#![allow(dead_code)] #![allow(unused_variables)] #![allow(unreachable_code)] #![allow(clippy::diverging_sub_expression)] use std::{ sync::Arc, time::Duration, collections::{VecDeque, HashMap}, }; use zeroize::Zeroizing; use ciphersuite::{group::ff::Field, Ciphersuite, Ristretto}; use serai_db::{Db, MemDb}; use serai_client::Serai; use tokio::{sync::RwLock, time::sleep}; use ::tributary::Tributary; mod tributary; use crate::tributary::{TributarySpec, Transaction}; mod db; use db::MainDb; mod p2p; pub use p2p::*; pub mod processor; use processor::Processor; mod substrate; #[cfg(test)] pub mod tests; // This is a static to satisfy lifetime expectations lazy_static::lazy_static! { static ref NEW_TRIBUTARIES: Arc>> = Arc::new( RwLock::new(VecDeque::new()) ); } async fn run( raw_db: D, key: Zeroizing<::F>, p2p: P, mut processor: Pro, serai: Serai, ) { let add_new_tributary = |db, spec: TributarySpec| async { // Save it to the database MainDb(db).add_active_tributary(&spec); // Add it to the queue // If we reboot before this is read from the queue, the fact it was saved to the database // means it'll be handled on reboot NEW_TRIBUTARIES.write().await.push_back(spec); }; // Handle new Substrate blocks { let mut substrate_db = substrate::SubstrateDb::new(raw_db.clone()); let mut last_substrate_block = substrate_db.last_block(); let key = key.clone(); let mut processor = processor.clone(); tokio::spawn(async move { loop { match substrate::handle_new_blocks( &mut substrate_db, &key, add_new_tributary, &mut processor, &serai, &mut last_substrate_block, ) .await { Ok(()) => sleep(Duration::from_secs(3)).await, Err(e) => { log::error!("couldn't communicate with serai node: {e}"); sleep(Duration::from_secs(5)).await; } } } }); } // Handle the Tributaries { struct ActiveTributary { spec: TributarySpec, tributary: Tributary, } let tributaries = Arc::new(RwLock::new(HashMap::<[u8; 32], ActiveTributary>::new())); async fn add_tributary( db: D, key: Zeroizing<::F>, p2p: P, tributaries: &mut HashMap<[u8; 32], ActiveTributary>, spec: TributarySpec, ) { let tributary = Tributary::<_, Transaction, _>::new( // TODO: Use a db on a distinct volume db, spec.genesis(), spec.start_time(), key, spec.validators(), p2p, ) .await .unwrap(); tributaries.insert(tributary.genesis(), ActiveTributary { spec, tributary }); } // Reload active tributaries from the database // TODO: Can MainDb take a borrow? for spec in MainDb(raw_db.clone()).active_tributaries().1 { add_tributary( raw_db.clone(), key.clone(), p2p.clone(), &mut *tributaries.write().await, spec, ) .await; } // Handle new Tributary blocks let mut tributary_db = tributary::TributaryDb::new(raw_db.clone()); { let tributaries = tributaries.clone(); let p2p = p2p.clone(); tokio::spawn(async move { loop { // The following handle_new_blocks function may take an arbitrary amount of time // If registering a new tributary waited for a lock on the tributaries table, the // substrate scanner may wait on a lock for an arbitrary amount of time // By instead using the distinct NEW_TRIBUTARIES, there should be minimal // competition/blocking { let mut new_tributaries = NEW_TRIBUTARIES.write().await; while let Some(spec) = new_tributaries.pop_front() { add_tributary( raw_db.clone(), key.clone(), p2p.clone(), // This is a short-lived write acquisition, which is why it should be fine &mut *tributaries.write().await, spec, ) .await; } } // Unknown-length read acquisition. This would risk screwing over the P2P process EXCEPT // they both use read locks. Accordingly, they can co-exist for ActiveTributary { spec, tributary } in tributaries.read().await.values() { tributary::scanner::handle_new_blocks::<_, _, P>( &mut tributary_db, &key, &mut processor, spec, tributary, ) .await; } sleep(Duration::from_secs(3)).await; } }); } // Handle P2P messages { tokio::spawn(async move { loop { let msg = p2p.receive().await; match msg.kind { P2pMessageKind::Tributary(genesis) => { let tributaries_read = tributaries.read().await; let Some(tributary) = tributaries_read.get(&genesis) else { log::debug!("received p2p message for unknown network"); continue; }; if tributary.tributary.handle_message(&msg.msg).await { P2p::broadcast(&p2p, msg.kind, msg.msg).await; } } } } }); } } loop { // Handle all messages from processors todo!() } } #[tokio::main] async fn main() { let db = MemDb::new(); // TODO let key = Zeroizing::new(::F::ZERO); // TODO let p2p = LocalP2p::new(1).swap_remove(0); // TODO let processor = processor::MemProcessor::new(); // TODO let serai = || async { loop { let Ok(serai) = Serai::new("ws://127.0.0.1:9944").await else { log::error!("couldn't connect to the Serai node"); sleep(Duration::from_secs(5)).await; continue }; return serai; } }; run(db, key, p2p, processor, serai().await).await }