mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-11 21:49:26 +00:00
1) Removes the key image DLEq on the Monero side of things, as the produced signature share serves as a DLEq for it. 2) Removes the nonce DLEqs from modular-frost as they're unnecessary for monero-serai. Updates documentation accordingly. Without the proof the nonces are internally consistent, the produced signatures from modular-frost can be argued as a batch-verifiable CP93 DLEq (R0, R1, s), or as a GSP for the CP93 DLEq statement (which naturally produces (R0, R1, s)). The lack of proving the nonces consistent does make the process weaker, yet it's also unnecessary for the class of protocols this is intended to service. To provide DLEqs for the nonces would be to provide PoKs for the nonce commitments (in the traditional Schnorr case).
329 lines
10 KiB
Rust
329 lines
10 KiB
Rust
use core::{ops::Deref, fmt::Debug};
|
|
use std_shims::{
|
|
io::{self, Read, Write},
|
|
collections::HashMap,
|
|
};
|
|
use std::sync::{Arc, RwLock};
|
|
|
|
use rand_core::{RngCore, CryptoRng, SeedableRng};
|
|
use rand_chacha::ChaCha20Rng;
|
|
|
|
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
|
|
|
|
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
|
|
|
|
use group::{
|
|
ff::{Field, PrimeField},
|
|
Group, GroupEncoding,
|
|
};
|
|
|
|
use transcript::{Transcript, RecommendedTranscript};
|
|
use dalek_ff_group as dfg;
|
|
use frost::{
|
|
dkg::lagrange,
|
|
curve::Ed25519,
|
|
Participant, FrostError, ThresholdKeys, ThresholdView,
|
|
algorithm::{WriteAddendum, Algorithm},
|
|
};
|
|
|
|
use crate::ringct::{
|
|
hash_to_point,
|
|
clsag::{ClsagInput, Clsag},
|
|
};
|
|
|
|
impl ClsagInput {
|
|
fn transcript<T: Transcript>(&self, transcript: &mut T) {
|
|
// Doesn't domain separate as this is considered part of the larger CLSAG proof
|
|
|
|
// Ring index
|
|
transcript.append_message(b"real_spend", [self.decoys.i]);
|
|
|
|
// Ring
|
|
for (i, pair) in self.decoys.ring.iter().enumerate() {
|
|
// Doesn't include global output indexes as CLSAG doesn't care and won't be affected by it
|
|
// They're just a unreliable reference to this data which will be included in the message
|
|
// if in use
|
|
transcript.append_message(b"member", [u8::try_from(i).expect("ring size exceeded 255")]);
|
|
// This also transcripts the key image generator since it's derived from this key
|
|
transcript.append_message(b"key", pair[0].compress().to_bytes());
|
|
transcript.append_message(b"commitment", pair[1].compress().to_bytes())
|
|
}
|
|
|
|
// Doesn't include the commitment's parts as the above ring + index includes the commitment
|
|
// The only potential malleability would be if the G/H relationship is known breaking the
|
|
// discrete log problem, which breaks everything already
|
|
}
|
|
}
|
|
|
|
/// CLSAG input and the mask to use for it.
|
|
#[derive(Clone, Debug, Zeroize, ZeroizeOnDrop)]
|
|
pub struct ClsagDetails {
|
|
input: ClsagInput,
|
|
mask: Scalar,
|
|
}
|
|
|
|
impl ClsagDetails {
|
|
pub fn new(input: ClsagInput, mask: Scalar) -> ClsagDetails {
|
|
ClsagDetails { input, mask }
|
|
}
|
|
}
|
|
|
|
/// Addendum produced during the FROST signing process with relevant data.
|
|
#[derive(Clone, PartialEq, Eq, Zeroize, Debug)]
|
|
pub struct ClsagAddendum {
|
|
pub(crate) key_image: dfg::EdwardsPoint,
|
|
}
|
|
|
|
impl WriteAddendum for ClsagAddendum {
|
|
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
|
writer.write_all(self.key_image.compress().to_bytes().as_ref())
|
|
}
|
|
}
|
|
|
|
#[allow(non_snake_case)]
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
struct Interim {
|
|
p: Scalar,
|
|
c: Scalar,
|
|
|
|
clsag: Clsag,
|
|
pseudo_out: EdwardsPoint,
|
|
}
|
|
|
|
/// FROST algorithm for producing a CLSAG signature.
|
|
#[allow(non_snake_case)]
|
|
#[derive(Clone, Debug)]
|
|
pub struct ClsagMultisig {
|
|
transcript: RecommendedTranscript,
|
|
|
|
pub(crate) H: EdwardsPoint,
|
|
key_image_shares: HashMap<[u8; 32], dfg::EdwardsPoint>,
|
|
image: Option<dfg::EdwardsPoint>,
|
|
|
|
details: Arc<RwLock<Option<ClsagDetails>>>,
|
|
|
|
msg: Option<[u8; 32]>,
|
|
interim: Option<Interim>,
|
|
}
|
|
|
|
impl ClsagMultisig {
|
|
pub fn new(
|
|
transcript: RecommendedTranscript,
|
|
output_key: EdwardsPoint,
|
|
details: Arc<RwLock<Option<ClsagDetails>>>,
|
|
) -> ClsagMultisig {
|
|
ClsagMultisig {
|
|
transcript,
|
|
|
|
H: hash_to_point(&output_key),
|
|
key_image_shares: HashMap::new(),
|
|
image: None,
|
|
|
|
details,
|
|
|
|
msg: None,
|
|
interim: None,
|
|
}
|
|
}
|
|
|
|
fn input(&self) -> ClsagInput {
|
|
(*self.details.read().unwrap()).as_ref().unwrap().input.clone()
|
|
}
|
|
|
|
fn mask(&self) -> Scalar {
|
|
(*self.details.read().unwrap()).as_ref().unwrap().mask
|
|
}
|
|
}
|
|
|
|
impl Algorithm<Ed25519> for ClsagMultisig {
|
|
type Transcript = RecommendedTranscript;
|
|
type Addendum = ClsagAddendum;
|
|
type Signature = (Clsag, EdwardsPoint);
|
|
|
|
fn nonces(&self) -> Vec<Vec<dfg::EdwardsPoint>> {
|
|
vec![vec![dfg::EdwardsPoint::generator(), dfg::EdwardsPoint(self.H)]]
|
|
}
|
|
|
|
fn preprocess_addendum<R: RngCore + CryptoRng>(
|
|
&mut self,
|
|
_rng: &mut R,
|
|
keys: &ThresholdKeys<Ed25519>,
|
|
) -> ClsagAddendum {
|
|
ClsagAddendum { key_image: dfg::EdwardsPoint(self.H) * keys.secret_share().deref() }
|
|
}
|
|
|
|
fn read_addendum<R: Read>(&self, reader: &mut R) -> io::Result<ClsagAddendum> {
|
|
let mut bytes = [0; 32];
|
|
reader.read_exact(&mut bytes)?;
|
|
// dfg ensures the point is torsion free
|
|
let xH = Option::<dfg::EdwardsPoint>::from(dfg::EdwardsPoint::from_bytes(&bytes))
|
|
.ok_or_else(|| io::Error::other("invalid key image"))?;
|
|
// Ensure this is a canonical point
|
|
if xH.to_bytes() != bytes {
|
|
Err(io::Error::other("non-canonical key image"))?;
|
|
}
|
|
|
|
Ok(ClsagAddendum { key_image: xH })
|
|
}
|
|
|
|
fn process_addendum(
|
|
&mut self,
|
|
view: &ThresholdView<Ed25519>,
|
|
l: Participant,
|
|
addendum: ClsagAddendum,
|
|
) -> Result<(), FrostError> {
|
|
if self.image.is_none() {
|
|
self.transcript.domain_separate(b"CLSAG");
|
|
// Transcript the ring
|
|
self.input().transcript(&mut self.transcript);
|
|
// Transcript the mask
|
|
self.transcript.append_message(b"mask", self.mask().to_bytes());
|
|
|
|
// Init the image to the offset
|
|
self.image = Some(dfg::EdwardsPoint(self.H) * view.offset());
|
|
}
|
|
|
|
// Transcript this participant's contribution
|
|
self.transcript.append_message(b"participant", l.to_bytes());
|
|
self.transcript.append_message(b"key_image_share", addendum.key_image.compress().to_bytes());
|
|
|
|
// Accumulate the interpolated share
|
|
let interpolated_key_image_share =
|
|
addendum.key_image * lagrange::<dfg::Scalar>(l, view.included());
|
|
*self.image.as_mut().unwrap() += interpolated_key_image_share;
|
|
|
|
self
|
|
.key_image_shares
|
|
.insert(view.verification_share(l).to_bytes(), interpolated_key_image_share);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn transcript(&mut self) -> &mut Self::Transcript {
|
|
&mut self.transcript
|
|
}
|
|
|
|
fn sign_share(
|
|
&mut self,
|
|
view: &ThresholdView<Ed25519>,
|
|
nonce_sums: &[Vec<dfg::EdwardsPoint>],
|
|
nonces: Vec<Zeroizing<dfg::Scalar>>,
|
|
msg: &[u8],
|
|
) -> dfg::Scalar {
|
|
// Use the transcript to get a seeded random number generator
|
|
// The transcript contains private data, preventing passive adversaries from recreating this
|
|
// process even if they have access to commitments (specifically, the ring index being signed
|
|
// for, along with the mask which should not only require knowing the shared keys yet also the
|
|
// input commitment masks)
|
|
let mut rng = ChaCha20Rng::from_seed(self.transcript.rng_seed(b"decoy_responses"));
|
|
|
|
self.msg = Some(msg.try_into().expect("CLSAG message should be 32-bytes"));
|
|
|
|
#[allow(non_snake_case)]
|
|
let (clsag, pseudo_out, p, c) = Clsag::sign_core(
|
|
&mut rng,
|
|
&self.image.expect("verifying a share despite never processing any addendums").0,
|
|
&self.input(),
|
|
self.mask(),
|
|
self.msg.as_ref().unwrap(),
|
|
nonce_sums[0][0].0,
|
|
nonce_sums[0][1].0,
|
|
);
|
|
self.interim = Some(Interim { p, c, clsag, pseudo_out });
|
|
|
|
// r - p x, where p is the challenge for the keys
|
|
*nonces[0] - dfg::Scalar(p) * view.secret_share().deref()
|
|
}
|
|
|
|
#[must_use]
|
|
fn verify(
|
|
&self,
|
|
_: dfg::EdwardsPoint,
|
|
_: &[Vec<dfg::EdwardsPoint>],
|
|
sum: dfg::Scalar,
|
|
) -> Option<Self::Signature> {
|
|
let interim = self.interim.as_ref().unwrap();
|
|
let mut clsag = interim.clsag.clone();
|
|
// We produced shares as `r - p x`, yet the signature is `r - p x - c x`
|
|
// Substract `c x` (saved as `c`) now
|
|
clsag.s[usize::from(self.input().decoys.i)] = sum.0 - interim.c;
|
|
if clsag
|
|
.verify(
|
|
&self.input().decoys.ring,
|
|
&self.image.expect("verifying a signature despite never processing any addendums").0,
|
|
&interim.pseudo_out,
|
|
self.msg.as_ref().unwrap(),
|
|
)
|
|
.is_ok()
|
|
{
|
|
return Some((clsag, interim.pseudo_out));
|
|
}
|
|
None
|
|
}
|
|
|
|
fn verify_share(
|
|
&self,
|
|
verification_share: dfg::EdwardsPoint,
|
|
nonces: &[Vec<dfg::EdwardsPoint>],
|
|
share: dfg::Scalar,
|
|
) -> Result<Vec<(dfg::Scalar, dfg::EdwardsPoint)>, ()> {
|
|
let interim = self.interim.as_ref().unwrap();
|
|
|
|
// For a share `r - p x`, the following two equalities should hold:
|
|
// - `(r - p x)G == R.0 - pV`, where `V = xG`
|
|
// - `(r - p x)H == R.1 - pK`, where `K = xH` (the key image share)
|
|
//
|
|
// This is effectively a discrete log equality proof for:
|
|
// V, K over G, H
|
|
// with nonces
|
|
// R.0, R.1
|
|
// and solution
|
|
// s
|
|
//
|
|
// Which is a batch-verifiable rewrite of the traditional CP93 proof
|
|
// (and also writable as Generalized Schnorr Protocol)
|
|
//
|
|
// That means that given a proper challenge, this alone can be certainly argued to prove the
|
|
// key image share is well-formed and the provided signature so proves for that.
|
|
|
|
// This is a bit funky as it doesn't prove the nonces are well-formed however. They're part of
|
|
// the prover data/transcript for a CP93/GSP proof, not part of the statement. This practically
|
|
// is fine, for a variety of reasons (given a consistent `x`, a consistent `r` can be
|
|
// extracted, and the nonces as used in CLSAG are also part of its prover data/transcript).
|
|
|
|
let key_image_share = self.key_image_shares[&verification_share.to_bytes()];
|
|
|
|
// Hash every variable relevant here, using the hahs output as the random weight
|
|
let mut weight_transcript =
|
|
RecommendedTranscript::new(b"monero-serai v0.1 ClsagMultisig::verify_share");
|
|
weight_transcript.append_message(b"G", dfg::EdwardsPoint::generator().to_bytes());
|
|
weight_transcript.append_message(b"H", self.H.to_bytes());
|
|
weight_transcript.append_message(b"xG", verification_share.to_bytes());
|
|
weight_transcript.append_message(b"xH", key_image_share.to_bytes());
|
|
weight_transcript.append_message(b"rG", nonces[0][0].to_bytes());
|
|
weight_transcript.append_message(b"rH", nonces[0][1].to_bytes());
|
|
weight_transcript.append_message(b"c", dfg::Scalar(interim.p).to_repr());
|
|
weight_transcript.append_message(b"s", share.to_repr());
|
|
let weight = weight_transcript.challenge(b"weight");
|
|
let weight = dfg::Scalar(Scalar::from_bytes_mod_order_wide(&weight.into()));
|
|
|
|
let part_one = vec![
|
|
(share, dfg::EdwardsPoint::generator()),
|
|
// -(R.0 - pV) == -R.0 + pV
|
|
(-dfg::Scalar::ONE, nonces[0][0]),
|
|
(dfg::Scalar(interim.p), verification_share),
|
|
];
|
|
|
|
let mut part_two = vec![
|
|
(weight * share, dfg::EdwardsPoint(self.H)),
|
|
// -(R.1 - pK) == -R.1 + pK
|
|
(-weight, nonces[0][1]),
|
|
(weight * dfg::Scalar(interim.p), key_image_share),
|
|
];
|
|
|
|
let mut all = part_one;
|
|
all.append(&mut part_two);
|
|
Ok(all)
|
|
}
|
|
}
|