Files
serai/networks/monero/src/ringct.rs
Luke Parker 188fcc3cb4 Remove potentially-failing unchecked arithmetic operations for ones which error
In response to 9.13.3.

Requires a bump to Rust 1.82 to take advantage of `Option::is_none_or`.
2025-08-12 01:27:28 -04:00

479 lines
16 KiB
Rust

use std_shims::{
vec,
vec::Vec,
io::{self, Read, Write},
};
use zeroize::Zeroize;
use curve25519_dalek::edwards::EdwardsPoint;
pub use monero_mlsag as mlsag;
pub use monero_clsag as clsag;
pub use monero_borromean as borromean;
pub use monero_bulletproofs as bulletproofs;
use crate::{
io::*,
ringct::{mlsag::Mlsag, clsag::Clsag, borromean::BorromeanRange, bulletproofs::Bulletproof},
};
/// An encrypted amount.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum EncryptedAmount {
/// The original format for encrypted amounts.
Original {
/// A mask used with a mask derived from the shared secret to encrypt the amount.
mask: [u8; 32],
/// The amount, as a scalar, encrypted.
amount: [u8; 32],
},
/// The "compact" format for encrypted amounts.
Compact {
/// The amount, as a u64, encrypted.
amount: [u8; 8],
},
}
impl EncryptedAmount {
/// Read an EncryptedAmount from a reader.
pub fn read<R: Read>(compact: bool, r: &mut R) -> io::Result<EncryptedAmount> {
Ok(if !compact {
EncryptedAmount::Original { mask: read_bytes(r)?, amount: read_bytes(r)? }
} else {
EncryptedAmount::Compact { amount: read_bytes(r)? }
})
}
/// Write the EncryptedAmount to a writer.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
match self {
EncryptedAmount::Original { mask, amount } => {
w.write_all(mask)?;
w.write_all(amount)
}
EncryptedAmount::Compact { amount } => w.write_all(amount),
}
}
}
/// The type of the RingCT data.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
pub enum RctType {
/// One MLSAG for multiple inputs and Borromean range proofs.
///
/// This aligns with RCTTypeFull.
AggregateMlsagBorromean,
// One MLSAG for each input and a Borromean range proof.
///
/// This aligns with RCTTypeSimple.
MlsagBorromean,
// One MLSAG for each input and a Bulletproof.
///
/// This aligns with RCTTypeBulletproof.
MlsagBulletproofs,
/// One MLSAG for each input and a Bulletproof, yet using EncryptedAmount::Compact.
///
/// This aligns with RCTTypeBulletproof2.
MlsagBulletproofsCompactAmount,
/// One CLSAG for each input and a Bulletproof.
///
/// This aligns with RCTTypeCLSAG.
ClsagBulletproof,
/// One CLSAG for each input and a Bulletproof+.
///
/// This aligns with RCTTypeBulletproofPlus.
ClsagBulletproofPlus,
}
impl From<RctType> for u8 {
fn from(rct_type: RctType) -> u8 {
match rct_type {
RctType::AggregateMlsagBorromean => 1,
RctType::MlsagBorromean => 2,
RctType::MlsagBulletproofs => 3,
RctType::MlsagBulletproofsCompactAmount => 4,
RctType::ClsagBulletproof => 5,
RctType::ClsagBulletproofPlus => 6,
}
}
}
impl TryFrom<u8> for RctType {
type Error = ();
fn try_from(byte: u8) -> Result<Self, ()> {
Ok(match byte {
1 => RctType::AggregateMlsagBorromean,
2 => RctType::MlsagBorromean,
3 => RctType::MlsagBulletproofs,
4 => RctType::MlsagBulletproofsCompactAmount,
5 => RctType::ClsagBulletproof,
6 => RctType::ClsagBulletproofPlus,
_ => Err(())?,
})
}
}
impl RctType {
/// True if this RctType uses compact encrypted amounts, false otherwise.
pub fn compact_encrypted_amounts(&self) -> bool {
match self {
RctType::AggregateMlsagBorromean | RctType::MlsagBorromean | RctType::MlsagBulletproofs => {
false
}
RctType::MlsagBulletproofsCompactAmount |
RctType::ClsagBulletproof |
RctType::ClsagBulletproofPlus => true,
}
}
/// True if this RctType uses a Bulletproof, false otherwise.
pub(crate) fn bulletproof(&self) -> bool {
match self {
RctType::MlsagBulletproofs |
RctType::MlsagBulletproofsCompactAmount |
RctType::ClsagBulletproof => true,
RctType::AggregateMlsagBorromean |
RctType::MlsagBorromean |
RctType::ClsagBulletproofPlus => false,
}
}
/// True if this RctType uses a Bulletproof+, false otherwise.
pub(crate) fn bulletproof_plus(&self) -> bool {
match self {
RctType::ClsagBulletproofPlus => true,
RctType::AggregateMlsagBorromean |
RctType::MlsagBorromean |
RctType::MlsagBulletproofs |
RctType::MlsagBulletproofsCompactAmount |
RctType::ClsagBulletproof => false,
}
}
}
/// The base of the RingCT data.
///
/// This excludes all proofs (which once initially verified do not need to be kept around) and
/// solely keeps data which either impacts the effects of the transactions or is needed to scan it.
///
/// The one exception for this is `pseudo_outs`, which was originally present here yet moved to
/// RctPrunable in a later hard fork (causing it to be present in both).
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct RctBase {
/// The fee used by this transaction.
pub fee: u64,
/// The re-randomized amount commitments used within inputs.
///
/// This field was deprecated and is empty for modern RctTypes.
pub pseudo_outs: Vec<EdwardsPoint>,
/// The encrypted amounts for the recipients to decrypt.
pub encrypted_amounts: Vec<EncryptedAmount>,
/// The output commitments.
pub commitments: Vec<EdwardsPoint>,
}
impl RctBase {
/// Write the RctBase.
pub fn write<W: Write>(&self, w: &mut W, rct_type: RctType) -> io::Result<()> {
w.write_all(&[u8::from(rct_type)])?;
write_varint(&self.fee, w)?;
if rct_type == RctType::MlsagBorromean {
write_raw_vec(write_point, &self.pseudo_outs, w)?;
}
for encrypted_amount in &self.encrypted_amounts {
encrypted_amount.write(w)?;
}
write_raw_vec(write_point, &self.commitments, w)
}
/// Read a RctBase.
pub fn read<R: Read>(
inputs: usize,
outputs: usize,
r: &mut R,
) -> io::Result<Option<(RctType, RctBase)>> {
let rct_type = read_byte(r)?;
if rct_type == 0 {
return Ok(None);
}
let rct_type =
RctType::try_from(rct_type).map_err(|()| io::Error::other("invalid RCT type"))?;
match rct_type {
RctType::AggregateMlsagBorromean | RctType::MlsagBorromean => {}
RctType::MlsagBulletproofs |
RctType::MlsagBulletproofsCompactAmount |
RctType::ClsagBulletproof |
RctType::ClsagBulletproofPlus => {
if outputs == 0 {
// Because the Bulletproofs(+) layout must be canonical, there must be 1 Bulletproof if
// Bulletproofs are in use
// If there are Bulletproofs, there must be a matching amount of outputs, implicitly
// banning 0 outputs
// Since HF 12 (CLSAG being 13), a 2-output minimum has also been enforced
Err(io::Error::other("RCT with Bulletproofs(+) had 0 outputs"))?;
}
}
}
Ok(Some((
rct_type,
RctBase {
fee: read_varint(r)?,
// Only read pseudo_outs if they have yet to be moved to RctPrunable
// This would apply to AggregateMlsagBorromean and MlsagBorromean, except
// AggregateMlsagBorromean doesn't use pseudo_outs due to using the sum of the output
// commitments directly as the effective singular pseudo-out
pseudo_outs: if rct_type == RctType::MlsagBorromean {
read_raw_vec(read_point, inputs, r)?
} else {
vec![]
},
encrypted_amounts: (0 .. outputs)
.map(|_| EncryptedAmount::read(rct_type.compact_encrypted_amounts(), r))
.collect::<Result<_, _>>()?,
commitments: read_raw_vec(read_point, outputs, r)?,
},
)))
}
}
/// The prunable part of the RingCT data.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum RctPrunable {
/// An aggregate MLSAG with Borromean range proofs.
AggregateMlsagBorromean {
/// The aggregate MLSAG ring signature.
mlsag: Mlsag,
/// The Borromean range proofs for each output.
borromean: Vec<BorromeanRange>,
},
/// MLSAGs with Borromean range proofs.
MlsagBorromean {
/// The MLSAG ring signatures for each input.
mlsags: Vec<Mlsag>,
/// The Borromean range proofs for each output.
borromean: Vec<BorromeanRange>,
},
/// MLSAGs with Bulletproofs.
MlsagBulletproofs {
/// The MLSAG ring signatures for each input.
mlsags: Vec<Mlsag>,
/// The re-blinded commitments for the outputs being spent.
pseudo_outs: Vec<EdwardsPoint>,
/// The aggregate Bulletproof, proving the outputs are within range.
bulletproof: Bulletproof,
},
/// MLSAGs with Bulletproofs and compact encrypted amounts.
///
/// This has an identical layout to MlsagBulletproofs and is interpreted the exact same way. It's
/// only differentiated to ensure discovery of the correct RctType.
MlsagBulletproofsCompactAmount {
/// The MLSAG ring signatures for each input.
mlsags: Vec<Mlsag>,
/// The re-blinded commitments for the outputs being spent.
pseudo_outs: Vec<EdwardsPoint>,
/// The aggregate Bulletproof, proving the outputs are within range.
bulletproof: Bulletproof,
},
/// CLSAGs with Bulletproofs(+).
Clsag {
/// The CLSAGs for each input.
clsags: Vec<Clsag>,
/// The re-blinded commitments for the outputs being spent.
pseudo_outs: Vec<EdwardsPoint>,
/// The aggregate Bulletproof(+), proving the outputs are within range.
bulletproof: Bulletproof,
},
}
impl RctPrunable {
/// Write the RctPrunable.
pub fn write<W: Write>(&self, w: &mut W, rct_type: RctType) -> io::Result<()> {
match self {
RctPrunable::AggregateMlsagBorromean { borromean, mlsag } => {
write_raw_vec(BorromeanRange::write, borromean, w)?;
mlsag.write(w)
}
RctPrunable::MlsagBorromean { borromean, mlsags } => {
write_raw_vec(BorromeanRange::write, borromean, w)?;
write_raw_vec(Mlsag::write, mlsags, w)
}
RctPrunable::MlsagBulletproofs { bulletproof, mlsags, pseudo_outs } |
RctPrunable::MlsagBulletproofsCompactAmount { bulletproof, mlsags, pseudo_outs } => {
if rct_type == RctType::MlsagBulletproofs {
w.write_all(&1u32.to_le_bytes())?;
} else {
w.write_all(&[1])?;
}
bulletproof.write(w)?;
write_raw_vec(Mlsag::write, mlsags, w)?;
write_raw_vec(write_point, pseudo_outs, w)
}
RctPrunable::Clsag { bulletproof, clsags, pseudo_outs } => {
w.write_all(&[1])?;
bulletproof.write(w)?;
write_raw_vec(Clsag::write, clsags, w)?;
write_raw_vec(write_point, pseudo_outs, w)
}
}
}
/// Serialize the RctPrunable to a `Vec<u8>`.
pub fn serialize(&self, rct_type: RctType) -> Vec<u8> {
let mut serialized = vec![];
self
.write(&mut serialized, rct_type)
.expect("write failed but <Vec as io::Write> doesn't fail");
serialized
}
/// Read a RctPrunable.
pub fn read<R: Read>(
rct_type: RctType,
ring_length: usize,
inputs: usize,
outputs: usize,
r: &mut R,
) -> io::Result<RctPrunable> {
Ok(match rct_type {
RctType::AggregateMlsagBorromean => RctPrunable::AggregateMlsagBorromean {
borromean: read_raw_vec(BorromeanRange::read, outputs, r)?,
mlsag: Mlsag::read(
ring_length,
inputs.checked_add(1).ok_or_else(|| {
io::Error::other("reading a MLSAG for more inputs than representable")
})?,
r,
)?,
},
RctType::MlsagBorromean => RctPrunable::MlsagBorromean {
borromean: read_raw_vec(BorromeanRange::read, outputs, r)?,
mlsags: (0 .. inputs).map(|_| Mlsag::read(ring_length, 2, r)).collect::<Result<_, _>>()?,
},
RctType::MlsagBulletproofs | RctType::MlsagBulletproofsCompactAmount => {
let bulletproof = {
if (if rct_type == RctType::MlsagBulletproofs {
u64::from(read_u32(r)?)
} else {
read_varint(r)?
}) != 1
{
Err(io::Error::other("n bulletproofs instead of one"))?;
}
Bulletproof::read(r)?
};
let mlsags =
(0 .. inputs).map(|_| Mlsag::read(ring_length, 2, r)).collect::<Result<_, _>>()?;
let pseudo_outs = read_raw_vec(read_point, inputs, r)?;
if rct_type == RctType::MlsagBulletproofs {
RctPrunable::MlsagBulletproofs { bulletproof, mlsags, pseudo_outs }
} else {
debug_assert_eq!(rct_type, RctType::MlsagBulletproofsCompactAmount);
RctPrunable::MlsagBulletproofsCompactAmount { bulletproof, mlsags, pseudo_outs }
}
}
RctType::ClsagBulletproof | RctType::ClsagBulletproofPlus => RctPrunable::Clsag {
bulletproof: {
if read_varint::<_, u64>(r)? != 1 {
Err(io::Error::other("n bulletproofs instead of one"))?;
}
(if rct_type == RctType::ClsagBulletproof {
Bulletproof::read
} else {
Bulletproof::read_plus
})(r)?
},
clsags: (0 .. inputs).map(|_| Clsag::read(ring_length, r)).collect::<Result<_, _>>()?,
pseudo_outs: read_raw_vec(read_point, inputs, r)?,
},
})
}
/// Write the RctPrunable as necessary for signing the signature.
pub(crate) fn signature_write<W: Write>(&self, w: &mut W) -> io::Result<()> {
match self {
RctPrunable::AggregateMlsagBorromean { borromean, .. } |
RctPrunable::MlsagBorromean { borromean, .. } => {
borromean.iter().try_for_each(|rs| rs.write(w))
}
RctPrunable::MlsagBulletproofs { bulletproof, .. } |
RctPrunable::MlsagBulletproofsCompactAmount { bulletproof, .. } |
RctPrunable::Clsag { bulletproof, .. } => bulletproof.signature_write(w),
}
}
}
/// The RingCT proofs.
///
/// This contains both the RctBase and RctPrunable structs.
///
/// The C++ codebase refers to this as rct_signatures.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct RctProofs {
/// The data necessary for handling this transaction.
pub base: RctBase,
/// The data necessary for verifying this transaction.
pub prunable: RctPrunable,
}
impl RctProofs {
/// RctType for a given RctProofs struct.
pub fn rct_type(&self) -> RctType {
match &self.prunable {
RctPrunable::AggregateMlsagBorromean { .. } => RctType::AggregateMlsagBorromean,
RctPrunable::MlsagBorromean { .. } => RctType::MlsagBorromean,
RctPrunable::MlsagBulletproofs { .. } => RctType::MlsagBulletproofs,
RctPrunable::MlsagBulletproofsCompactAmount { .. } => RctType::MlsagBulletproofsCompactAmount,
RctPrunable::Clsag { bulletproof, .. } => {
if matches!(bulletproof, Bulletproof::Original { .. }) {
RctType::ClsagBulletproof
} else {
RctType::ClsagBulletproofPlus
}
}
}
}
/// Write the RctProofs.
pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
let rct_type = self.rct_type();
self.base.write(w, rct_type)?;
self.prunable.write(w, rct_type)
}
/// Serialize the RctProofs to a `Vec<u8>`.
pub fn serialize(&self) -> Vec<u8> {
let mut serialized = vec![];
self.write(&mut serialized).expect("write failed but <Vec as io::Write> doesn't fail");
serialized
}
/// Read a RctProofs.
pub fn read<R: Read>(
ring_length: usize,
inputs: usize,
outputs: usize,
r: &mut R,
) -> io::Result<Option<RctProofs>> {
let Some((rct_type, base)) = RctBase::read(inputs, outputs, r)? else { return Ok(None) };
Ok(Some(RctProofs {
base,
prunable: RctPrunable::read(rct_type, ring_length, inputs, outputs, r)?,
}))
}
}
/// A pruned set of RingCT proofs.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct PrunedRctProofs {
/// The type of RctProofs this used to be.
pub rct_type: RctType,
/// The data necessary for handling this transaction.
pub base: RctBase,
}