Files
serai/coins/monero/src/ringct/bulletproofs/core.rs
2023-12-08 04:30:22 -05:00

152 lines
4.0 KiB
Rust

use std_shims::{vec::Vec, sync::OnceLock};
use rand_core::{RngCore, CryptoRng};
use subtle::{Choice, ConditionallySelectable};
use curve25519_dalek::edwards::EdwardsPoint as DalekPoint;
use group::{ff::Field, Group};
use dalek_ff_group::{Scalar, EdwardsPoint};
use multiexp::multiexp as multiexp_const;
pub(crate) use monero_generators::Generators;
use crate::{INV_EIGHT as DALEK_INV_EIGHT, H as DALEK_H, Commitment, hash_to_scalar as dalek_hash};
pub(crate) use crate::ringct::bulletproofs::scalar_vector::*;
#[inline]
pub(crate) fn INV_EIGHT() -> Scalar {
Scalar(DALEK_INV_EIGHT())
}
#[inline]
pub(crate) fn H() -> EdwardsPoint {
EdwardsPoint(DALEK_H())
}
pub(crate) fn hash_to_scalar(data: &[u8]) -> Scalar {
Scalar(dalek_hash(data))
}
// Components common between variants
pub(crate) const MAX_M: usize = 16;
pub(crate) const LOG_N: usize = 6; // 2 << 6 == N
pub(crate) const N: usize = 64;
pub(crate) fn prove_multiexp(pairs: &[(Scalar, EdwardsPoint)]) -> EdwardsPoint {
multiexp_const(pairs) * INV_EIGHT()
}
pub(crate) fn vector_exponent(
generators: &Generators,
a: &ScalarVector,
b: &ScalarVector,
) -> EdwardsPoint {
debug_assert_eq!(a.len(), b.len());
(a * &generators.G[.. a.len()]) + (b * &generators.H[.. b.len()])
}
pub(crate) fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar {
let slice =
&[cache.to_bytes().as_ref(), mash.iter().copied().flatten().collect::<Vec<_>>().as_ref()]
.concat();
*cache = hash_to_scalar(slice);
*cache
}
pub(crate) fn MN(outputs: usize) -> (usize, usize, usize) {
let mut logM = 0;
let mut M;
while {
M = 1 << logM;
(M <= MAX_M) && (M < outputs)
} {
logM += 1;
}
(logM + LOG_N, M, M * N)
}
pub(crate) fn bit_decompose(commitments: &[Commitment]) -> (ScalarVector, ScalarVector) {
let (_, M, MN) = MN(commitments.len());
let sv = commitments.iter().map(|c| Scalar::from(c.amount)).collect::<Vec<_>>();
let mut aL = ScalarVector::new(MN);
let mut aR = ScalarVector::new(MN);
for j in 0 .. M {
for i in (0 .. N).rev() {
let bit =
if j < sv.len() { Choice::from((sv[j][i / 8] >> (i % 8)) & 1) } else { Choice::from(0) };
aL.0[(j * N) + i] = Scalar::conditional_select(&Scalar::ZERO, &Scalar::ONE, bit);
aR.0[(j * N) + i] = Scalar::conditional_select(&-Scalar::ONE, &Scalar::ZERO, bit);
}
}
(aL, aR)
}
pub(crate) fn hash_commitments<C: IntoIterator<Item = DalekPoint>>(
commitments: C,
) -> (Scalar, Vec<EdwardsPoint>) {
let V = commitments.into_iter().map(|c| EdwardsPoint(c) * INV_EIGHT()).collect::<Vec<_>>();
(hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::<Vec<_>>()), V)
}
pub(crate) fn alpha_rho<R: RngCore + CryptoRng>(
rng: &mut R,
generators: &Generators,
aL: &ScalarVector,
aR: &ScalarVector,
) -> (Scalar, EdwardsPoint) {
let ar = Scalar::random(rng);
(ar, (vector_exponent(generators, aL, aR) + (EdwardsPoint::generator() * ar)) * INV_EIGHT())
}
pub(crate) fn LR_statements(
a: &ScalarVector,
G_i: &[EdwardsPoint],
b: &ScalarVector,
H_i: &[EdwardsPoint],
cL: Scalar,
U: EdwardsPoint,
) -> Vec<(Scalar, EdwardsPoint)> {
let mut res = a
.0
.iter()
.copied()
.zip(G_i.iter().copied())
.chain(b.0.iter().copied().zip(H_i.iter().copied()))
.collect::<Vec<_>>();
res.push((cL, U));
res
}
static TWO_N_CELL: OnceLock<ScalarVector> = OnceLock::new();
pub(crate) fn TWO_N() -> &'static ScalarVector {
TWO_N_CELL.get_or_init(|| ScalarVector::powers(Scalar::from(2u8), N))
}
pub(crate) fn challenge_products(w: &[Scalar], winv: &[Scalar]) -> Vec<Scalar> {
let mut products = vec![Scalar::ZERO; 1 << w.len()];
products[0] = winv[0];
products[1] = w[0];
for j in 1 .. w.len() {
let mut slots = (1 << (j + 1)) - 1;
while slots > 0 {
products[slots] = products[slots / 2] * w[j];
products[slots - 1] = products[slots / 2] * winv[j];
slots = slots.saturating_sub(2);
}
}
// Sanity check as if the above failed to populate, it'd be critical
for w in &products {
debug_assert!(!bool::from(w.is_zero()));
}
products
}