mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-13 06:29:25 +00:00
338 lines
12 KiB
Rust
338 lines
12 KiB
Rust
use core::marker::PhantomData;
|
|
|
|
use sp_core::{Encode, sr25519::Public};
|
|
|
|
use serai_primitives::{constants::MAX_KEY_SHARES_PER_SET, network_id::NetworkId, balance::Amount};
|
|
|
|
use frame_support::storage::{StorageMap, StoragePrefixedMap as Spm};
|
|
|
|
/// Reverses the lexicographic order of a given byte array.
|
|
///
|
|
/// This is a bijective mapping. Calling reverse twice is equivalent to the identity function.
|
|
fn reverse_lexicographic_order<const N: usize>(bytes: [u8; N]) -> [u8; N] {
|
|
let mut res = [0u8; N];
|
|
for (i, byte) in bytes.iter().enumerate() {
|
|
res[i] = !*byte;
|
|
}
|
|
res
|
|
}
|
|
|
|
/// The key to use for the allocations map.
|
|
type AllocationsKey = (NetworkId, Public);
|
|
/// The key to use for the sorted allocations map.
|
|
type SortedAllocationsKey = (NetworkId, [u8; 8], [u8; 16], Public);
|
|
|
|
/// An interface for managing validators' allocations.
|
|
///
|
|
/// `SortedAllocationsMap` MUST be instantiated with a map using `Identity` for its hasher.
|
|
/*
|
|
This is premised on the underlying trie iterating from keys with low-bytes to keys with
|
|
high-bytes.
|
|
|
|
We use Identity so we don't have a hasher add pseudorandom bytes to the start of the keys. This
|
|
does remove the protection using a hash algorithm here offers against spam attacks (by flooding
|
|
the DB with layers, increasing lookup time and Merkle proof sizes, not that we use Merkle proofs
|
|
proofs as Polkadot does).
|
|
|
|
Since amounts are represented with just 8 bytes, only 16 nibbles are present. This caps the
|
|
potential depth caused by spam at 16 layers (as the underlying DB operates on nibbles). While
|
|
there is an entire 32-byte public key after this, a Blake hash of the key is inserted after the
|
|
amount to prevent the key from also being used to cause layer spam. We use a `[u8; 16]` to
|
|
represent this, and not a explicit `Blake2_128Concat` hasher, to ensure all prior keys are part
|
|
part of the hash. A Substrate-hasher would only hash the immediately following key.
|
|
|
|
There's also a minimum stake requirement, which further reduces the potential for spam.
|
|
*/
|
|
pub(crate) struct Allocations<
|
|
AllocationsMap: StorageMap<AllocationsKey, Amount, Query = Option<Amount>>,
|
|
SortedAllocationsMap: StorageMap<SortedAllocationsKey, (), Query = Option<()>> + Spm<()>,
|
|
>(PhantomData<(AllocationsMap, SortedAllocationsMap)>);
|
|
impl<
|
|
AllocationsMap: StorageMap<AllocationsKey, Amount, Query = Option<Amount>>,
|
|
SortedAllocationsMap: StorageMap<SortedAllocationsKey, (), Query = Option<()>> + Spm<()>,
|
|
> Allocations<AllocationsMap, SortedAllocationsMap>
|
|
{
|
|
/// The storage key to use with the sorted allocations map.
|
|
#[inline]
|
|
fn sorted_allocation_storage_key(
|
|
network: NetworkId,
|
|
key: Public,
|
|
amount: Amount,
|
|
) -> (NetworkId, [u8; 8], [u8; 16], Public) {
|
|
// We want the accounts with the highest allocations to be first. Since the DB iterates from
|
|
// low to high, we take the BE bytes of the amount (meaning the lowest-value allocations have
|
|
// the lowest lexicographic order and will be first), then reverse their order.
|
|
let amount = reverse_lexicographic_order(amount.0.to_be_bytes());
|
|
// Hash all of the keys to best defend against layer-spam attacks
|
|
let hash = sp_io::hashing::blake2_128(&(network, amount, key).encode());
|
|
(network, amount, hash, key)
|
|
}
|
|
|
|
// Recover the user's public key from a storage key.
|
|
fn recover_key_from_sorted_allocation_storage_key(key: &[u8]) -> Public {
|
|
<Public as From<[u8; 32]>>::from(key[(key.len() - 32) ..].try_into().unwrap())
|
|
}
|
|
|
|
// Recover the amount allocated from a storage key.
|
|
fn recover_amount_from_sorted_allocation_storage_key(key: &[u8]) -> Amount {
|
|
// We read the amount from the end of the key as everything after the amount is fixed-length
|
|
let distance_from_end = 8 + 16 + 32;
|
|
let start_pos = key.len() - distance_from_end;
|
|
let raw: [u8; 8] = key[start_pos .. (start_pos + 8)].try_into().unwrap();
|
|
// Take advantage of how this is a bijective mapping
|
|
let raw = reverse_lexicographic_order(raw);
|
|
Amount(u64::from_be_bytes(raw))
|
|
}
|
|
|
|
/// Set an allocation.
|
|
///
|
|
/// Returns the validator's prior allocation.
|
|
pub(crate) fn set(network: NetworkId, key: Public, amount: Amount) -> Option<Amount> {
|
|
let prior = AllocationsMap::take((network, key));
|
|
if let Some(amount) = prior {
|
|
SortedAllocationsMap::remove(Self::sorted_allocation_storage_key(network, key, amount));
|
|
}
|
|
if amount.0 != 0 {
|
|
AllocationsMap::set((network, key), Some(amount));
|
|
SortedAllocationsMap::set(
|
|
Self::sorted_allocation_storage_key(network, key, amount),
|
|
Some(()),
|
|
);
|
|
}
|
|
prior
|
|
}
|
|
|
|
/// Get an allocation.
|
|
pub(crate) fn get(network: NetworkId, key: Public) -> Option<Amount> {
|
|
AllocationsMap::get((network, key))
|
|
}
|
|
|
|
/// Iterate over allocations for a network, yielding the highest-valued allocations.
|
|
///
|
|
/// This will yield all validators present whose allocation is greater than or equal to the
|
|
/// specified minimum.
|
|
///
|
|
/// If two validators share an allocation, the order is deterministic yet otherwise undefined.
|
|
pub(crate) fn iter(
|
|
network: NetworkId,
|
|
minimum_allocation: Amount,
|
|
) -> impl Iterator<Item = (Public, Amount)> {
|
|
let mut prefix = SortedAllocationsMap::final_prefix().to_vec();
|
|
prefix.extend(&network.encode());
|
|
frame_support::storage::PrefixIterator::<_, ()>::new(prefix.clone(), prefix, |key, _value| {
|
|
Ok((
|
|
Self::recover_key_from_sorted_allocation_storage_key(key),
|
|
Self::recover_amount_from_sorted_allocation_storage_key(key),
|
|
))
|
|
})
|
|
.filter(move |(_key, allocation)| *allocation >= minimum_allocation)
|
|
}
|
|
|
|
/// Check if a fresh sample will be BFT for f > 0.
|
|
pub(crate) fn will_be_bft_for_any_nonzero_f(
|
|
network: NetworkId,
|
|
allocation_per_key_share: Amount,
|
|
) -> bool {
|
|
let mut validators_len = 0;
|
|
let mut top_validator_key_shares = None;
|
|
let mut total_key_shares = 0;
|
|
for (_, amount) in Self::iter(network, allocation_per_key_share) {
|
|
validators_len += 1;
|
|
|
|
let key_shares = amount.0 / allocation_per_key_share.0;
|
|
total_key_shares += key_shares;
|
|
// If this is the first validator, they're the top validator, due to this being sorted
|
|
if top_validator_key_shares.is_none() {
|
|
top_validator_key_shares = Some(key_shares);
|
|
}
|
|
|
|
if total_key_shares > u64::from(MAX_KEY_SHARES_PER_SET) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
let Some(top_validator_key_shares) = top_validator_key_shares else {
|
|
// This network has n = 0 so f = 0
|
|
return false;
|
|
};
|
|
|
|
// `total_key_shares` may exceed `MAX_KEY_SHARES_PER_SET`, which will cause a round robin
|
|
// reduction of each validator's key shares until their sum is `MAX_KEY_SHARES_PER_SET`.
|
|
// `post_amortization_key_shares_for_top_validator` yields what the top validator's key shares
|
|
// would be after such a reduction, letting us evaluate this correctly
|
|
let top_validator_key_shares =
|
|
serai_primitives::validator_sets::post_amortization_key_shares_for_top_validator(
|
|
validators_len,
|
|
top_validator_key_shares,
|
|
total_key_shares,
|
|
);
|
|
let total_key_shares = total_key_shares.min(MAX_KEY_SHARES_PER_SET.into());
|
|
// We achieve BFT under n=3f+1. Accordingly, for the top validator's key shares to be `f`, and
|
|
// still have `3f < n`, we tolerate the top validator being faulty
|
|
(top_validator_key_shares * 3) < total_key_shares
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_reverse_lexicographic_order() {
|
|
use rand_core::{RngCore, OsRng};
|
|
|
|
use sp_io::TestExternalities;
|
|
use frame_support::{pallet_prelude::*, Identity, traits::StorageInstance};
|
|
|
|
TestExternalities::default().execute_with(|| {
|
|
struct Storage;
|
|
impl StorageInstance for Storage {
|
|
fn pallet_prefix() -> &'static str {
|
|
"LexicographicOrder"
|
|
}
|
|
|
|
const STORAGE_PREFIX: &'static str = "storage";
|
|
}
|
|
type Map = StorageMap<Storage, Identity, [u8; 8], (), OptionQuery>;
|
|
|
|
struct StorageReverse;
|
|
impl StorageInstance for StorageReverse {
|
|
fn pallet_prefix() -> &'static str {
|
|
"LexicographicOrder"
|
|
}
|
|
|
|
const STORAGE_PREFIX: &'static str = "storagereverse";
|
|
}
|
|
type MapReverse = StorageMap<StorageReverse, Identity, [u8; 8], (), OptionQuery>;
|
|
|
|
// populate the maps
|
|
let mut amounts = vec![];
|
|
for _ in 0 .. 100 {
|
|
amounts.push(OsRng.next_u64());
|
|
}
|
|
|
|
let mut amounts_sorted = amounts.clone();
|
|
amounts_sorted.sort();
|
|
for a in amounts {
|
|
Map::set(a.to_be_bytes(), Some(()));
|
|
MapReverse::set(reverse_lexicographic_order(a.to_be_bytes()), Some(()));
|
|
}
|
|
|
|
// retrive back and check whether they are sorted as expected
|
|
let total_size = amounts_sorted.len();
|
|
let mut map_iter = Map::iter_keys();
|
|
let mut reverse_map_iter = MapReverse::iter_keys();
|
|
for i in 0 .. amounts_sorted.len() {
|
|
let first = map_iter.next().unwrap();
|
|
let second = reverse_map_iter.next().unwrap();
|
|
|
|
// The next value in the in-order map should be the next value in the sorted amounts
|
|
assert_eq!(u64::from_be_bytes(first), amounts_sorted[i]);
|
|
// And then if we again apply the bijective mapping, the next value in the reversed map
|
|
// should be the next value from the end in the sorted amounts
|
|
assert_eq!(
|
|
u64::from_be_bytes(reverse_lexicographic_order(second)),
|
|
amounts_sorted[total_size - (i + 1)]
|
|
);
|
|
}
|
|
});
|
|
}
|
|
|
|
#[test]
|
|
fn test_allocations() {
|
|
use rand_core::{RngCore, OsRng};
|
|
|
|
use borsh::BorshDeserialize;
|
|
|
|
use sp_io::TestExternalities;
|
|
use frame_support::{pallet_prelude::*, Identity, traits::StorageInstance};
|
|
|
|
TestExternalities::default().execute_with(|| {
|
|
struct Storage;
|
|
impl StorageInstance for Storage {
|
|
fn pallet_prefix() -> &'static str {
|
|
"Allocations"
|
|
}
|
|
|
|
const STORAGE_PREFIX: &'static str = "AllocationsMap";
|
|
}
|
|
type AllocationsMap =
|
|
StorageMap<Storage, Blake2_128Concat, AllocationsKey, Amount, OptionQuery>;
|
|
|
|
struct StorageSorted;
|
|
impl StorageInstance for StorageSorted {
|
|
fn pallet_prefix() -> &'static str {
|
|
"Allocations"
|
|
}
|
|
|
|
const STORAGE_PREFIX: &'static str = "SortedAllocationsMap";
|
|
}
|
|
type SortedAllocationsMap =
|
|
StorageMap<StorageSorted, Identity, SortedAllocationsKey, (), OptionQuery>;
|
|
|
|
let before = NetworkId::deserialize_reader(&mut [0].as_slice()).unwrap();
|
|
let network = NetworkId::deserialize_reader(&mut [1].as_slice()).unwrap();
|
|
let after = NetworkId::deserialize_reader(&mut [2].as_slice()).unwrap();
|
|
|
|
// Create allocations
|
|
let rand_allocation = || {
|
|
let mut key = [0; 32];
|
|
OsRng.fill_bytes(&mut key);
|
|
let key = Public::from(key);
|
|
let amount = Amount(OsRng.next_u64());
|
|
(key, amount)
|
|
};
|
|
const ALLOCATIONS: usize = 100;
|
|
let mut allocations = vec![];
|
|
for _ in 0 .. ALLOCATIONS {
|
|
let (key, amount) = rand_allocation();
|
|
allocations.push((key, amount));
|
|
assert_eq!(
|
|
Allocations::<AllocationsMap, SortedAllocationsMap>::set(network, key, amount),
|
|
None
|
|
);
|
|
}
|
|
// Sort them from highest amount to lowest
|
|
allocations.sort_by_key(|item| item.1);
|
|
allocations.reverse();
|
|
|
|
// Set allocations for the previous and next network, by byte, to ensure the map isn't solely
|
|
// these allocations. This ensures we don't read from another network accidentally
|
|
{
|
|
let (key, amount) = rand_allocation();
|
|
assert_eq!(
|
|
Allocations::<AllocationsMap, SortedAllocationsMap>::set(before, key, amount),
|
|
None
|
|
);
|
|
assert_eq!(
|
|
Allocations::<AllocationsMap, SortedAllocationsMap>::set(after, key, amount),
|
|
None
|
|
);
|
|
}
|
|
|
|
// Check the iterator works
|
|
{
|
|
let mut a = Allocations::<AllocationsMap, SortedAllocationsMap>::iter(network, Amount(0));
|
|
let mut b = allocations.clone().into_iter();
|
|
for _ in 0 .. ALLOCATIONS {
|
|
assert_eq!(a.next(), b.next());
|
|
}
|
|
assert!(a.next().is_none());
|
|
assert!(b.next().is_none());
|
|
}
|
|
|
|
// Check the minimum works
|
|
{
|
|
assert_eq!(
|
|
Allocations::<AllocationsMap, SortedAllocationsMap>::iter(network, allocations[0].1).next(),
|
|
Some(allocations[0])
|
|
);
|
|
assert_eq!(
|
|
Allocations::<AllocationsMap, SortedAllocationsMap>::iter(
|
|
network,
|
|
// Fails with probability ~1/2**57
|
|
(allocations[0].1 + Amount(1)).unwrap()
|
|
)
|
|
.next(),
|
|
None,
|
|
);
|
|
}
|
|
});
|
|
}
|