Files
serai/networks/bitcoin/src/wallet/send.rs
Luke Parker 3af430d8de Use the IETF transacript in bitcoin-serai, not RecommendedTranscript
This is more likely to be interoperable in the long term.
2024-09-19 21:13:08 -04:00

426 lines
13 KiB
Rust

use std_shims::{
io::{self, Read},
collections::HashMap,
};
use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use k256::Scalar;
use frost::{curve::Secp256k1, Participant, ThresholdKeys, FrostError, sign::*};
use bitcoin::{
hashes::Hash,
sighash::{TapSighashType, SighashCache, Prevouts},
absolute::LockTime,
script::{PushBytesBuf, ScriptBuf},
transaction::{Version, Transaction},
OutPoint, Sequence, Witness, TxIn, Amount, TxOut,
};
use crate::{
crypto::Schnorr,
wallet::{ReceivedOutput, p2tr_script_buf},
};
#[rustfmt::skip]
// https://github.com/bitcoin/bitcoin/blob/306ccd4927a2efe325c8d84be1bdb79edeb29b04/src/policy/policy.cpp#L26-L63
// As the above notes, a lower amount may not be considered dust if contained in a SegWit output
// This doesn't bother with delineation due to how marginal these values are, and because it isn't
// worth the complexity to implement differentation
pub const DUST: u64 = 546;
#[derive(Clone, PartialEq, Eq, Debug, Error)]
pub enum TransactionError {
#[error("no inputs were specified")]
NoInputs,
#[error("no outputs were created")]
NoOutputs,
#[error("a specified payment's amount was less than bitcoin's required minimum")]
DustPayment,
#[error("too much data was specified")]
TooMuchData,
#[error("fee was too low to pass the default minimum fee rate")]
TooLowFee,
#[error("not enough funds for these payments")]
NotEnoughFunds,
#[error("transaction was too large")]
TooLargeTransaction,
}
/// A signable transaction, clone-able across attempts.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct SignableTransaction {
tx: Transaction,
offsets: Vec<Scalar>,
prevouts: Vec<TxOut>,
needed_fee: u64,
}
impl SignableTransaction {
fn calculate_weight_vbytes(
inputs: usize,
payments: &[(ScriptBuf, u64)],
change: Option<&ScriptBuf>,
) -> (u64, u64) {
// Expand this a full transaction in order to use the bitcoin library's weight function
let mut tx = Transaction {
version: Version(2),
lock_time: LockTime::ZERO,
input: vec![
TxIn {
// This is a fixed size
// See https://developer.bitcoin.org/reference/transactions.html#raw-transaction-format
previous_output: OutPoint::default(),
// This is empty for a Taproot spend
script_sig: ScriptBuf::new(),
// This is fixed size, yet we do use Sequence::MAX
sequence: Sequence::MAX,
// Our witnesses contains a single 64-byte signature
witness: Witness::from_slice(&[vec![0; 64]])
};
inputs
],
output: payments
.iter()
// The payment is a fixed size so we don't have to use it here
// The script pub key is not of a fixed size and does have to be used here
.map(|payment| TxOut {
value: Amount::from_sat(payment.1),
script_pubkey: payment.0.clone(),
})
.collect(),
};
if let Some(change) = change {
// Use a 0 value since we're currently unsure what the change amount will be, and since
// the value is fixed size (so any value could be used here)
tx.output.push(TxOut { value: Amount::ZERO, script_pubkey: change.clone() });
}
let weight = tx.weight();
// Now calculate the size in vbytes
/*
"Virtual transaction size" is weight ceildiv 4 per
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bitcoin/blob/306ccd4927a2efe325c8d84be1bdb79edeb29b04
/src/policy/policy.cpp#L295-L298
implements this almost as expected, with an additional consideration to signature operations
Signature operations (the second argument of the following call) do not count Taproot
signatures per https://github.com/bitcoin/bips/blob/master/bip-0342.mediawiki#cite_ref-11-0
We don't risk running afoul of the Taproot signature limit as it allows at least one per
input, which is all we use
*/
(
weight.to_wu(),
u64::try_from(bitcoin::policy::get_virtual_tx_size(
i64::try_from(weight.to_wu()).unwrap(),
0i64,
))
.unwrap(),
)
}
/// Returns the fee necessary for this transaction to achieve the fee rate specified at
/// construction.
///
/// The actual fee this transaction will use is `sum(inputs) - sum(outputs)`.
pub fn needed_fee(&self) -> u64 {
self.needed_fee
}
/// Returns the fee this transaction will use.
pub fn fee(&self) -> u64 {
self.prevouts.iter().map(|prevout| prevout.value.to_sat()).sum::<u64>() -
self.tx.output.iter().map(|prevout| prevout.value.to_sat()).sum::<u64>()
}
/// Create a new SignableTransaction.
///
/// If a change address is specified, any leftover funds will be sent to it if the leftover funds
/// exceed the minimum output amount. If a change address isn't specified, all leftover funds
/// will become part of the paid fee.
///
/// If data is specified, an OP_RETURN output will be added with it.
pub fn new(
mut inputs: Vec<ReceivedOutput>,
payments: &[(ScriptBuf, u64)],
change: Option<ScriptBuf>,
data: Option<Vec<u8>>,
fee_per_vbyte: u64,
) -> Result<SignableTransaction, TransactionError> {
if inputs.is_empty() {
Err(TransactionError::NoInputs)?;
}
if payments.is_empty() && change.is_none() && data.is_none() {
Err(TransactionError::NoOutputs)?;
}
for (_, amount) in payments {
if *amount < DUST {
Err(TransactionError::DustPayment)?;
}
}
if data.as_ref().map_or(0, Vec::len) > 80 {
Err(TransactionError::TooMuchData)?;
}
let input_sat = inputs.iter().map(|input| input.output.value.to_sat()).sum::<u64>();
let offsets = inputs.iter().map(|input| input.offset).collect();
let tx_ins = inputs
.iter()
.map(|input| TxIn {
previous_output: input.outpoint,
script_sig: ScriptBuf::new(),
sequence: Sequence::MAX,
witness: Witness::new(),
})
.collect::<Vec<_>>();
let payment_sat = payments.iter().map(|payment| payment.1).sum::<u64>();
let mut tx_outs = payments
.iter()
.map(|payment| TxOut { value: Amount::from_sat(payment.1), script_pubkey: payment.0.clone() })
.collect::<Vec<_>>();
// Add the OP_RETURN output
if let Some(data) = data {
tx_outs.push(TxOut {
value: Amount::ZERO,
script_pubkey: ScriptBuf::new_op_return(
PushBytesBuf::try_from(data)
.expect("data didn't fit into PushBytes depsite being checked"),
),
})
}
let (mut weight, vbytes) = Self::calculate_weight_vbytes(tx_ins.len(), payments, None);
let mut needed_fee = fee_per_vbyte * vbytes;
// Technically, if there isn't change, this TX may still pay enough of a fee to pass the
// minimum fee. Such edge cases aren't worth programming when they go against intent, as the
// specified fee rate is too low to be valid
// bitcoin::policy::DEFAULT_MIN_RELAY_TX_FEE is in sats/kilo-vbyte
if needed_fee < ((u64::from(bitcoin::policy::DEFAULT_MIN_RELAY_TX_FEE) * vbytes) / 1000) {
Err(TransactionError::TooLowFee)?;
}
if input_sat < (payment_sat + needed_fee) {
Err(TransactionError::NotEnoughFunds)?;
}
// If there's a change address, check if there's change to give it
if let Some(change) = change {
let (weight_with_change, vbytes_with_change) =
Self::calculate_weight_vbytes(tx_ins.len(), payments, Some(&change));
let fee_with_change = fee_per_vbyte * vbytes_with_change;
if let Some(value) = input_sat.checked_sub(payment_sat + fee_with_change) {
if value >= DUST {
tx_outs.push(TxOut { value: Amount::from_sat(value), script_pubkey: change });
weight = weight_with_change;
needed_fee = fee_with_change;
}
}
}
if tx_outs.is_empty() {
Err(TransactionError::NoOutputs)?;
}
if weight > u64::from(bitcoin::policy::MAX_STANDARD_TX_WEIGHT) {
Err(TransactionError::TooLargeTransaction)?;
}
Ok(SignableTransaction {
tx: Transaction {
version: Version(2),
lock_time: LockTime::ZERO,
input: tx_ins,
output: tx_outs,
},
offsets,
prevouts: inputs.drain(..).map(|input| input.output).collect(),
needed_fee,
})
}
/// Returns the TX ID of the transaction this will create.
pub fn txid(&self) -> [u8; 32] {
let mut res = self.tx.compute_txid().to_byte_array();
res.reverse();
res
}
/// Returns the outputs this transaction will create.
pub fn outputs(&self) -> &[TxOut] {
&self.tx.output
}
/// Create a multisig machine for this transaction.
///
/// Returns None if the wrong keys are used.
pub fn multisig(self, keys: &ThresholdKeys<Secp256k1>) -> Option<TransactionMachine> {
let mut sigs = vec![];
for i in 0 .. self.tx.input.len() {
let offset = keys.clone().offset(self.offsets[i]);
if p2tr_script_buf(offset.group_key())? != self.prevouts[i].script_pubkey {
None?;
}
sigs.push(AlgorithmMachine::new(Schnorr::new(), keys.clone().offset(self.offsets[i])));
}
Some(TransactionMachine { tx: self, sigs })
}
}
/// A FROST signing machine to produce a Bitcoin transaction.
///
/// This does not support caching its preprocess. When sign is called, the message must be empty.
/// This will panic if either `cache` is called or the message isn't empty.
pub struct TransactionMachine {
tx: SignableTransaction,
sigs: Vec<AlgorithmMachine<Secp256k1, Schnorr>>,
}
impl PreprocessMachine for TransactionMachine {
type Preprocess = Vec<Preprocess<Secp256k1, ()>>;
type Signature = Transaction;
type SignMachine = TransactionSignMachine;
fn preprocess<R: RngCore + CryptoRng>(
mut self,
rng: &mut R,
) -> (Self::SignMachine, Self::Preprocess) {
let mut preprocesses = Vec::with_capacity(self.sigs.len());
let sigs = self
.sigs
.drain(..)
.map(|sig| {
let (sig, preprocess) = sig.preprocess(rng);
preprocesses.push(preprocess);
sig
})
.collect();
(TransactionSignMachine { tx: self.tx, sigs }, preprocesses)
}
}
pub struct TransactionSignMachine {
tx: SignableTransaction,
sigs: Vec<AlgorithmSignMachine<Secp256k1, Schnorr>>,
}
impl SignMachine<Transaction> for TransactionSignMachine {
type Params = ();
type Keys = ThresholdKeys<Secp256k1>;
type Preprocess = Vec<Preprocess<Secp256k1, ()>>;
type SignatureShare = Vec<SignatureShare<Secp256k1>>;
type SignatureMachine = TransactionSignatureMachine;
fn cache(self) -> CachedPreprocess {
unimplemented!(
"Bitcoin transactions don't support caching their preprocesses due to {}",
"being already bound to a specific transaction"
);
}
fn from_cache(
(): (),
_: ThresholdKeys<Secp256k1>,
_: CachedPreprocess,
) -> (Self, Self::Preprocess) {
unimplemented!(
"Bitcoin transactions don't support caching their preprocesses due to {}",
"being already bound to a specific transaction"
);
}
fn read_preprocess<R: Read>(&self, reader: &mut R) -> io::Result<Self::Preprocess> {
self.sigs.iter().map(|sig| sig.read_preprocess(reader)).collect()
}
fn sign(
mut self,
commitments: HashMap<Participant, Self::Preprocess>,
msg: &[u8],
) -> Result<(TransactionSignatureMachine, Self::SignatureShare), FrostError> {
if !msg.is_empty() {
panic!("message was passed to the TransactionSignMachine when it generates its own");
}
let commitments = (0 .. self.sigs.len())
.map(|c| {
commitments
.iter()
.map(|(l, commitments)| (*l, commitments[c].clone()))
.collect::<HashMap<_, _>>()
})
.collect::<Vec<_>>();
let mut cache = SighashCache::new(&self.tx.tx);
// Sign committing to all inputs
let prevouts = Prevouts::All(&self.tx.prevouts);
let mut shares = Vec::with_capacity(self.sigs.len());
let sigs = self
.sigs
.drain(..)
.enumerate()
.map(|(i, sig)| {
let (sig, share) = sig.sign(
commitments[i].clone(),
cache
.taproot_key_spend_signature_hash(i, &prevouts, TapSighashType::Default)
// This should never happen since the inputs align with the TX the cache was
// constructed with, and because i is always < prevouts.len()
.expect("taproot_key_spend_signature_hash failed to return a hash")
.as_ref(),
)?;
shares.push(share);
Ok(sig)
})
.collect::<Result<_, _>>()?;
Ok((TransactionSignatureMachine { tx: self.tx.tx, sigs }, shares))
}
}
pub struct TransactionSignatureMachine {
tx: Transaction,
sigs: Vec<AlgorithmSignatureMachine<Secp256k1, Schnorr>>,
}
impl SignatureMachine<Transaction> for TransactionSignatureMachine {
type SignatureShare = Vec<SignatureShare<Secp256k1>>;
fn read_share<R: Read>(&self, reader: &mut R) -> io::Result<Self::SignatureShare> {
self.sigs.iter().map(|sig| sig.read_share(reader)).collect()
}
fn complete(
mut self,
mut shares: HashMap<Participant, Self::SignatureShare>,
) -> Result<Transaction, FrostError> {
for (input, schnorr) in self.tx.input.iter_mut().zip(self.sigs.drain(..)) {
let sig = schnorr.complete(
shares.iter_mut().map(|(l, shares)| (*l, shares.remove(0))).collect::<HashMap<_, _>>(),
)?;
let mut witness = Witness::new();
witness.push(sig);
input.witness = witness;
}
Ok(self.tx)
}
}