#![cfg_attr(docsrs, feature(doc_cfg))] #![doc = include_str!("../README.md")] #![cfg_attr(not(feature = "std"), no_std)] use core::ops::Deref; #[allow(unused_imports)] use std_shims::prelude::*; use std_shims::{ vec::Vec, io::{self, Read, Write}, collections::{HashSet, HashMap}, }; use rand_core::{RngCore, CryptoRng}; use zeroize::{Zeroize, Zeroizing}; use blake2::{Digest, Blake2s256}; use ciphersuite::{ group::{ ff::{Field, PrimeField}, Group, GroupEncoding, }, WrappedGroup, GroupIo, }; use multiexp::multiexp_vartime; use generalized_bulletproofs::arithmetic_circuit_proof::*; use ec_divisors::DivisorCurve; pub use dkg::*; mod utils; pub(crate) use utils::*; mod curves; pub use curves::*; mod proof; use proof::*; #[cfg(test)] mod tests; /// Participation in the DKG. /// /// `Participation` is meant to be broadcast to all other participants over an authenticated, /// reliable broadcast channel. #[derive(Clone, PartialEq, Eq, Debug)] pub struct Participation { proof: Vec, encrypted_secret_shares: HashMap::F>, } impl Participation { pub fn read(reader: &mut R, n: u16) -> io::Result { // Ban <32-bit platforms, allowing us to assume `u32` -> `usize` works const _NO_16_BIT_PLATFORMS: [(); (usize::BITS - u32::BITS) as usize] = [(); _]; // TODO: Replace `len` with some calculation deterministic to the params let mut len = [0; 4]; reader.read_exact(&mut len)?; let len = usize::try_from(u32::from_le_bytes(len)).expect("<32-bit platform?"); /* Don't allocate a buffer for the claimed length. We read chunks of a fixed-length until we reach the claimed length, preventing an adversary from forcing us to allocate GB unless the proof is actually GB long. */ const CHUNK_SIZE: usize = 1024; let mut proof = Vec::with_capacity(len.min(CHUNK_SIZE)); while proof.len() < len { let next_chunk = (len - proof.len()).min(CHUNK_SIZE); let old_proof_len = proof.len(); proof.resize(old_proof_len + next_chunk, 0); reader.read_exact(&mut proof[old_proof_len ..])?; } let mut encrypted_secret_shares = HashMap::with_capacity(usize::from(n)); for i in Participant::iter().take(usize::from(n)) { encrypted_secret_shares.insert(i, ::read_F(reader)?); } Ok(Self { proof, encrypted_secret_shares }) } pub fn write(&self, writer: &mut W) -> io::Result<()> { writer.write_all(&u32::try_from(self.proof.len()).unwrap().to_le_bytes())?; writer.write_all(&self.proof)?; for i in Participant::iter().take(self.encrypted_secret_shares.len()) { writer.write_all(self.encrypted_secret_shares[&i].to_repr().as_ref())?; } Ok(()) } } /// Errors from the eVRF DKG. #[derive(Clone, PartialEq, Eq, Debug, thiserror::Error)] pub enum Error { /// Too many participants were provided. #[error("{provided} participants provided, exceeding the limit of u16::MAX")] TooManyParticipants { /// The amount of provided participants. provided: usize, }, /// The threshold exceeded the amount of participants. #[error("invalid threshold (max {n}, got {t})")] InvalidThreshold { /// The specified threshold. t: u16, /// The specified total amount of participants. n: u16, }, /// A participant's public key was the identity point. #[error("a public key was the identity point")] PublicKeyWasIdentity, /// Participating in a DKG we aren't present in. #[error("participating in a DKG we aren't a participant in")] NotAParticipant, /// A participant which doesn't exist provided a participation. #[error("a participant with an unrecognized ID participated")] NonExistentParticipant, /// Insufficient amount of generators for this DKG. #[error("the passed in generators ({provided}) weren't enough for this DKG (needed {required})")] NotEnoughGenerators { /// The amount of generators provided. provided: usize, /// The amount of generators required. required: usize, }, } /// The result of calling `Dkg::verify`. pub enum VerifyResult { /// The DKG participations were valid. Valid(Dkg), /// The DKG participants were invalid, identifying the faulty participants. Invalid(Vec), /// Not enough participations were provided, yet no provided participations were faulty. NotEnoughParticipants, } /// Struct representing a DKG. #[derive(Debug)] pub struct Dkg { t: u16, n: u16, evrf_public_keys: Vec<::G>, verification_shares: HashMap::G>, #[allow(clippy::type_complexity)] encrypted_secret_shares: HashMap< Participant, HashMap< Participant, ([::G; 2], ::F), >, >, } impl Dkg { // Form the initial transcript for the proofs. fn initial_transcript( invocation: [u8; 32], evrf_public_keys: &[::G], t: u16, ) -> [u8; 32] { let mut transcript = Blake2s256::new(); transcript.update(invocation); for key in evrf_public_keys { transcript.update(key.to_bytes().as_ref()); } transcript.update(t.to_le_bytes()); transcript.finalize().into() } /// Participate in performing the DKG for the specified parameters. /// /// The context MUST be unique across invocations. Reuse of context will lead to sharing /// prior-shared secrets. pub fn participate( rng: &mut (impl RngCore + CryptoRng), generators: &Generators, context: [u8; 32], t: u16, evrf_public_keys: &[::G], evrf_private_key: &Zeroizing<::F>, ) -> Result, Error> { let Ok(n) = u16::try_from(evrf_public_keys.len()) else { Err(Error::TooManyParticipants { provided: evrf_public_keys.len() })? }; if (t == 0) || (t > n) { Err(Error::InvalidThreshold { t, n })?; } if evrf_public_keys.iter().any(|key| bool::from(key.is_identity())) { Err(Error::PublicKeyWasIdentity)?; }; // This also ensures the private key is not 0, due to the prior check the identity point wasn't // present let evrf_public_key = ::generator() * evrf_private_key.deref(); if !evrf_public_keys.contains(&evrf_public_key) { Err(Error::NotAParticipant)?; }; let transcript = Self::initial_transcript(context, evrf_public_keys, t); // Bind to the participant let mut per_proof_transcript = Blake2s256::new(); per_proof_transcript.update(transcript); per_proof_transcript.update(evrf_public_key.to_bytes()); let ProveResult { coefficients, encryption_keys, proof } = match Proof::::prove( rng, &generators.0, per_proof_transcript.finalize().into(), usize::from(t), evrf_public_keys, evrf_private_key, ) { Ok(res) => res, Err(AcProveError::IncorrectAmountOfGenerators) => Err(Error::NotEnoughGenerators { provided: generators.0.g_bold_slice().len(), required: Proof::::generators_to_use(usize::from(t), evrf_public_keys.len()), })?, Err(AcProveError::InconsistentWitness) => panic!("failed to prove for the eVRF proof"), }; let mut encrypted_secret_shares = HashMap::with_capacity(usize::from(n)); for (l, encryption_key) in Participant::iter().take(usize::from(n)).zip(encryption_keys) { let share = polynomial::<::F>(&coefficients, l); encrypted_secret_shares.insert(l, *share + *encryption_key); } Ok(Participation { proof, encrypted_secret_shares }) } } /// Batch-verifiable statements to verify encrypted secret shares. #[allow(clippy::type_complexity)] fn verifiable_encryption_statements( rng: &mut (impl RngCore + CryptoRng), coefficients: &[::G], encryption_key_commitments: &[::G], encrypted_secret_shares: &HashMap::F>, ) -> ( ::F, Vec<(::F, ::G)>, ) { let mut g_scalar = ::F::ZERO; let mut pairs = Vec::with_capacity(coefficients.len() + encryption_key_commitments.len()); // Push on the commitments to the polynomial being secret-shared for coefficient in coefficients { // This uses `0` as we'll add to it later, given its fixed position pairs.push((::F::ZERO, *coefficient)); } for (i, encrypted_secret_share) in encrypted_secret_shares { let encryption_key_commitment = encryption_key_commitments[usize::from(u16::from(*i)) - 1]; let weight = ::F::random(&mut *rng); /* The encrypted secret share scaling `G`, minus the encryption key commitment, minus the ommitment to the secret share, should equal the identity point. We actually subtract the encrypted share to optimize the amount of negations we perform. */ g_scalar -= weight * encrypted_secret_share; pairs.push((weight, encryption_key_commitment)); // Calculate the commitment to the secret share via the commitments to the polynomial { let i = ::F::from(u64::from(u16::from(*i))); (0 .. coefficients.len()).fold(weight, |exp, j| { pairs[j].0 += exp; exp * i }); } } (g_scalar, pairs) } impl Dkg { /// Check if a batch of `Participation`s are valid. /// /// If any `Participation` is invalid, the list of all invalid participants will be returned. /// If all `Participation`s are valid and there's at least `t`, an instance of this struct /// (usable to obtain a threshold share of generated key) is returned. If all are valid and /// there's not at least `t`, `VerifyResult::NotEnoughParticipants` is returned. /// /// This DKG is unbiased if all `n` people participate. This DKG is biased if only a threshold /// participate. pub fn verify( rng: &mut (impl RngCore + CryptoRng), generators: &Generators, context: [u8; 32], t: u16, evrf_public_keys: &[::G], participations: &HashMap>, ) -> Result, Error> { let Ok(n) = u16::try_from(evrf_public_keys.len()) else { Err(Error::TooManyParticipants { provided: evrf_public_keys.len() })? }; if (t == 0) || (t > n) { Err(Error::InvalidThreshold { t, n })?; } if evrf_public_keys.iter().any(|key| bool::from(key.is_identity())) { Err(Error::PublicKeyWasIdentity)?; }; for i in participations.keys() { if u16::from(*i) > n { Err(Error::NonExistentParticipant)?; } } let mut valid = HashMap::with_capacity(participations.len()); let mut faulty = HashSet::new(); let transcript = Self::initial_transcript(context, evrf_public_keys, t); let mut evrf_verifier = generalized_bulletproofs::Generators::batch_verifier(); for (i, participation) in participations { let evrf_public_key = evrf_public_keys[usize::from(u16::from(*i)) - 1]; let mut per_proof_transcript = Blake2s256::new(); per_proof_transcript.update(transcript); per_proof_transcript.update(evrf_public_key.to_bytes()); // Clone the verifier so if this proof is faulty, it doesn't corrupt the verifier let mut verifier_clone = evrf_verifier.clone(); let Ok(data) = Proof::::verify( rng, &generators.0, &mut verifier_clone, per_proof_transcript.finalize().into(), usize::from(t), evrf_public_keys, evrf_public_key, &participation.proof, ) else { faulty.insert(*i); continue; }; evrf_verifier = verifier_clone; valid.insert(*i, (participation.encrypted_secret_shares.clone(), data)); } debug_assert_eq!(valid.len() + faulty.len(), participations.len()); // Perform the batch verification of the eVRFs if !generators.0.verify(evrf_verifier) { // If the batch failed, verify them each individually for (i, participation) in participations { if faulty.contains(i) { continue; } let mut evrf_verifier = generalized_bulletproofs::Generators::batch_verifier(); Proof::::verify( rng, &generators.0, &mut evrf_verifier, context, usize::from(t), evrf_public_keys, evrf_public_keys[usize::from(u16::from(*i)) - 1], &participation.proof, ) .expect("evrf failed basic checks yet prover wasn't prior marked faulty"); if !generators.0.verify(evrf_verifier) { valid.remove(i); faulty.insert(*i); } } } debug_assert_eq!(valid.len() + faulty.len(), participations.len()); // Perform the batch verification of the shares let mut sum_encrypted_secret_shares = HashMap::with_capacity(usize::from(n)); let mut sum_masks = HashMap::with_capacity(usize::from(n)); let mut all_encrypted_secret_shares = HashMap::with_capacity(usize::from(t)); { let mut share_verification_statements_actual = HashMap::with_capacity(valid.len()); if !{ let mut g_scalar = ::F::ZERO; let mut pairs = Vec::with_capacity(valid.len() * (usize::from(t) + evrf_public_keys.len())); for (i, (encrypted_secret_shares, data)) in &valid { let (this_g_scalar, mut these_pairs) = verifiable_encryption_statements::( &mut *rng, &data.coefficients, &data.encryption_key_commitments, encrypted_secret_shares, ); // Queue this into our batch g_scalar += this_g_scalar; pairs.extend(&these_pairs); // Also push this g_scalar onto these_pairs so these_pairs can be verified individually // upon error these_pairs.push((this_g_scalar, generators.0.g())); share_verification_statements_actual.insert(*i, these_pairs); // Also format this data as we'd need it upon success let mut formatted_encrypted_secret_shares = HashMap::with_capacity(usize::from(n)); for (j, enc_share) in encrypted_secret_shares { /* We calculcate verification shares as the sum of the encrypted scalars, minus their masks. This only does one scalar multiplication, and `1+t` point additions (with one negation), and is accordingly much cheaper than interpolating the commitments. This is only possible because we already interpolated the commitments to verify the encrypted secret share. */ let sum_encrypted_secret_share = sum_encrypted_secret_shares .get(j) .copied() .unwrap_or(::F::ZERO); let sum_mask = sum_masks .get(j) .copied() .unwrap_or(::G::identity()); sum_encrypted_secret_shares.insert(*j, sum_encrypted_secret_share + enc_share); let j_index = usize::from(u16::from(*j)) - 1; sum_masks.insert(*j, sum_mask + data.encryption_key_commitments[j_index]); formatted_encrypted_secret_shares .insert(*j, (data.ecdh_commitments[j_index], *enc_share)); } all_encrypted_secret_shares.insert(*i, formatted_encrypted_secret_shares); } pairs.push((g_scalar, generators.0.g())); bool::from(multiexp_vartime(&pairs).is_identity()) } { // If the batch failed, verify them each individually for (i, pairs) in share_verification_statements_actual { if !bool::from(multiexp_vartime(&pairs).is_identity()) { valid.remove(&i); faulty.insert(i); } } } } debug_assert_eq!(valid.len() + faulty.len(), participations.len()); let mut faulty = faulty.into_iter().collect::>(); if !faulty.is_empty() { faulty.sort_unstable(); return Ok(VerifyResult::Invalid(faulty)); } // We check at least t key shares of people have participated in contributing entropy // Since the key shares of the participants exceed t, meaning if they're malicious they can // reconstruct the key regardless, this is safe to the threshold { let mut participating_weight = 0; let mut evrf_public_keys_mut = evrf_public_keys.to_vec(); for i in valid.keys() { let evrf_public_key = evrf_public_keys[usize::from(u16::from(*i)) - 1]; // Remove this key from the Vec to prevent double-counting /* Double-counting would be a risk if multiple participants shared an eVRF public key and participated. This code does still allow such participants (in order to let participants be weighted), and any one of them participating will count as all participating. This is fine as any one such participant will be able to decrypt the shares for themselves and all other participants, so this is still a key generated by an amount of participants who could simply reconstruct the key. */ let start_len = evrf_public_keys_mut.len(); evrf_public_keys_mut.retain(|key| *key != evrf_public_key); let end_len = evrf_public_keys_mut.len(); let count = start_len - end_len; participating_weight += count; } if participating_weight < usize::from(t) { return Ok(VerifyResult::NotEnoughParticipants); } } // If we now have >= t participations, output the result // Calculate each user's verification share let mut verification_shares = HashMap::with_capacity(usize::from(n)); for i in Participant::iter().take(usize::from(n)) { verification_shares.insert( i, (::generator() * sum_encrypted_secret_shares[&i]) - sum_masks[&i], ); } Ok(VerifyResult::Valid(Dkg { t, n, evrf_public_keys: evrf_public_keys.to_vec(), verification_shares, encrypted_secret_shares: all_encrypted_secret_shares, })) } /// Retrieve keys from a successful DKG. /// /// This will return _all_ keys belong to the participant. pub fn keys( &self, evrf_private_key: &Zeroizing<::F>, ) -> Vec> { let evrf_public_key = ::generator() * evrf_private_key.deref(); let mut is = Vec::with_capacity(1); for (i, evrf_key) in Participant::iter().zip(self.evrf_public_keys.iter()) { if *evrf_key == evrf_public_key { is.push(i); } } let mut res = Vec::with_capacity(is.len()); for i in is { let mut secret_share = Zeroizing::new(::F::ZERO); for shares in self.encrypted_secret_shares.values() { let (ecdh_commitments, encrypted_secret_share) = shares[&i]; let mut ecdh = Zeroizing::new(::F::ZERO); for point in ecdh_commitments { let (mut x, mut y) = ::G::to_xy(point * evrf_private_key.deref()).unwrap(); *ecdh += x; x.zeroize(); y.zeroize(); } *secret_share += encrypted_secret_share - ecdh.deref(); } debug_assert_eq!( self.verification_shares[&i], ::generator() * secret_share.deref() ); res.push( ThresholdKeys::new( ThresholdParams::new(self.t, self.n, i).unwrap(), Interpolation::Lagrange, secret_share, self.verification_shares.clone(), ) .unwrap(), ); } res } }