mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-14 06:59:24 +00:00
Updates how we calculcate verification shares, improves performance when extracting multiple sets of keys, and adds more to the test for it.
784 lines
29 KiB
Rust
784 lines
29 KiB
Rust
use core::{marker::PhantomData, ops::Deref, fmt};
|
|
|
|
use subtle::*;
|
|
use zeroize::{Zeroize, Zeroizing};
|
|
|
|
use rand_core::{RngCore, CryptoRng, SeedableRng};
|
|
use rand_chacha::ChaCha20Rng;
|
|
|
|
use generic_array::{typenum::Unsigned, ArrayLength, GenericArray};
|
|
|
|
use blake2::{Digest, Blake2s256};
|
|
use ciphersuite::{
|
|
group::{
|
|
ff::{Field, PrimeField, PrimeFieldBits},
|
|
Group, GroupEncoding,
|
|
},
|
|
Ciphersuite,
|
|
};
|
|
|
|
use generalized_bulletproofs::{
|
|
*,
|
|
transcript::{Transcript as ProverTranscript, VerifierTranscript},
|
|
arithmetic_circuit_proof::*,
|
|
};
|
|
use generalized_bulletproofs_circuit_abstraction::*;
|
|
|
|
use ec_divisors::{DivisorCurve, new_divisor};
|
|
use generalized_bulletproofs_ec_gadgets::*;
|
|
|
|
/// A pair of curves to perform the eVRF with.
|
|
pub trait EvrfCurve: Ciphersuite {
|
|
type EmbeddedCurve: Ciphersuite;
|
|
type EmbeddedCurveParameters: DiscreteLogParameters;
|
|
}
|
|
|
|
fn sample_point<C: Ciphersuite>(rng: &mut (impl RngCore + CryptoRng)) -> C::G {
|
|
let mut repr = <C::G as GroupEncoding>::Repr::default();
|
|
loop {
|
|
rng.fill_bytes(repr.as_mut());
|
|
if let Ok(point) = C::read_G(&mut repr.as_ref()) {
|
|
return point;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The result of proving for an eVRF.
|
|
pub(crate) struct EvrfProveResult<C: Ciphersuite> {
|
|
/// The coefficients for use in the DKG.
|
|
pub(crate) coefficients: Vec<Zeroizing<C::F>>,
|
|
/// The masks to encrypt secret shares with.
|
|
pub(crate) encryption_masks: Vec<Zeroizing<C::F>>,
|
|
/// The proof itself.
|
|
pub(crate) proof: Vec<u8>,
|
|
}
|
|
|
|
/// The result of verifying an eVRF.
|
|
pub(crate) struct EvrfVerifyResult<C: EvrfCurve> {
|
|
/// The commitments to the coefficients for use in the DKG.
|
|
pub(crate) coefficients: Vec<C::G>,
|
|
/// The ephemeral public keys to perform ECDHs with
|
|
pub(crate) ecdh_keys: Vec<[<C::EmbeddedCurve as Ciphersuite>::G; 2]>,
|
|
/// The commitments to the masks used to encrypt secret shares with.
|
|
pub(crate) encryption_commitments: Vec<C::G>,
|
|
}
|
|
|
|
impl<C: EvrfCurve> fmt::Debug for EvrfVerifyResult<C> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt.debug_struct("EvrfVerifyResult").finish_non_exhaustive()
|
|
}
|
|
}
|
|
|
|
/// A struct to prove/verify eVRFs with.
|
|
pub(crate) struct Evrf<C: EvrfCurve>(PhantomData<C>);
|
|
impl<C: EvrfCurve> Evrf<C>
|
|
where
|
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G:
|
|
DivisorCurve<FieldElement = <C as Ciphersuite>::F>,
|
|
{
|
|
// TODO: Wrap these Generators so we can enforce g == C::generator() with type safety
|
|
pub(crate) fn generators(max_threshold: u16, max_participants: u16) -> Generators<C> {
|
|
let g = C::generator();
|
|
let mut rng = ChaCha20Rng::from_seed(Blake2s256::digest(g.to_bytes()).into());
|
|
let h = sample_point::<C>(&mut rng);
|
|
let (_, generators) =
|
|
Evrf::<C>::muls_and_generators_to_use(max_threshold.into(), max_participants.into());
|
|
let mut g_bold = vec![];
|
|
let mut h_bold = vec![];
|
|
for _ in 0 .. generators {
|
|
g_bold.push(sample_point::<C>(&mut rng));
|
|
h_bold.push(sample_point::<C>(&mut rng));
|
|
}
|
|
Generators::new(g, h, g_bold, h_bold).unwrap()
|
|
}
|
|
|
|
// Sample uniform points (via rejection-sampling) on the embedded elliptic curve
|
|
fn transcript_to_points(
|
|
seed: [u8; 32],
|
|
coefficients: usize,
|
|
) -> Vec<<C::EmbeddedCurve as Ciphersuite>::G> {
|
|
// We need to do two Diffie-Hellman's per coefficient in order to achieve an unbiased result
|
|
let quantity = 2 * coefficients;
|
|
|
|
let mut rng = ChaCha20Rng::from_seed(seed);
|
|
let mut res = Vec::with_capacity(quantity);
|
|
for _ in 0 .. quantity {
|
|
res.push(sample_point::<C::EmbeddedCurve>(&mut rng));
|
|
}
|
|
res
|
|
}
|
|
|
|
/// Read a Variable from a theoretical vector commitment tape
|
|
fn read_one_from_tape(generators_to_use: usize, start: &mut usize) -> Variable {
|
|
// Each commitment has twice as many variables as generators in use
|
|
let commitment = *start / (2 * generators_to_use);
|
|
// The index will be less than the amount of generators in use, as half are left and half are
|
|
// right
|
|
let index = *start % generators_to_use;
|
|
let res = if (*start / generators_to_use) % 2 == 0 {
|
|
Variable::CG { commitment, index }
|
|
} else {
|
|
Variable::CH { commitment, index }
|
|
};
|
|
*start += 1;
|
|
res
|
|
}
|
|
|
|
/// Read a set of variables from a theoretical vector commitment tape
|
|
fn read_from_tape<N: ArrayLength>(
|
|
generators_to_use: usize,
|
|
start: &mut usize,
|
|
) -> GenericArray<Variable, N> {
|
|
let mut buf = Vec::with_capacity(N::USIZE);
|
|
for _ in 0 .. N::USIZE {
|
|
buf.push(Self::read_one_from_tape(generators_to_use, start));
|
|
}
|
|
GenericArray::from_slice(&buf).clone()
|
|
}
|
|
|
|
/// Read `PointWithDlog`s, which share a discrete logarithm, from the theoretical vector
|
|
/// commitment tape.
|
|
fn point_with_dlogs(
|
|
start: &mut usize,
|
|
quantity: usize,
|
|
generators_to_use: usize,
|
|
) -> Vec<PointWithDlog<C::EmbeddedCurveParameters>> {
|
|
// We define a serialized tape of the discrete logarithm, then for each divisor/point, we push:
|
|
// zero, x**i, y x**i, y, x_coord, y_coord
|
|
// We then chunk that into vector commitments
|
|
// Here, we take the assumed layout and generate the expected `Variable`s for this layout
|
|
|
|
let dlog = Self::read_from_tape(generators_to_use, start);
|
|
|
|
let mut res = Vec::with_capacity(quantity);
|
|
let mut read_point_with_dlog = || {
|
|
let zero = Self::read_one_from_tape(generators_to_use, start);
|
|
let x_from_power_of_2 = Self::read_from_tape(generators_to_use, start);
|
|
let yx = Self::read_from_tape(generators_to_use, start);
|
|
let y = Self::read_one_from_tape(generators_to_use, start);
|
|
let divisor = Divisor { zero, x_from_power_of_2, yx, y };
|
|
|
|
let point = (
|
|
Self::read_one_from_tape(generators_to_use, start),
|
|
Self::read_one_from_tape(generators_to_use, start),
|
|
);
|
|
|
|
res.push(PointWithDlog { dlog: dlog.clone(), divisor, point });
|
|
};
|
|
|
|
for _ in 0 .. quantity {
|
|
read_point_with_dlog();
|
|
}
|
|
res
|
|
}
|
|
|
|
fn muls_and_generators_to_use(coefficients: usize, ecdhs: usize) -> (usize, usize) {
|
|
const MULS_PER_DH: usize = 7;
|
|
// 1 DH to prove the discrete logarithm corresponds to the eVRF public key
|
|
// 2 DHs per generated coefficient
|
|
// 2 DHs per generated ECDH
|
|
let expected_muls = MULS_PER_DH * (1 + (2 * coefficients) + (2 * 2 * ecdhs));
|
|
let generators_to_use = {
|
|
let mut padded_pow_of_2 = 1;
|
|
while padded_pow_of_2 < expected_muls {
|
|
padded_pow_of_2 <<= 1;
|
|
}
|
|
// This may as small as 16, which would create an excessive amount of vector commitments
|
|
// We set a floor of 1024 rows for bandwidth reasons
|
|
padded_pow_of_2.max(1024)
|
|
};
|
|
(expected_muls, generators_to_use)
|
|
}
|
|
|
|
fn circuit(
|
|
curve_spec: &CurveSpec<C::F>,
|
|
evrf_public_key: (C::F, C::F),
|
|
coefficients: usize,
|
|
ecdh_commitments: &[[(C::F, C::F); 2]],
|
|
generator_tables: &[GeneratorTable<C::F, C::EmbeddedCurveParameters>],
|
|
circuit: &mut Circuit<C>,
|
|
transcript: &mut impl Transcript,
|
|
) {
|
|
let (expected_muls, generators_to_use) =
|
|
Self::muls_and_generators_to_use(coefficients, ecdh_commitments.len());
|
|
let (challenge, challenged_generators) =
|
|
circuit.discrete_log_challenge(transcript, curve_spec, generator_tables);
|
|
debug_assert_eq!(challenged_generators.len(), 1 + (2 * coefficients) + ecdh_commitments.len());
|
|
|
|
// The generators tables/challenged generators are expected to have the following layouts
|
|
// G, coefficients * [A, B], ecdhs * [P]
|
|
#[allow(non_snake_case)]
|
|
let challenged_G = &challenged_generators[0];
|
|
|
|
// Execute the circuit for the coefficients
|
|
let mut tape_pos = 0;
|
|
{
|
|
let mut point_with_dlogs =
|
|
Self::point_with_dlogs(&mut tape_pos, 1 + (2 * coefficients), generators_to_use)
|
|
.into_iter();
|
|
|
|
// Verify the discrete logarithm is in the fact the discrete logarithm of the eVRF public key
|
|
let point = circuit.discrete_log(
|
|
curve_spec,
|
|
point_with_dlogs.next().unwrap(),
|
|
&challenge,
|
|
challenged_G,
|
|
);
|
|
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(evrf_public_key.0));
|
|
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(evrf_public_key.1));
|
|
|
|
// Verify the DLog claims against the sampled points
|
|
for (i, pair) in challenged_generators[1 ..].chunks(2).take(coefficients).enumerate() {
|
|
let mut lincomb = LinComb::empty();
|
|
debug_assert_eq!(pair.len(), 2);
|
|
for challenged_generator in pair {
|
|
let point = circuit.discrete_log(
|
|
curve_spec,
|
|
point_with_dlogs.next().unwrap(),
|
|
&challenge,
|
|
challenged_generator,
|
|
);
|
|
// For each point in this pair, add its x coordinate to a lincomb
|
|
lincomb = lincomb.term(C::F::ONE, point.x());
|
|
}
|
|
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
|
|
// commitment
|
|
circuit.equality(lincomb, &LinComb::from(Variable::V(i)));
|
|
}
|
|
debug_assert!(point_with_dlogs.next().is_none());
|
|
}
|
|
|
|
// Now execute the circuit for the ECDHs
|
|
let mut challenged_generators = challenged_generators.iter().skip(1 + (2 * coefficients));
|
|
for (i, ecdh) in ecdh_commitments.iter().enumerate() {
|
|
let challenged_generator = challenged_generators.next().unwrap();
|
|
let mut lincomb = LinComb::empty();
|
|
for ecdh in ecdh {
|
|
let mut point_with_dlogs =
|
|
Self::point_with_dlogs(&mut tape_pos, 2, generators_to_use).into_iter();
|
|
|
|
// One proof of the ECDH secret * G for the commitment published
|
|
let point = circuit.discrete_log(
|
|
curve_spec,
|
|
point_with_dlogs.next().unwrap(),
|
|
&challenge,
|
|
challenged_G,
|
|
);
|
|
circuit.equality(LinComb::from(point.x()), &LinComb::empty().constant(ecdh.0));
|
|
circuit.equality(LinComb::from(point.y()), &LinComb::empty().constant(ecdh.1));
|
|
|
|
// One proof of the ECDH secret * P for the ECDH
|
|
let point = circuit.discrete_log(
|
|
curve_spec,
|
|
point_with_dlogs.next().unwrap(),
|
|
&challenge,
|
|
challenged_generator,
|
|
);
|
|
// For each point in this pair, add its x coordinate to a lincomb
|
|
lincomb = lincomb.term(C::F::ONE, point.x());
|
|
}
|
|
|
|
// Constrain the sum of the two x coordinates to be equal to the value in the Pedersen
|
|
// commitment
|
|
circuit.equality(lincomb, &LinComb::from(Variable::V(coefficients + i)));
|
|
}
|
|
|
|
debug_assert_eq!(expected_muls, circuit.muls());
|
|
debug_assert!(challenged_generators.next().is_none());
|
|
}
|
|
|
|
/// Convert a scalar to a sequence of coefficients for the polynomial 2**i, where the sum of the
|
|
/// coefficients is F::NUM_BITS.
|
|
///
|
|
/// We'll presumably use this scalar in a discrete log proof. That requires calculating a divisor
|
|
/// which is variable time to the sum of the coefficients in the polynomial. This causes all
|
|
/// scalars to have a constant sum of their coefficients (instead one variable to the bits set).
|
|
///
|
|
/// We achieve this by finding the highest non-0 coefficient, decrementing it, and increasing the
|
|
/// immediately less significant coefficient by 2. This increases the sum of the coefficients by
|
|
/// 1 (-1+2=1).
|
|
// TODO: Support scalars which have a value < F::NUM_BITS
|
|
#[allow(clippy::cast_possible_truncation)]
|
|
fn scalar_to_bits(scalar: &<C::EmbeddedCurve as Ciphersuite>::F) -> Vec<u64> {
|
|
let num_bits = <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F::NUM_BITS;
|
|
|
|
// Obtain the bits of the private key
|
|
let mut sum_of_coefficients: u64 = 0;
|
|
let mut dlog = vec![0; num_bits as usize];
|
|
for (i, bit) in scalar.to_le_bits().into_iter().take(num_bits as usize).enumerate() {
|
|
let bit = u64::from(u8::from(bit));
|
|
dlog[i] = bit;
|
|
sum_of_coefficients += bit;
|
|
}
|
|
|
|
for _ in 0 .. num_bits {
|
|
// Find the highest coefficient currently non-zero
|
|
let mut h = 1u32;
|
|
// The value of this highest coefficient, and the coefficient prior to it
|
|
let mut h_value = dlog[h as usize];
|
|
let mut h_prior_value = dlog[(h as usize) - 1];
|
|
|
|
// TODO: Squash the following two loops by iterating from the top bit to the bottom bit
|
|
|
|
let mut prior_coefficient = dlog[(h as usize) - 1];
|
|
for (i, coefficient) in dlog.iter().enumerate().skip(h as usize) {
|
|
let is_zero = 0.ct_eq(coefficient);
|
|
|
|
// Set `h_*` if this value is non-0
|
|
h = u32::conditional_select(&h, &(i as u32), !is_zero);
|
|
h_value = <_>::conditional_select(&h_value, coefficient, !is_zero);
|
|
h_prior_value = <_>::conditional_select(&h_prior_value, &prior_coefficient, !is_zero);
|
|
|
|
// Update prior_coefficient
|
|
prior_coefficient = *coefficient;
|
|
}
|
|
|
|
// We should not have selected a value equivalent to 0
|
|
// TODO: Ban evrf keys < NUM_BITS and accordingly unable to be so coerced
|
|
assert!(!bool::from(h_value.ct_eq(&0)));
|
|
|
|
// Update h_value, h_prior_value as necessary
|
|
h_value -= 1;
|
|
h_prior_value += 2;
|
|
|
|
// Now, set these values if we should
|
|
let should_set = !sum_of_coefficients.ct_eq(&u64::from(num_bits));
|
|
sum_of_coefficients += u64::conditional_select(&0, &1, should_set);
|
|
for (i, coefficient) in dlog.iter_mut().enumerate() {
|
|
let this_is_prior = (i as u32).ct_eq(&(h - 1));
|
|
let this_is_high = (i as u32).ct_eq(&h);
|
|
|
|
*coefficient =
|
|
<_>::conditional_select(coefficient, &h_prior_value, should_set & this_is_prior);
|
|
*coefficient = <_>::conditional_select(coefficient, &h_value, should_set & this_is_high);
|
|
}
|
|
}
|
|
debug_assert!(bool::from(dlog.iter().sum::<u64>().ct_eq(&u64::from(num_bits))));
|
|
|
|
dlog
|
|
}
|
|
|
|
fn transcript(
|
|
invocation: [u8; 32],
|
|
evrf_public_key: <C::EmbeddedCurve as Ciphersuite>::G,
|
|
ecdh_public_keys: &[<C::EmbeddedCurve as Ciphersuite>::G],
|
|
) -> [u8; 32] {
|
|
let mut transcript = Blake2s256::new();
|
|
transcript.update(invocation);
|
|
transcript.update(evrf_public_key.to_bytes().as_ref());
|
|
for ecdh in ecdh_public_keys {
|
|
transcript.update(ecdh.to_bytes().as_ref());
|
|
}
|
|
transcript.finalize().into()
|
|
}
|
|
|
|
/// Prove a point on an elliptic curve had its discrete logarithm generated via an eVRF.
|
|
pub(crate) fn prove(
|
|
rng: &mut (impl RngCore + CryptoRng),
|
|
generators: &Generators<C>,
|
|
evrf_private_key: &Zeroizing<<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::F>,
|
|
invocation: [u8; 32],
|
|
coefficients: usize,
|
|
ecdh_public_keys: &[<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G],
|
|
) -> Result<EvrfProveResult<C>, AcError> {
|
|
let curve_spec = CurveSpec {
|
|
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
|
|
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
|
|
};
|
|
|
|
// Combine the invocation and the public key into a transcript
|
|
let transcript = Self::transcript(
|
|
invocation,
|
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key.deref(),
|
|
ecdh_public_keys,
|
|
);
|
|
|
|
// A tape of the discrete logarithm, then [zero, x**i, y x**i, y, x_coord, y_coord]
|
|
let mut vector_commitment_tape = vec![];
|
|
|
|
let mut generator_tables = Vec::with_capacity(1 + (2 * coefficients) + ecdh_public_keys.len());
|
|
|
|
// A function to calculate a divisor and push it onto the tape
|
|
// This defines a vec, divisor_points, outside of the fn to reuse its allocation
|
|
let mut divisor_points =
|
|
Vec::with_capacity((<C::EmbeddedCurve as Ciphersuite>::F::NUM_BITS as usize) + 1);
|
|
let mut divisor =
|
|
|vector_commitment_tape: &mut Vec<_>,
|
|
dlog: &[u64],
|
|
push_generator: bool,
|
|
generator: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
|
|
dh: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G| {
|
|
if push_generator {
|
|
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
|
|
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
|
|
}
|
|
|
|
{
|
|
let mut generator = generator;
|
|
for coefficient in dlog {
|
|
let mut coefficient = *coefficient;
|
|
while coefficient != 0 {
|
|
coefficient -= 1;
|
|
divisor_points.push(generator);
|
|
}
|
|
generator = generator.double();
|
|
}
|
|
debug_assert_eq!(
|
|
dlog.iter().sum::<u64>(),
|
|
u64::from(<C::EmbeddedCurve as Ciphersuite>::F::NUM_BITS)
|
|
);
|
|
}
|
|
divisor_points.push(-dh);
|
|
let mut divisor = new_divisor(&divisor_points).unwrap().normalize_x_coefficient();
|
|
divisor_points.zeroize();
|
|
|
|
vector_commitment_tape.push(divisor.zero_coefficient);
|
|
|
|
for coefficient in divisor.x_coefficients.iter().skip(1) {
|
|
vector_commitment_tape.push(*coefficient);
|
|
}
|
|
for _ in divisor.x_coefficients.len() ..
|
|
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE
|
|
{
|
|
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
|
|
}
|
|
|
|
for coefficient in divisor.yx_coefficients.first().unwrap_or(&vec![]) {
|
|
vector_commitment_tape.push(*coefficient);
|
|
}
|
|
for _ in divisor.yx_coefficients.first().unwrap_or(&vec![]).len() ..
|
|
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE
|
|
{
|
|
vector_commitment_tape.push(<C as Ciphersuite>::F::ZERO);
|
|
}
|
|
|
|
vector_commitment_tape
|
|
.push(divisor.y_coefficients.first().copied().unwrap_or(<C as Ciphersuite>::F::ZERO));
|
|
|
|
divisor.zeroize();
|
|
drop(divisor);
|
|
|
|
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(dh).unwrap();
|
|
vector_commitment_tape.push(x);
|
|
vector_commitment_tape.push(y);
|
|
|
|
(x, y)
|
|
};
|
|
|
|
// Start with the coefficients
|
|
let evrf_public_key;
|
|
let mut actual_coefficients = Vec::with_capacity(coefficients);
|
|
{
|
|
let mut dlog = Self::scalar_to_bits(evrf_private_key);
|
|
let points = Self::transcript_to_points(transcript, coefficients);
|
|
|
|
// Start by pushing the discrete logarithm onto the tape
|
|
for coefficient in &dlog {
|
|
vector_commitment_tape.push(<_>::from(*coefficient));
|
|
}
|
|
|
|
// Push a divisor for proving that we're using the correct scalar
|
|
evrf_public_key = divisor(
|
|
&mut vector_commitment_tape,
|
|
&dlog,
|
|
true,
|
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator(),
|
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * evrf_private_key.deref(),
|
|
);
|
|
|
|
// Push a divisor for each point we use in the eVRF
|
|
for pair in points.chunks(2) {
|
|
let mut res = Zeroizing::new(C::F::ZERO);
|
|
for point in pair {
|
|
let (dh_x, _) = divisor(
|
|
&mut vector_commitment_tape,
|
|
&dlog,
|
|
true,
|
|
*point,
|
|
*point * evrf_private_key.deref(),
|
|
);
|
|
*res += dh_x;
|
|
}
|
|
actual_coefficients.push(res);
|
|
}
|
|
debug_assert_eq!(actual_coefficients.len(), coefficients);
|
|
|
|
dlog.zeroize();
|
|
}
|
|
|
|
// Now do the ECDHs for the encryption
|
|
let mut encryption_masks = Vec::with_capacity(ecdh_public_keys.len());
|
|
let mut ecdh_commitments = Vec::with_capacity(2 * ecdh_public_keys.len());
|
|
let mut ecdh_commitments_xy = Vec::with_capacity(ecdh_public_keys.len());
|
|
for ecdh_public_key in ecdh_public_keys {
|
|
ecdh_commitments_xy.push([(C::F::ZERO, C::F::ZERO); 2]);
|
|
|
|
let mut res = Zeroizing::new(C::F::ZERO);
|
|
for j in 0 .. 2 {
|
|
let mut ecdh_private_key = <C::EmbeddedCurve as Ciphersuite>::F::random(&mut *rng);
|
|
let mut dlog = Self::scalar_to_bits(&ecdh_private_key);
|
|
let ecdh_commitment = <C::EmbeddedCurve as Ciphersuite>::generator() * ecdh_private_key;
|
|
ecdh_commitments.push(ecdh_commitment);
|
|
ecdh_commitments_xy.last_mut().unwrap()[j] =
|
|
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_commitment).unwrap();
|
|
|
|
// Start by pushing the discrete logarithm onto the tape
|
|
for coefficient in &dlog {
|
|
vector_commitment_tape.push(<_>::from(*coefficient));
|
|
}
|
|
|
|
// Push a divisor for proving that we're using the correct scalar for the commitment
|
|
divisor(
|
|
&mut vector_commitment_tape,
|
|
&dlog,
|
|
false,
|
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator(),
|
|
<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::generator() * ecdh_private_key,
|
|
);
|
|
// Push a divisor for the key we're performing the ECDH with
|
|
let (dh_x, _) = divisor(
|
|
&mut vector_commitment_tape,
|
|
&dlog,
|
|
j == 0,
|
|
*ecdh_public_key,
|
|
*ecdh_public_key * ecdh_private_key,
|
|
);
|
|
*res += dh_x;
|
|
|
|
ecdh_private_key.zeroize();
|
|
dlog.zeroize();
|
|
}
|
|
encryption_masks.push(res);
|
|
}
|
|
debug_assert_eq!(encryption_masks.len(), ecdh_public_keys.len());
|
|
|
|
// Now that we have the vector commitment tape, chunk it
|
|
let (_, generators_to_use) =
|
|
Self::muls_and_generators_to_use(coefficients, ecdh_public_keys.len());
|
|
|
|
let mut vector_commitments =
|
|
Vec::with_capacity(vector_commitment_tape.len().div_ceil(2 * generators_to_use));
|
|
for chunk in vector_commitment_tape.chunks(2 * generators_to_use) {
|
|
let g_values = chunk[.. generators_to_use.min(chunk.len())].to_vec().into();
|
|
let h_values = chunk[generators_to_use.min(chunk.len()) ..].to_vec().into();
|
|
vector_commitments.push(PedersenVectorCommitment {
|
|
g_values,
|
|
h_values,
|
|
mask: C::F::random(&mut *rng),
|
|
});
|
|
}
|
|
|
|
vector_commitment_tape.zeroize();
|
|
drop(vector_commitment_tape);
|
|
|
|
let mut commitments = Vec::with_capacity(coefficients + ecdh_public_keys.len());
|
|
for coefficient in &actual_coefficients {
|
|
commitments.push(PedersenCommitment { value: **coefficient, mask: C::F::random(&mut *rng) });
|
|
}
|
|
for enc_mask in &encryption_masks {
|
|
commitments.push(PedersenCommitment { value: **enc_mask, mask: C::F::random(&mut *rng) });
|
|
}
|
|
|
|
let mut transcript = ProverTranscript::new(transcript);
|
|
let commited_commitments = transcript.write_commitments(
|
|
vector_commitments
|
|
.iter()
|
|
.map(|commitment| {
|
|
commitment
|
|
.commit(generators.g_bold_slice(), generators.h_bold_slice(), generators.h())
|
|
.ok_or(AcError::NotEnoughGenerators)
|
|
})
|
|
.collect::<Result<_, _>>()?,
|
|
commitments
|
|
.iter()
|
|
.map(|commitment| commitment.commit(generators.g(), generators.h()))
|
|
.collect(),
|
|
);
|
|
for ecdh_commitment in ecdh_commitments {
|
|
transcript.push_point(ecdh_commitment);
|
|
}
|
|
|
|
let mut circuit = Circuit::prove(vector_commitments, commitments.clone());
|
|
Self::circuit(
|
|
&curve_spec,
|
|
evrf_public_key,
|
|
coefficients,
|
|
&ecdh_commitments_xy,
|
|
&generator_tables,
|
|
&mut circuit,
|
|
&mut transcript,
|
|
);
|
|
|
|
let (statement, Some(witness)) = circuit
|
|
.statement(
|
|
generators.reduce(generators_to_use).ok_or(AcError::NotEnoughGenerators)?,
|
|
commited_commitments,
|
|
)
|
|
.unwrap()
|
|
else {
|
|
panic!("proving yet wasn't yielded the witness");
|
|
};
|
|
statement.prove(&mut *rng, &mut transcript, witness).unwrap();
|
|
|
|
// Push the reveal onto the transcript
|
|
for commitment in &commitments {
|
|
transcript.push_point(generators.g() * commitment.value);
|
|
}
|
|
|
|
// Define a weight to aggregate the commitments with
|
|
let mut agg_weights = Vec::with_capacity(commitments.len());
|
|
agg_weights.push(C::F::ONE);
|
|
while agg_weights.len() < commitments.len() {
|
|
agg_weights.push(transcript.challenge::<C::F>());
|
|
}
|
|
let mut x = commitments
|
|
.iter()
|
|
.zip(&agg_weights)
|
|
.map(|(commitment, weight)| commitment.mask * *weight)
|
|
.sum::<C::F>();
|
|
|
|
// Do a Schnorr PoK for the randomness of the aggregated Pedersen commitment
|
|
let mut r = C::F::random(&mut *rng);
|
|
transcript.push_point(generators.h() * r);
|
|
let c = transcript.challenge::<C::F>();
|
|
transcript.push_scalar(r + (c * x));
|
|
r.zeroize();
|
|
x.zeroize();
|
|
|
|
Ok(EvrfProveResult {
|
|
coefficients: actual_coefficients,
|
|
encryption_masks,
|
|
proof: transcript.complete(),
|
|
})
|
|
}
|
|
|
|
// TODO: Dedicated error
|
|
/// Verify an eVRF proof, returning the commitments output.
|
|
pub(crate) fn verify(
|
|
rng: &mut (impl RngCore + CryptoRng),
|
|
generators: &Generators<C>,
|
|
verifier: &mut BatchVerifier<C>,
|
|
evrf_public_key: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G,
|
|
invocation: [u8; 32],
|
|
coefficients: usize,
|
|
ecdh_public_keys: &[<<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G],
|
|
proof: &[u8],
|
|
) -> Result<EvrfVerifyResult<C>, ()> {
|
|
let curve_spec = CurveSpec {
|
|
a: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::a(),
|
|
b: <<C as EvrfCurve>::EmbeddedCurve as Ciphersuite>::G::b(),
|
|
};
|
|
|
|
let transcript = Self::transcript(invocation, evrf_public_key, ecdh_public_keys);
|
|
|
|
let mut generator_tables = Vec::with_capacity(1 + (2 * coefficients) + ecdh_public_keys.len());
|
|
{
|
|
let (x, y) =
|
|
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(<C::EmbeddedCurve as Ciphersuite>::generator())
|
|
.unwrap();
|
|
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
|
|
}
|
|
let points = Self::transcript_to_points(transcript, coefficients);
|
|
for generator in points {
|
|
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(generator).unwrap();
|
|
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
|
|
}
|
|
for generator in ecdh_public_keys {
|
|
let (x, y) = <C::EmbeddedCurve as Ciphersuite>::G::to_xy(*generator).unwrap();
|
|
generator_tables.push(GeneratorTable::new(&curve_spec, x, y));
|
|
}
|
|
|
|
let (_, generators_to_use) =
|
|
Self::muls_and_generators_to_use(coefficients, ecdh_public_keys.len());
|
|
|
|
let mut transcript = VerifierTranscript::new(transcript, proof);
|
|
|
|
let dlog_len = <C::EmbeddedCurveParameters as DiscreteLogParameters>::ScalarBits::USIZE;
|
|
let divisor_len = 1 +
|
|
<C::EmbeddedCurveParameters as DiscreteLogParameters>::XCoefficientsMinusOne::USIZE +
|
|
<C::EmbeddedCurveParameters as DiscreteLogParameters>::YxCoefficients::USIZE +
|
|
1;
|
|
let dlog_proof_len = divisor_len + 2;
|
|
|
|
let coeffs_vc_variables = dlog_len + ((1 + (2 * coefficients)) * dlog_proof_len);
|
|
let ecdhs_vc_variables = ((2 * ecdh_public_keys.len()) * dlog_len) +
|
|
((2 * 2 * ecdh_public_keys.len()) * dlog_proof_len);
|
|
let vcs = (coeffs_vc_variables + ecdhs_vc_variables).div_ceil(2 * generators_to_use);
|
|
|
|
let all_commitments =
|
|
transcript.read_commitments(vcs, coefficients + ecdh_public_keys.len()).map_err(|_| ())?;
|
|
let commitments = all_commitments.V().to_vec();
|
|
|
|
let mut ecdh_keys = Vec::with_capacity(ecdh_public_keys.len());
|
|
let mut ecdh_keys_xy = Vec::with_capacity(ecdh_public_keys.len());
|
|
for _ in 0 .. ecdh_public_keys.len() {
|
|
let ecdh_keys_i = [
|
|
transcript.read_point::<C::EmbeddedCurve>().map_err(|_| ())?,
|
|
transcript.read_point::<C::EmbeddedCurve>().map_err(|_| ())?,
|
|
];
|
|
ecdh_keys.push(ecdh_keys_i);
|
|
ecdh_keys_xy.push([
|
|
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_keys_i[0]).ok_or(())?,
|
|
<<C::EmbeddedCurve as Ciphersuite>::G as DivisorCurve>::to_xy(ecdh_keys_i[1]).ok_or(())?,
|
|
]);
|
|
}
|
|
|
|
let mut circuit = Circuit::verify();
|
|
Self::circuit(
|
|
&curve_spec,
|
|
<C::EmbeddedCurve as Ciphersuite>::G::to_xy(evrf_public_key).ok_or(())?,
|
|
coefficients,
|
|
&ecdh_keys_xy,
|
|
&generator_tables,
|
|
&mut circuit,
|
|
&mut transcript,
|
|
);
|
|
|
|
let (statement, None) =
|
|
circuit.statement(generators.reduce(generators_to_use).ok_or(())?, all_commitments).unwrap()
|
|
else {
|
|
panic!("verifying yet was yielded a witness");
|
|
};
|
|
|
|
statement.verify(rng, verifier, &mut transcript).map_err(|_| ())?;
|
|
|
|
// Read the openings for the commitments
|
|
let mut openings = Vec::with_capacity(commitments.len());
|
|
for _ in 0 .. commitments.len() {
|
|
openings.push(transcript.read_point::<C>().map_err(|_| ())?);
|
|
}
|
|
|
|
// Verify the openings of the commitments
|
|
let mut agg_weights = Vec::with_capacity(commitments.len());
|
|
agg_weights.push(C::F::ONE);
|
|
while agg_weights.len() < commitments.len() {
|
|
agg_weights.push(transcript.challenge::<C::F>());
|
|
}
|
|
|
|
let sum_points =
|
|
openings.iter().zip(&agg_weights).map(|(point, weight)| *point * *weight).sum::<C::G>();
|
|
let sum_commitments =
|
|
commitments.into_iter().zip(agg_weights).map(|(point, weight)| point * weight).sum::<C::G>();
|
|
#[allow(non_snake_case)]
|
|
let A = sum_commitments - sum_points;
|
|
|
|
#[allow(non_snake_case)]
|
|
let R = transcript.read_point::<C>().map_err(|_| ())?;
|
|
let c = transcript.challenge::<C::F>();
|
|
let s = transcript.read_scalar::<C>().map_err(|_| ())?;
|
|
|
|
// Doesn't batch verify this as we can't access the internals of the GBP batch verifier
|
|
if (R + (A * c)) != (generators.h() * s) {
|
|
Err(())?;
|
|
}
|
|
|
|
if !transcript.complete().is_empty() {
|
|
Err(())?
|
|
};
|
|
|
|
let encryption_commitments = openings[coefficients ..].to_vec();
|
|
let coefficients = openings[.. coefficients].to_vec();
|
|
Ok(EvrfVerifyResult { coefficients, ecdh_keys, encryption_commitments })
|
|
}
|
|
}
|