)>,
) {
for tx in &block.txdata[1 ..] {
if let Some((plan, _)) = eventualities.map.remove(tx.id().as_slice()) {
res.insert(plan, (eventualities.block_number, tx.clone()));
}
}
eventualities.block_number += 1;
}
let this_block_hash = block.id();
let this_block_num = (async {
loop {
match self.rpc.get_block_number(&this_block_hash).await {
Ok(number) => return number,
Err(e) => {
log::error!("couldn't get the block number for {}: {}", hex::encode(this_block_hash), e)
}
}
sleep(Duration::from_secs(60)).await;
}
})
.await;
for block_num in (eventualities.block_number + 1) .. this_block_num {
let block = {
let mut block;
while {
block = self.get_block(block_num).await;
block.is_err()
} {
log::error!("couldn't get block {}: {}", block_num, block.err().unwrap());
sleep(Duration::from_secs(60)).await;
}
block.unwrap()
};
check_block(eventualities, &block, &mut res);
}
// Also check the current block
check_block(eventualities, block, &mut res);
assert_eq!(eventualities.block_number, this_block_num);
res
}
async fn needed_fee(
&self,
block_number: usize,
_: &[u8; 32],
inputs: &[Output],
payments: &[Payment<Self>],
change: &Option<Address>,
) -> Result<Option<u64>, NetworkError> {
Ok(
self
.make_signable_transaction(block_number, inputs, payments, change, true)
.await?
.map(|signable| signable.needed_fee()),
)
}
async fn signable_transaction(
&self,
block_number: usize,
plan_id: &[u8; 32],
inputs: &[Output],
payments: &[Payment<Self>],
change: &Option<Address>,
) -> Result<Option<(Self::SignableTransaction, Self::Eventuality)>, NetworkError> {
Ok(self.make_signable_transaction(block_number, inputs, payments, change, false).await?.map(
|signable| {
let mut transcript =
RecommendedTranscript::new(b"Serai Processor Bitcoin Transaction Transcript");
transcript.append_message(b"plan", plan_id);
let eventuality = Eventuality(signable.txid());
(SignableTransaction { transcript, actual: signable }, eventuality)
},
))
}
async fn attempt_send(
&self,
keys: ThresholdKeys<Self::Curve>,
transaction: Self::SignableTransaction,
) -> Result<Self::TransactionMachine, NetworkError> {
Ok(
transaction
.actual
.clone()
.multisig(&keys, transaction.transcript)
.expect("used the wrong keys"),
)
}
async fn publish_transaction(&self, tx: &Self::Transaction) -> Result<(), NetworkError> {
match self.rpc.send_raw_transaction(tx).await {
Ok(_) => (),
Err(RpcError::ConnectionError) => Err(NetworkError::ConnectionError)?,
// TODO: Distinguish already in pool vs double spend (other signing attempt succeeded) vs
// invalid transaction
Err(e) => panic!("failed to publish TX {}: {e}", tx.txid()),
}
Ok(())
}
async fn get_transaction(&self, id: &[u8; 32]) -> Result<Transaction, NetworkError> {
self.rpc.get_transaction(id).await.map_err(|_| NetworkError::ConnectionError)
}
fn confirm_completion(&self, eventuality: &Self::Eventuality, tx: &Transaction) -> bool {
eventuality.0 == tx.id()
}
#[cfg(test)]
async fn get_block_number(&self, id: &[u8; 32]) -> usize {
self.rpc.get_block_number(id).await.unwrap()
}
#[cfg(test)]
async fn mine_block(&self) {
self
.rpc
.rpc_call::<Vec<String>>(
"generatetoaddress",
serde_json::json!([1, BAddress::p2sh(Script::new(), BNetwork::Regtest).unwrap()]),
)
.await
.unwrap();
}
#[cfg(test)]
async fn test_send(&self, address: Address) -> Block {
let secret_key = SecretKey::new(&mut rand_core::OsRng);
let private_key = PrivateKey::new(secret_key, BNetwork::Regtest);
let public_key = PublicKey::from_private_key(SECP256K1, &private_key);
let main_addr = BAddress::p2pkh(&public_key, BNetwork::Regtest);
let new_block = self.get_latest_block_number().await.unwrap() + 1;
self
.rpc
.rpc_call::<Vec<String>>("generatetoaddress", serde_json::json!([100, main_addr]))
.await
.unwrap();
let tx = self.get_block(new_block).await.unwrap().txdata.swap_remove(0);
let mut tx = Transaction {
version: Version(2),
lock_time: LockTime::ZERO,
input: vec![TxIn {
previous_output: OutPoint { txid: tx.txid(), vout: 0 },
script_sig: Script::new().into(),
sequence: Sequence(u32::MAX),
witness: Witness::default(),
}],
output: vec![TxOut {
value: tx.output[0].value - BAmount::from_sat(10000),
script_pubkey: address.as_ref().script_pubkey(),
}],
};
tx.input[0].script_sig = Self::sign_btc_input_for_p2pkh(&tx, 0, &private_key);
let block = self.get_latest_block_number().await.unwrap() + 1;
self.rpc.send_raw_transaction(&tx).await.unwrap();
for _ in 0 .. Self::CONFIRMATIONS {
self.mine_block().await;
}
self.get_block(block).await.unwrap()
}
}