// Required to be for this entire file, which isn't an issue, as it wouldn't bind to the static #![allow(non_upper_case_globals)] use lazy_static::lazy_static; use rand_core::{RngCore, CryptoRng}; use group::{ff::Field, Group}; use dalek_ff_group::{Scalar, EdwardsPoint}; use multiexp::multiexp; use crate::{ H as DALEK_H, Commitment, random_scalar as dalek_random, hash, hash_to_scalar as dalek_hash, ringct::{ hash_to_point::raw_hash_to_point, bulletproofs::{scalar_vector::*, Bulletproofs}, }, serialize::write_varint, }; pub(crate) const MAX_M: usize = 16; pub(crate) const MAX_N: usize = 64; const MAX_MN: usize = MAX_M * MAX_N; // Wrap random_scalar and hash_to_scalar into dalek_ff_group fn random_scalar(rng: &mut R) -> Scalar { Scalar(dalek_random(rng)) } fn hash_to_scalar(data: &[u8]) -> Scalar { let scalar = Scalar(dalek_hash(data)); // Monero will explicitly retry on these cases, as them occurring breaks the proof // This library acknowledges their practical impossibility of them occurring, and doesn't bother // to code in logic to handle it. That said, if they ever occur, something must happen in order // to not generate a proof we believe to be valid when it isn't assert!(!bool::from(scalar.is_zero()), "ZERO HASH: {:?}", data); scalar } fn generator(i: usize) -> EdwardsPoint { let mut transcript = (*H).compress().to_bytes().to_vec(); transcript.extend(b"bulletproof"); write_varint(&i.try_into().unwrap(), &mut transcript).unwrap(); EdwardsPoint(raw_hash_to_point(hash(&transcript))) } lazy_static! { static ref INV_EIGHT: Scalar = Scalar::from(8u8).invert().unwrap(); static ref H: EdwardsPoint = EdwardsPoint(*DALEK_H); pub(crate) static ref ONE_N: ScalarVector = ScalarVector(vec![Scalar::one(); MAX_N]); pub(crate) static ref TWO_N: ScalarVector = ScalarVector::powers(Scalar::from(2u8), MAX_N); pub(crate) static ref IP12: Scalar = inner_product(&ONE_N, &TWO_N); static ref H_i: Vec = (0 .. MAX_MN).map(|g| generator(g * 2)).collect(); static ref G_i: Vec = (0 .. MAX_MN).map(|g| generator((g * 2) + 1)).collect(); } pub(crate) fn vector_exponent(a: &ScalarVector, b: &ScalarVector) -> EdwardsPoint { assert_eq!(a.len(), b.len()); (a * &G_i[.. a.len()]) + (b * &H_i[.. b.len()]) } fn hash_cache(cache: &mut Scalar, mash: &[[u8; 32]]) -> Scalar { let slice = &[cache.to_bytes().as_ref(), mash.iter().cloned().flatten().collect::>().as_ref()] .concat(); *cache = hash_to_scalar(slice); *cache } pub(crate) fn prove( rng: &mut R, commitments: &[Commitment], ) -> Bulletproofs { let sv = ScalarVector(commitments.iter().cloned().map(|c| Scalar::from(c.amount)).collect()); let gamma = ScalarVector(commitments.iter().cloned().map(|c| Scalar(c.mask)).collect()); let logN = 6; let N = 1 << logN; assert_eq!(N, 64); let mut logM = 0; let mut M; while { M = 1 << logM; (M <= MAX_M) && (M < sv.len()) } { logM += 1; } let logMN = logM + logN; let MN = M * N; let mut aL = ScalarVector::new(MN); let mut aR = ScalarVector::new(MN); for j in 0 .. M { for i in (0 .. N).rev() { if (j < sv.len()) && ((sv[j][i / 8] & (1u8 << (i % 8))) != 0) { aL.0[(j * N) + i] = Scalar::one(); } else { aR.0[(j * N) + i] = -Scalar::one(); } } } // Commitments * INV_EIGHT let V = commitments.iter().map(|c| EdwardsPoint(c.calculate()) * *INV_EIGHT).collect::>(); let mut cache = hash_to_scalar(&V.iter().flat_map(|V| V.compress().to_bytes()).collect::>()); let alpha = random_scalar(&mut *rng); let A = (vector_exponent(&aL, &aR) + (EdwardsPoint::generator() * alpha)) * *INV_EIGHT; let (sL, sR) = ScalarVector((0 .. (MN * 2)).map(|_| random_scalar(&mut *rng)).collect::>()).split(); let rho = random_scalar(&mut *rng); let S = (vector_exponent(&sL, &sR) + (EdwardsPoint::generator() * rho)) * *INV_EIGHT; let y = hash_cache(&mut cache, &[A.compress().to_bytes(), S.compress().to_bytes()]); let mut cache = hash_to_scalar(&y.to_bytes()); let z = cache; let l0 = &aL - z; let l1 = sL; let mut zero_twos = Vec::with_capacity(MN); let zpow = ScalarVector::powers(z, M + 2); for j in 0 .. M { for i in 0 .. N { zero_twos.push(zpow[j + 2] * TWO_N[i]); } } let yMN = ScalarVector::powers(y, MN); let r0 = (&(aR + z) * &yMN) + ScalarVector(zero_twos); let r1 = yMN * sR; let t1 = inner_product(&l0, &r1) + inner_product(&l1, &r0); let t2 = inner_product(&l1, &r1); let tau1 = random_scalar(&mut *rng); let tau2 = random_scalar(&mut *rng); let T1 = multiexp(&[(t1, *H), (tau1, EdwardsPoint::generator())]) * *INV_EIGHT; let T2 = multiexp(&[(t2, *H), (tau2, EdwardsPoint::generator())]) * *INV_EIGHT; let x = hash_cache(&mut cache, &[z.to_bytes(), T1.compress().to_bytes(), T2.compress().to_bytes()]); let mut taux = (tau2 * (x * x)) + (tau1 * x); for i in 1 ..= sv.len() { taux += zpow[i + 1] * gamma[i - 1]; } let mu = (x * rho) + alpha; let l = &l0 + &(l1 * x); let r = &r0 + &(r1 * x); let t = inner_product(&l, &r); let x_ip = hash_cache(&mut cache, &[x.to_bytes(), taux.to_bytes(), mu.to_bytes(), t.to_bytes()]); let mut a = l; let mut b = r; let yinv = y.invert().unwrap(); let yinvpow = ScalarVector::powers(yinv, MN); let mut G_proof = G_i[.. a.len()].to_vec(); let mut H_proof = H_i[.. a.len()].to_vec(); H_proof.iter_mut().zip(yinvpow.0.iter()).for_each(|(this_H, yinvpow)| *this_H *= yinvpow); let U = *H * x_ip; let mut L = Vec::with_capacity(logMN); let mut R = Vec::with_capacity(logMN); while a.len() != 1 { let (aL, aR) = a.split(); let (bL, bR) = b.split(); let cL = inner_product(&aL, &bR); let cR = inner_product(&aR, &bL); let (G_L, G_R) = G_proof.split_at(aL.len()); let (H_L, H_R) = H_proof.split_at(aL.len()); let mut L_i_s = aL .0 .iter() .cloned() .zip(G_R.iter().cloned()) .chain(bR.0.iter().cloned().zip(H_L.iter().cloned())) .collect::>(); L_i_s.push((cL, U)); let L_i = multiexp(&L_i_s) * *INV_EIGHT; let mut R_i_s = aR .0 .iter() .cloned() .zip(G_L.iter().cloned()) .chain(bL.0.iter().cloned().zip(H_R.iter().cloned())) .collect::>(); R_i_s.push((cR, U)); let R_i = multiexp(&R_i_s) * *INV_EIGHT; L.push(L_i); R.push(R_i); let w = hash_cache(&mut cache, &[L_i.compress().to_bytes(), R_i.compress().to_bytes()]); let winv = w.invert().unwrap(); a = (aL * w) + (aR * winv); b = (bL * winv) + (bR * w); if a.len() != 1 { G_proof = hadamard_fold(G_L, G_R, winv, w); H_proof = hadamard_fold(H_L, H_R, w, winv); } } Bulletproofs { A: *A, S: *S, T1: *T1, T2: *T2, taux: *taux, mu: *mu, L: L.drain(..).map(|L| *L).collect(), R: R.drain(..).map(|R| *R).collect(), a: *a[0], b: *b[0], t: *t, } }