mirror of
https://github.com/serai-dex/serai.git
synced 2025-12-08 20:29:23 +00:00
* Theoretical ed448 impl * Fixes * Basic tests * More efficient scalarmul Precomputes a table to minimize additions required. * Add a torsion test * Split into a constant and variable time backend The variable time one is still far too slow, at 53s for the tests (~5s a scalarmul). It should be usable as a PoC though. * Rename unsafe Ed448 It's not only unworthy of the Serai branding and deserves more clarity in the name. * Add wide reduction to ed448 * Add Zeroize to Ed448 * Rename Ed448 group.rs to point.rs * Minor lint to FROST * Ed448 ciphersuite with 8032 test vector * Macro out the backend fields * Slight efficiency improvement to point decompression * Disable the multiexp test in FROST for Ed448 * fmt + clippy ed448 * Fix an infinite loop in the constant time ed448 backend * Add b"chal" to the 8032 context string for Ed448 Successfully tests against proposed vectors for the FROST IETF draft. * Fix fmt and clippy * Use a tabled pow algorithm in ed448's const backend * Slight tweaks to variable time backend Stop from_repr(MODULUS) from passing. * Use extended points Almost two orders of magnitude faster. * Efficient ed448 doubling * Remove the variable time backend With the recent performance improvements, the constant time backend is now 4x faster than the variable time backend was. While the variable time backend remains much faster, and the constant time backend is still slow compared to other libraries, it's sufficiently performant now. The FROST test, which runs a series of multiexps over the curve, does take 218.26s while Ristretto takes 1 and secp256k1 takes 4.57s. While 50x slower than secp256k1 is horrible, it's ~1.5 orders of magntiude, which is close enough to the desire stated in https://github.com/serai-dex/serai/issues/108 to meet it. Largely makes this library safe to use. * Correct constants in ed448 * Rename unsafe-ed448 to minimal-ed448 Enables all FROST tests against it. * No longer require the hazmat feature to use ed448 * Remove extraneous as_refs
266 lines
7.3 KiB
Rust
266 lines
7.3 KiB
Rust
use core::ops::{Add, AddAssign, Sub, SubAssign, Neg, Mul, MulAssign};
|
|
|
|
use rand_core::RngCore;
|
|
|
|
use subtle::{Choice, CtOption, ConstantTimeEq, ConditionallyNegatable, ConditionallySelectable};
|
|
|
|
use crypto_bigint::{Encoding, U256, U512};
|
|
|
|
use ff::{Field, PrimeField, FieldBits, PrimeFieldBits};
|
|
|
|
use crate::{choice, constant_time, math, from_uint};
|
|
|
|
const FIELD_MODULUS: U256 =
|
|
U256::from_be_hex("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed");
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, Default, Debug)]
|
|
pub struct FieldElement(U256);
|
|
|
|
pub const EDWARDS_D: FieldElement = FieldElement(U256::from_be_hex(
|
|
"52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3",
|
|
));
|
|
|
|
pub const SQRT_M1: FieldElement = FieldElement(U256::from_be_hex(
|
|
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
|
|
));
|
|
|
|
constant_time!(FieldElement, U256);
|
|
math!(
|
|
FieldElement,
|
|
FieldElement,
|
|
|x, y| U256::add_mod(&x, &y, &FIELD_MODULUS),
|
|
|x, y| U256::sub_mod(&x, &y, &FIELD_MODULUS),
|
|
|x, y| {
|
|
#[allow(non_snake_case)]
|
|
let WIDE_MODULUS: U512 = U512::from((U256::ZERO, FIELD_MODULUS));
|
|
debug_assert_eq!(FIELD_MODULUS.to_le_bytes()[..], WIDE_MODULUS.to_le_bytes()[.. 32]);
|
|
|
|
let wide = U256::mul_wide(&x, &y);
|
|
U256::from_le_slice(
|
|
&U512::from((wide.1, wide.0)).reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32],
|
|
)
|
|
}
|
|
);
|
|
from_uint!(FieldElement, U256);
|
|
|
|
impl Neg for FieldElement {
|
|
type Output = Self;
|
|
fn neg(self) -> Self::Output {
|
|
Self(self.0.neg_mod(&FIELD_MODULUS))
|
|
}
|
|
}
|
|
|
|
impl<'a> Neg for &'a FieldElement {
|
|
type Output = FieldElement;
|
|
fn neg(self) -> Self::Output {
|
|
(*self).neg()
|
|
}
|
|
}
|
|
|
|
impl Field for FieldElement {
|
|
fn random(mut rng: impl RngCore) -> Self {
|
|
let mut bytes = [0; 64];
|
|
rng.fill_bytes(&mut bytes);
|
|
|
|
#[allow(non_snake_case)]
|
|
let WIDE_MODULUS: U512 = U512::from((U256::ZERO, FIELD_MODULUS));
|
|
debug_assert_eq!(FIELD_MODULUS.to_le_bytes()[..], WIDE_MODULUS.to_le_bytes()[.. 32]);
|
|
|
|
FieldElement(U256::from_le_slice(
|
|
&U512::from_be_bytes(bytes).reduce(&WIDE_MODULUS).unwrap().to_le_bytes()[.. 32],
|
|
))
|
|
}
|
|
|
|
fn zero() -> Self {
|
|
Self(U256::ZERO)
|
|
}
|
|
fn one() -> Self {
|
|
Self(U256::ONE)
|
|
}
|
|
fn square(&self) -> Self {
|
|
*self * self
|
|
}
|
|
fn double(&self) -> Self {
|
|
*self + self
|
|
}
|
|
|
|
fn invert(&self) -> CtOption<Self> {
|
|
CtOption::new(self.pow(-FieldElement(U256::from(2u64))), !self.is_zero())
|
|
}
|
|
|
|
fn sqrt(&self) -> CtOption<Self> {
|
|
let c1 = SQRT_M1;
|
|
let c2 = FIELD_MODULUS.saturating_add(&U256::from(3u8)).checked_div(&U256::from(8u8)).unwrap();
|
|
|
|
let tv1 = self.pow(FieldElement(c2));
|
|
let tv2 = tv1 * c1;
|
|
let res = Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self));
|
|
debug_assert_eq!(res * res, *self);
|
|
CtOption::new(Self::conditional_select(&tv2, &tv1, tv1.square().ct_eq(self)), 1.into())
|
|
}
|
|
|
|
fn is_zero(&self) -> Choice {
|
|
self.0.ct_eq(&U256::ZERO)
|
|
}
|
|
fn cube(&self) -> Self {
|
|
*self * self * self
|
|
}
|
|
fn pow_vartime<S: AsRef<[u64]>>(&self, _exp: S) -> Self {
|
|
unimplemented!()
|
|
}
|
|
}
|
|
|
|
impl PrimeField for FieldElement {
|
|
type Repr = [u8; 32];
|
|
const NUM_BITS: u32 = 255;
|
|
const CAPACITY: u32 = 254;
|
|
fn from_repr(bytes: [u8; 32]) -> CtOption<Self> {
|
|
let res = Self(U256::from_le_bytes(bytes));
|
|
CtOption::new(res, res.0.add_mod(&U256::ZERO, &FIELD_MODULUS).ct_eq(&res.0))
|
|
}
|
|
fn to_repr(&self) -> [u8; 32] {
|
|
self.0.to_le_bytes()
|
|
}
|
|
|
|
const S: u32 = 2;
|
|
fn is_odd(&self) -> Choice {
|
|
(self.to_repr()[0] & 1).into()
|
|
}
|
|
fn multiplicative_generator() -> Self {
|
|
2u64.into()
|
|
}
|
|
fn root_of_unity() -> Self {
|
|
FieldElement(U256::from_be_hex(
|
|
"2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0",
|
|
))
|
|
}
|
|
}
|
|
|
|
impl PrimeFieldBits for FieldElement {
|
|
type ReprBits = [u8; 32];
|
|
|
|
fn to_le_bits(&self) -> FieldBits<Self::ReprBits> {
|
|
self.to_repr().into()
|
|
}
|
|
|
|
fn char_le_bits() -> FieldBits<Self::ReprBits> {
|
|
FIELD_MODULUS.to_le_bytes().into()
|
|
}
|
|
}
|
|
|
|
impl FieldElement {
|
|
pub fn from_square(value: [u8; 32]) -> FieldElement {
|
|
let value = U256::from_le_bytes(value);
|
|
FieldElement(value) * FieldElement(value)
|
|
}
|
|
|
|
pub fn pow(&self, other: FieldElement) -> FieldElement {
|
|
let mut res = FieldElement(U256::ONE);
|
|
let mut m = *self;
|
|
for bit in other.to_le_bits() {
|
|
res *= FieldElement::conditional_select(&FieldElement(U256::ONE), &m, choice(bit));
|
|
m *= m;
|
|
}
|
|
res
|
|
}
|
|
|
|
pub fn sqrt_ratio_i(u: FieldElement, v: FieldElement) -> (Choice, FieldElement) {
|
|
let i = SQRT_M1;
|
|
|
|
let v3 = v.square() * v;
|
|
let v7 = v3.square() * v;
|
|
let mut r = (u * v3) *
|
|
(u * v7).pow((-FieldElement::from(5u8)) * FieldElement::from(8u8).invert().unwrap());
|
|
|
|
let check = v * r.square();
|
|
let correct_sign = check.ct_eq(&u);
|
|
let flipped_sign = check.ct_eq(&(-u));
|
|
let flipped_sign_i = check.ct_eq(&((-u) * i));
|
|
|
|
r.conditional_assign(&(r * i), flipped_sign | flipped_sign_i);
|
|
|
|
let r_is_negative = r.is_odd();
|
|
r.conditional_negate(r_is_negative);
|
|
|
|
(correct_sign | flipped_sign, r)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_conditional_negate() {
|
|
let one = FieldElement::one();
|
|
let true_choice = choice(true);
|
|
let false_choice = choice(false);
|
|
|
|
let mut var = one;
|
|
|
|
var.conditional_negate(false_choice);
|
|
assert_eq!(var, FieldElement::one());
|
|
|
|
var.conditional_negate(true_choice);
|
|
assert_eq!(var, -FieldElement::one());
|
|
|
|
var.conditional_negate(false_choice);
|
|
assert_eq!(var, -FieldElement::one());
|
|
}
|
|
|
|
#[test]
|
|
fn test_edwards_d() {
|
|
let a = -FieldElement(U256::from_u32(121665));
|
|
let b = FieldElement(U256::from_u32(121666));
|
|
|
|
assert_eq!(EDWARDS_D, a * b.invert().unwrap());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_odd() {
|
|
assert_eq!(0, FieldElement::zero().is_odd().unwrap_u8());
|
|
assert_eq!(1, FieldElement::one().is_odd().unwrap_u8());
|
|
assert_eq!(0, FieldElement::one().double().is_odd().unwrap_u8());
|
|
|
|
// 0 is even, yet the modulus is odd
|
|
// -1 moves to the even value before the modulus
|
|
assert_eq!(0, (-FieldElement::one()).is_odd().unwrap_u8());
|
|
assert_eq!(1, (-FieldElement::one().double()).is_odd().unwrap_u8());
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul() {
|
|
assert_eq!(FieldElement(FIELD_MODULUS) * FieldElement::one(), FieldElement::zero());
|
|
assert_eq!(FieldElement(FIELD_MODULUS) * FieldElement::one().double(), FieldElement::zero());
|
|
assert_eq!(SQRT_M1.square(), -FieldElement::one());
|
|
}
|
|
|
|
#[test]
|
|
fn test_sqrt_ratio_i() {
|
|
let zero = FieldElement::zero();
|
|
let one = FieldElement::one();
|
|
let two = one + one;
|
|
let three = two + one;
|
|
|
|
let (choice, sqrt) = FieldElement::sqrt_ratio_i(zero, zero);
|
|
assert_eq!(sqrt, zero);
|
|
assert_eq!(sqrt.is_odd().unwrap_u8(), 0);
|
|
assert_eq!(choice.unwrap_u8(), 1);
|
|
|
|
let (choice, sqrt) = FieldElement::sqrt_ratio_i(one, zero);
|
|
assert_eq!(sqrt, zero);
|
|
assert_eq!(sqrt.is_odd().unwrap_u8(), 0);
|
|
assert_eq!(choice.unwrap_u8(), 0);
|
|
|
|
let (choice, sqrt) = FieldElement::sqrt_ratio_i(two, one);
|
|
assert_eq!(sqrt.square(), two * SQRT_M1);
|
|
assert_eq!(sqrt.is_odd().unwrap_u8(), 0);
|
|
assert_eq!(choice.unwrap_u8(), 0);
|
|
|
|
let (choice, sqrt) = FieldElement::sqrt_ratio_i(three, one);
|
|
assert_eq!(sqrt.square(), three);
|
|
assert_eq!(sqrt.is_odd().unwrap_u8(), 0);
|
|
assert_eq!(choice.unwrap_u8(), 1);
|
|
|
|
let (choice, sqrt) = FieldElement::sqrt_ratio_i(one, three);
|
|
assert_eq!(sqrt.square() * three, one);
|
|
assert_eq!(sqrt.is_odd().unwrap_u8(), 0);
|
|
assert_eq!(choice.unwrap_u8(), 1);
|
|
}
|