use core::convert::TryInto; use thiserror::Error; use rand_core::{RngCore, CryptoRng}; use blake2::{digest::Update, Digest, Blake2b512}; use curve25519_dalek::{ constants::ED25519_BASEPOINT_TABLE as DTable, scalar::Scalar as DScalar, edwards::EdwardsPoint as DPoint }; use ff::{Field, PrimeField}; use group::Group; use transcript::{Transcript as TranscriptTrait, DigestTranscript}; use frost::{CurveError, Curve}; use dalek_ff_group as dfg; use crate::random_scalar; pub type Transcript = DigestTranscript::; #[derive(Clone, Error, Debug)] pub enum MultisigError { #[error("internal error ({0})")] InternalError(String), #[error("invalid discrete log equality proof")] InvalidDLEqProof(u16), #[error("invalid key image {0}")] InvalidKeyImage(u16) } #[derive(Clone, Copy, PartialEq, Eq, Debug)] pub struct Ed25519; impl Curve for Ed25519 { type F = dfg::Scalar; type G = dfg::EdwardsPoint; type T = &'static dfg::EdwardsBasepointTable; fn id_len() -> u8 { u8::try_from(Self::id().len()).unwrap() } fn id() -> &'static [u8] { b"Ed25519" } fn generator() -> Self::G { Self::G::generator() } fn generator_table() -> Self::T { &dfg::ED25519_BASEPOINT_TABLE } fn little_endian() -> bool { true } fn random_nonce(_secret: Self::F, rng: &mut R) -> Self::F { dfg::Scalar::random(rng) } // This will already be a keccak256 hash in the case of CLSAG signing, making it fine to simply // return as-is, yet this ensures it's fixed size (a security requirement) and unique regardless // of how it's called/what it's called with fn hash_msg(msg: &[u8]) -> Vec { Blake2b512::digest(msg).to_vec() } fn hash_binding_factor(binding: &[u8]) -> Self::F { Self::hash_to_F(b"rho", binding) } fn hash_to_F(dst: &[u8], msg: &[u8]) -> Self::F { dfg::Scalar::from_hash(Blake2b512::new().chain(dst).chain(msg)) } fn F_len() -> usize { 32 } fn G_len() -> usize { 32 } fn F_from_slice(slice: &[u8]) -> Result { let scalar = Self::F::from_repr( slice.try_into().map_err(|_| CurveError::InvalidLength(32, slice.len()))? ); if scalar.is_some().unwrap_u8() == 0 { Err(CurveError::InvalidScalar)?; } Ok(scalar.unwrap()) } fn G_from_slice(slice: &[u8]) -> Result { let bytes = slice.try_into().map_err(|_| CurveError::InvalidLength(32, slice.len()))?; let point = dfg::CompressedEdwardsY::new(bytes).decompress(); if let Some(point) = point { // Ban torsioned points if !point.is_torsion_free() { Err(CurveError::InvalidPoint)?; } // Ban points which weren't canonically encoded if point.compress().to_bytes() != bytes { Err(CurveError::InvalidPoint)?; } Ok(point) } else { Err(CurveError::InvalidPoint) } } fn F_to_bytes(f: &Self::F) -> Vec { f.to_repr().to_vec() } fn G_to_bytes(g: &Self::G) -> Vec { g.compress().to_bytes().to_vec() } } // Used to prove legitimacy of key images and nonces which both involve other basepoints #[derive(Clone)] pub struct DLEqProof { s: DScalar, c: DScalar } #[allow(non_snake_case)] impl DLEqProof { fn challenge(H: &DPoint, xG: &DPoint, xH: &DPoint, rG: &DPoint, rH: &DPoint) -> DScalar { // Doesn't take in a larger transcript object due to the usage of this // Every prover would immediately write their own DLEq proof, when they can only do so in // the proper order if they want to reach consensus // It'd be a poor API to have CLSAG define a new transcript solely to pass here, just to try to // merge later in some form, when it should instead just merge xH (as it does) let mut transcript = Transcript::new(b"DLEq Proof"); // Bit redundant, keeps things consistent transcript.domain_separate(b"DLEq"); // Doesn't include G which is constant, does include H which isn't, even though H manipulation // shouldn't be possible in practice as it's independently calculated as a product of known data transcript.append_message(b"H", &H.compress().to_bytes()); transcript.append_message(b"xG", &xG.compress().to_bytes()); transcript.append_message(b"xH", &xH.compress().to_bytes()); transcript.append_message(b"rG", &rG.compress().to_bytes()); transcript.append_message(b"rH", &rH.compress().to_bytes()); DScalar::from_bytes_mod_order_wide( &transcript.challenge(b"challenge").try_into().expect("Blake2b512 output wasn't 64 bytes") ) } pub fn prove( rng: &mut R, H: &DPoint, secret: &DScalar ) -> DLEqProof { let r = random_scalar(rng); let rG = &DTable * &r; let rH = r * H; // We can frequently (always?) save a scalar mul if we accept xH as an arg, yet it opens room // for incorrect data to be passed, and therefore faults, making it not worth having // We could also return xH but... it's really micro-optimizing let c = DLEqProof::challenge(H, &(secret * &DTable), &(secret * H), &rG, &rH); let s = r + (c * secret); DLEqProof { s, c } } pub fn verify( &self, H: &DPoint, l: u16, xG: &DPoint, xH: &DPoint ) -> Result<(), MultisigError> { let s = self.s; let c = self.c; let rG = (&s * &DTable) - (c * xG); let rH = (s * H) - (c * xH); if c != DLEqProof::challenge(H, &xG, &xH, &rG, &rH) { Err(MultisigError::InvalidDLEqProof(l))?; } Ok(()) } pub fn serialize( &self ) -> Vec { let mut res = Vec::with_capacity(64); res.extend(self.s.to_bytes()); res.extend(self.c.to_bytes()); res } pub fn deserialize( serialized: &[u8] ) -> Option { if serialized.len() != 64 { return None; } DScalar::from_canonical_bytes(serialized[0 .. 32].try_into().unwrap()).and_then( |s| DScalar::from_canonical_bytes(serialized[32 .. 64].try_into().unwrap()).and_then( |c| Some(DLEqProof { s, c }) ) ) } } #[allow(non_snake_case)] pub fn read_dleq( serialized: &[u8], start: usize, H: &DPoint, l: u16, xG: &DPoint ) -> Result { // Not using G_from_slice here would enable non-canonical points and break blame let other = ::G_from_slice( &serialized[(start + 0) .. (start + 32)] ).map_err(|_| MultisigError::InvalidDLEqProof(l))?; DLEqProof::deserialize(&serialized[(start + 32) .. (start + 96)]) .ok_or(MultisigError::InvalidDLEqProof(l))? .verify(H, l, xG, &other).map_err(|_| MultisigError::InvalidDLEqProof(l))?; Ok(other) }