use std::{sync::OnceLock, time::Duration, io, collections::HashMap};
use async_trait::async_trait;
use scale::{Encode, Decode};
use transcript::{Transcript, RecommendedTranscript};
use ciphersuite::group::ff::PrimeField;
use k256::{ProjectivePoint, Scalar};
use frost::{
curve::{Curve, Secp256k1},
ThresholdKeys,
};
use tokio::time::sleep;
use bitcoin_serai::{
bitcoin::{
hashes::Hash as HashTrait,
key::{Parity, XOnlyPublicKey},
consensus::{Encodable, Decodable},
script::Instruction,
address::{NetworkChecked, Address as BAddress},
Transaction, Block, Network as BNetwork,
},
wallet::{
tweak_keys, address_payload, ReceivedOutput, Scanner, TransactionError,
SignableTransaction as BSignableTransaction, TransactionMachine,
},
rpc::{RpcError, Rpc},
};
#[cfg(test)]
use bitcoin_serai::bitcoin::{
secp256k1::{SECP256K1, SecretKey, Message},
PrivateKey, PublicKey,
sighash::{EcdsaSighashType, SighashCache},
script::{PushBytesBuf, Builder},
absolute::LockTime,
Amount as BAmount, Sequence, Script, Witness, OutPoint, TxOut, TxIn,
transaction::Version,
};
use serai_client::{
primitives::{MAX_DATA_LEN, Coin, NetworkId, Amount, Balance},
networks::bitcoin::Address,
};
use crate::{
networks::{
NetworkError, Block as BlockTrait, OutputType, Output as OutputTrait,
Transaction as TransactionTrait, SignableTransaction as SignableTransactionTrait,
Eventuality as EventualityTrait, EventualitiesTracker, Network,
},
Payment,
};
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct OutputId(pub [u8; 36]);
impl Default for OutputId {
fn default() -> Self {
Self([0; 36])
}
}
impl AsRef<[u8]> for OutputId {
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl AsMut<[u8]> for OutputId {
fn as_mut(&mut self) -> &mut [u8] {
self.0.as_mut()
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Output {
kind: OutputType,
presumed_origin: Option
,
output: ReceivedOutput,
data: Vec,
}
impl OutputTrait for Output {
type Id = OutputId;
fn kind(&self) -> OutputType {
self.kind
}
fn id(&self) -> Self::Id {
let mut res = OutputId::default();
self.output.outpoint().consensus_encode(&mut res.as_mut()).unwrap();
debug_assert_eq!(
{
let mut outpoint = vec![];
self.output.outpoint().consensus_encode(&mut outpoint).unwrap();
outpoint
},
res.as_ref().to_vec()
);
res
}
fn tx_id(&self) -> [u8; 32] {
let mut hash = *self.output.outpoint().txid.as_raw_hash().as_byte_array();
hash.reverse();
hash
}
fn key(&self) -> ProjectivePoint {
let script = &self.output.output().script_pubkey;
assert!(script.is_p2tr());
let Instruction::PushBytes(key) = script.instructions_minimal().last().unwrap().unwrap() else {
panic!("last item in v1 Taproot script wasn't bytes")
};
let key = XOnlyPublicKey::from_slice(key.as_ref())
.expect("last item in v1 Taproot script wasn't x-only public key");
Secp256k1::read_G(&mut key.public_key(Parity::Even).serialize().as_slice()).unwrap() -
(ProjectivePoint::GENERATOR * self.output.offset())
}
fn presumed_origin(&self) -> Option {
self.presumed_origin.clone()
}
fn balance(&self) -> Balance {
Balance { coin: Coin::Bitcoin, amount: Amount(self.output.value()) }
}
fn data(&self) -> &[u8] {
&self.data
}
fn write(&self, writer: &mut W) -> io::Result<()> {
self.kind.write(writer)?;
let presumed_origin: Option> =
self.presumed_origin.clone().map(|presumed_origin| presumed_origin.try_into().unwrap());
writer.write_all(&presumed_origin.encode())?;
self.output.write(writer)?;
writer.write_all(&u16::try_from(self.data.len()).unwrap().to_le_bytes())?;
writer.write_all(&self.data)
}
fn read(mut reader: &mut R) -> io::Result {
Ok(Output {
kind: OutputType::read(reader)?,
presumed_origin: {
let mut io_reader = scale::IoReader(reader);
let res = Option::>::decode(&mut io_reader)
.unwrap()
.map(|address| Address::try_from(address).unwrap());
reader = io_reader.0;
res
},
output: ReceivedOutput::read(reader)?,
data: {
let mut data_len = [0; 2];
reader.read_exact(&mut data_len)?;
let mut data = vec![0; usize::from(u16::from_le_bytes(data_len))];
reader.read_exact(&mut data)?;
data
},
})
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Fee(u64);
#[async_trait]
impl TransactionTrait for Transaction {
type Id = [u8; 32];
fn id(&self) -> Self::Id {
let mut hash = *self.txid().as_raw_hash().as_byte_array();
hash.reverse();
hash
}
fn serialize(&self) -> Vec {
let mut buf = vec![];
self.consensus_encode(&mut buf).unwrap();
buf
}
fn read(reader: &mut R) -> io::Result {
Transaction::consensus_decode(reader).map_err(|e| io::Error::other(format!("{e}")))
}
#[cfg(test)]
async fn fee(&self, network: &Bitcoin) -> u64 {
let mut value = 0;
for input in &self.input {
let output = input.previous_output;
let mut hash = *output.txid.as_raw_hash().as_byte_array();
hash.reverse();
value += network.rpc.get_transaction(&hash).await.unwrap().output
[usize::try_from(output.vout).unwrap()]
.value
.to_sat();
}
for output in &self.output {
value -= output.value.to_sat();
}
value
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Eventuality([u8; 32]);
impl EventualityTrait for Eventuality {
fn lookup(&self) -> Vec {
self.0.to_vec()
}
fn read(reader: &mut R) -> io::Result {
let mut id = [0; 32];
reader
.read_exact(&mut id)
.map_err(|_| io::Error::other("couldn't decode ID in eventuality"))?;
Ok(Eventuality(id))
}
fn serialize(&self) -> Vec {
self.0.to_vec()
}
}
#[derive(Clone, Debug)]
pub struct SignableTransaction {
transcript: RecommendedTranscript,
actual: BSignableTransaction,
}
impl PartialEq for SignableTransaction {
fn eq(&self, other: &SignableTransaction) -> bool {
self.actual == other.actual
}
}
impl Eq for SignableTransaction {}
impl SignableTransactionTrait for SignableTransaction {
fn fee(&self) -> u64 {
self.actual.fee()
}
}
#[async_trait]
impl BlockTrait for Block {
type Id = [u8; 32];
fn id(&self) -> Self::Id {
let mut hash = *self.block_hash().as_raw_hash().as_byte_array();
hash.reverse();
hash
}
fn parent(&self) -> Self::Id {
let mut hash = *self.header.prev_blockhash.as_raw_hash().as_byte_array();
hash.reverse();
hash
}
async fn time(&self, rpc: &Bitcoin) -> u64 {
// Use the network median time defined in BIP-0113 since the in-block time isn't guaranteed to
// be monotonic
let mut timestamps = vec![u64::from(self.header.time)];
let mut parent = self.parent();
// BIP-0113 uses a median of the prior 11 blocks
while timestamps.len() < 11 {
let mut parent_block;
while {
parent_block = rpc.rpc.get_block(&parent).await;
parent_block.is_err()
} {
log::error!("couldn't get parent block when trying to get block time: {parent_block:?}");
sleep(Duration::from_secs(5)).await;
}
let parent_block = parent_block.unwrap();
timestamps.push(u64::from(parent_block.header.time));
parent = parent_block.parent();
if parent == [0; 32] {
break;
}
}
timestamps.sort();
timestamps[timestamps.len() / 2]
}
}
const KEY_DST: &[u8] = b"Serai Bitcoin Output Offset";
static BRANCH_OFFSET: OnceLock = OnceLock::new();
static CHANGE_OFFSET: OnceLock = OnceLock::new();
static FORWARD_OFFSET: OnceLock = OnceLock::new();
// Always construct the full scanner in order to ensure there's no collisions
fn scanner(
key: ProjectivePoint,
) -> (Scanner, HashMap, HashMap, OutputType>) {
let mut scanner = Scanner::new(key).unwrap();
let mut offsets = HashMap::from([(OutputType::External, Scalar::ZERO)]);
let zero = Scalar::ZERO.to_repr();
let zero_ref: &[u8] = zero.as_ref();
let mut kinds = HashMap::from([(zero_ref.to_vec(), OutputType::External)]);
let mut register = |kind, offset| {
let offset = scanner.register_offset(offset).expect("offset collision");
offsets.insert(kind, offset);
let offset = offset.to_repr();
let offset_ref: &[u8] = offset.as_ref();
kinds.insert(offset_ref.to_vec(), kind);
};
register(
OutputType::Branch,
*BRANCH_OFFSET.get_or_init(|| Secp256k1::hash_to_F(KEY_DST, b"branch")),
);
register(
OutputType::Change,
*CHANGE_OFFSET.get_or_init(|| Secp256k1::hash_to_F(KEY_DST, b"change")),
);
register(
OutputType::Forwarded,
*FORWARD_OFFSET.get_or_init(|| Secp256k1::hash_to_F(KEY_DST, b"forward")),
);
(scanner, offsets, kinds)
}
#[derive(Clone, Debug)]
pub struct Bitcoin {
pub(crate) rpc: Rpc,
}
// Shim required for testing/debugging purposes due to generic arguments also necessitating trait
// bounds
impl PartialEq for Bitcoin {
fn eq(&self, _: &Self) -> bool {
true
}
}
impl Eq for Bitcoin {}
impl Bitcoin {
pub async fn new(url: String) -> Bitcoin {
let mut res = Rpc::new(url.clone()).await;
while let Err(e) = res {
log::error!("couldn't connect to Bitcoin node: {e:?}");
sleep(Duration::from_secs(5)).await;
res = Rpc::new(url.clone()).await;
}
Bitcoin { rpc: res.unwrap() }
}
#[cfg(test)]
pub async fn fresh_chain(&self) {
if self.rpc.get_latest_block_number().await.unwrap() > 0 {
self
.rpc
.rpc_call(
"invalidateblock",
serde_json::json!([hex::encode(self.rpc.get_block_hash(1).await.unwrap())]),
)
.await
.unwrap()
}
}
// This function panics on a node which doesn't follow the Bitcoin protocol, which is deemed fine
async fn median_fee(&self, block: &Block) -> Result {
let mut fees = vec![];
if block.txdata.len() > 1 {
for tx in &block.txdata[1 ..] {
let mut in_value = 0;
for input in &tx.input {
let mut input_tx = input.previous_output.txid.to_raw_hash().to_byte_array();
input_tx.reverse();
in_value += self.get_transaction(&input_tx).await?.output
[usize::try_from(input.previous_output.vout).unwrap()]
.value
.to_sat();
}
let out = tx.output.iter().map(|output| output.value.to_sat()).sum::();
fees.push((in_value - out) / tx.weight().to_wu());
}
}
fees.sort();
let fee = fees.get(fees.len() / 2).copied().unwrap_or(0);
// The DUST constant documentation notes a relay rule practically enforcing a
// 1000 sat/kilo-vbyte minimum fee.
//
// 1000 sat/kilo-vbyte is 1000 sat/4-kilo-weight (250 sat/kilo-weight).
// Since bitcoin-serai takes fee per weight, we'd need to pass 0.25 to achieve this fee rate.
// Accordingly, setting 1 is 4x the current relay rule minimum (and should be more than safe).
// TODO: Rewrite to fee_per_vbyte, not fee_per_weight?
Ok(Fee(fee.max(1)))
}
async fn make_signable_transaction(
&self,
block_number: usize,
inputs: &[Output],
payments: &[Payment],
change: &Option,
calculating_fee: bool,
) -> Result