use std::{io::{Read, Cursor}, sync::{Arc, RwLock}, collections::HashMap}; use rand_core::{RngCore, CryptoRng, SeedableRng}; use rand_chacha::ChaCha12Rng; use curve25519_dalek::{traits::Identity, scalar::Scalar, edwards::{EdwardsPoint, CompressedEdwardsY}}; use transcript::{Transcript, RecommendedTranscript}; use frost::{ curve::Ed25519, FrostError, FrostKeys, sign::{ PreprocessMachine, SignMachine, SignatureMachine, AlgorithmMachine, AlgorithmSignMachine, AlgorithmSignatureMachine } }; use crate::{ random_scalar, ringct::{clsag::{ClsagInput, ClsagDetails, ClsagMultisig}, bulletproofs::Bulletproofs, RctPrunable}, transaction::{Input, Transaction}, rpc::Rpc, wallet::{TransactionError, SignableTransaction, Decoys, key_image_sort, uniqueness} }; pub struct TransactionMachine { signable: SignableTransaction, i: u16, included: Vec, transcript: RecommendedTranscript, decoys: Vec, inputs: Vec>>>, clsags: Vec> } pub struct TransactionSignMachine { signable: SignableTransaction, i: u16, included: Vec, transcript: RecommendedTranscript, decoys: Vec, inputs: Vec>>>, clsags: Vec>, our_preprocess: Vec } pub struct TransactionSignatureMachine { tx: Transaction, clsags: Vec> } impl SignableTransaction { pub async fn multisig( self, rpc: &Rpc, keys: FrostKeys, mut transcript: RecommendedTranscript, height: usize, mut included: Vec ) -> Result { let mut inputs = vec![]; for _ in 0 .. self.inputs.len() { // Doesn't resize as that will use a single Rc for the entire Vec inputs.push(Arc::new(RwLock::new(None))); } let mut clsags = vec![]; // Create a RNG out of the input shared keys, which either requires the view key or being every // sender, and the payments (address and amount), which a passive adversary may be able to know // depending on how these transactions are coordinated // Being every sender would already let you note rings which happen to use your transactions // multiple times, already breaking privacy there transcript.domain_separate(b"monero_transaction"); // Include the height we're using for our data // The data itself will be included, making this unnecessary, yet a lot of this is technically // unnecessary. Anything which further increases security at almost no cost should be followed transcript.append_message(b"height", &u64::try_from(height).unwrap().to_le_bytes()); // Also include the spend_key as below only the key offset is included, so this confirms the sum product // Useful as confirming the sum product confirms the key image, further guaranteeing the one time // properties noted below transcript.append_message(b"spend_key", &keys.group_key().0.compress().to_bytes()); for input in &self.inputs { // These outputs can only be spent once. Therefore, it forces all RNGs derived from this // transcript (such as the one used to create one time keys) to be unique transcript.append_message(b"input_hash", &input.tx); transcript.append_message(b"input_output_index", &[input.o]); // Not including this, with a doxxed list of payments, would allow brute forcing the inputs // to determine RNG seeds and therefore the true spends transcript.append_message(b"input_shared_key", &input.key_offset.to_bytes()); } for payment in &self.payments { transcript.append_message(b"payment_address", &payment.0.to_string().as_bytes()); transcript.append_message(b"payment_amount", &payment.1.to_le_bytes()); } // Sort included before cloning it around included.sort_unstable(); for (i, input) in self.inputs.iter().enumerate() { // Check this the right set of keys let offset = keys.offset(dalek_ff_group::Scalar(input.key_offset)); if offset.group_key().0 != input.key { Err(TransactionError::WrongPrivateKey)?; } clsags.push( AlgorithmMachine::new( ClsagMultisig::new( transcript.clone(), input.key, inputs[i].clone() ).map_err(|e| TransactionError::MultisigError(e))?, Arc::new(offset), &included ).map_err(|e| TransactionError::FrostError(e))? ); } // Select decoys // Ideally, this would be done post entropy, instead of now, yet doing so would require sign // to be async which isn't preferable. This should be suitably competent though // While this inability means we can immediately create the input, moving it out of the // Arc RwLock, keeping it within an Arc RwLock keeps our options flexible let decoys = Decoys::select( // Using a seeded RNG with a specific height, committed to above, should make these decoys // committed to. They'll also be committed to later via the TX message as a whole &mut ChaCha12Rng::from_seed(transcript.rng_seed(b"decoys")), rpc, height, &self.inputs ).await.map_err(|e| TransactionError::RpcError(e))?; Ok( TransactionMachine { signable: self, i: keys.params().i(), included, transcript, decoys, inputs, clsags } ) } } impl PreprocessMachine for TransactionMachine { type Signature = Transaction; type SignMachine = TransactionSignMachine; fn preprocess( mut self, rng: &mut R ) -> (TransactionSignMachine, Vec) { // Iterate over each CLSAG calling preprocess let mut serialized = Vec::with_capacity( // D_{G, H}, E_{G, H}, DLEqs, key image addendum self.clsags.len() * ((2 * (32 + 32)) + (2 * (32 + 32)) + ClsagMultisig::serialized_len()) ); let clsags = self.clsags.drain(..).map(|clsag| { let (clsag, preprocess) = clsag.preprocess(rng); serialized.extend(&preprocess); clsag }).collect(); let our_preprocess = serialized.clone(); // We could add further entropy here, and previous versions of this library did so // As of right now, the multisig's key, the inputs being spent, and the FROST data itself // will be used for RNG seeds. In order to recreate these RNG seeds, breaking privacy, // counterparties must have knowledge of the multisig, either the view key or access to the // coordination layer, and then access to the actual FROST signing process // If the commitments are sent in plain text, then entropy here also would be, making it not // increase privacy. If they're not sent in plain text, or are otherwise inaccessible, they // already offer sufficient entropy. That's why further entropy is not included ( TransactionSignMachine { signable: self.signable, i: self.i, included: self.included, transcript: self.transcript, decoys: self.decoys, inputs: self.inputs, clsags, our_preprocess, }, serialized ) } } impl SignMachine for TransactionSignMachine { type SignatureMachine = TransactionSignatureMachine; fn sign( mut self, mut commitments: HashMap, msg: &[u8] ) -> Result<(TransactionSignatureMachine, Vec), FrostError> { if msg.len() != 0 { Err( FrostError::InternalError( "message was passed to the TransactionMachine when it generates its own" ) )?; } // FROST commitments and their DLEqs, and the image and its DLEq const CLSAG_LEN: usize = (2 * (32 + 32)) + (2 * (32 + 32)) + ClsagMultisig::serialized_len(); // Convert the unified commitments to a Vec of the individual commitments let mut images = vec![EdwardsPoint::identity(); self.clsags.len()]; let mut commitments = (0 .. self.clsags.len()).map(|c| { let mut buf = [0; CLSAG_LEN]; (&self.included).iter().map(|l| { // Add all commitments to the transcript for their entropy // While each CLSAG will do this as they need to for security, they have their own transcripts // cloned from this TX's initial premise's transcript. For our TX transcript to have the CLSAG // data for entropy, it'll have to be added ourselves here self.transcript.append_message(b"participant", &(*l).to_be_bytes()); if *l == self.i { buf.copy_from_slice(self.our_preprocess.drain(.. CLSAG_LEN).as_slice()); } else { commitments.get_mut(l).ok_or(FrostError::MissingParticipant(*l))? .read_exact(&mut buf).map_err(|_| FrostError::InvalidCommitment(*l))?; } self.transcript.append_message(b"preprocess", &buf); // While here, calculate the key image // Clsag will parse/calculate/validate this as needed, yet doing so here as well provides // the easiest API overall, as this is where the TX is (which needs the key images in its // message), along with where the outputs are determined (where our outputs may need // these in order to guarantee uniqueness) images[c] += CompressedEdwardsY( buf[(CLSAG_LEN - 96) .. (CLSAG_LEN - 64)].try_into().map_err(|_| FrostError::InvalidCommitment(*l))? ).decompress().ok_or(FrostError::InvalidCommitment(*l))?; Ok((*l, Cursor::new(buf))) }).collect::, _>>() }).collect::, _>>()?; // Remove our preprocess which shouldn't be here. It was just the easiest way to implement the // above for map in commitments.iter_mut() { map.remove(&self.i); } // Create the actual transaction let output_masks; let mut tx = { let mut sorted_images = images.clone(); sorted_images.sort_by(key_image_sort); let commitments; (commitments, output_masks) = self.signable.prepare_outputs( &mut ChaCha12Rng::from_seed(self.transcript.rng_seed(b"tx_keys")), uniqueness( &images.iter().map(|image| Input::ToKey { amount: 0, key_offsets: vec![], key_image: *image }).collect::>() ) ); self.signable.prepare_transaction( &commitments, Bulletproofs::new( &mut ChaCha12Rng::from_seed(self.transcript.rng_seed(b"bulletproofs")), &commitments ).unwrap() ) }; // Sort the inputs, as expected let mut sorted = Vec::with_capacity(self.clsags.len()); while self.clsags.len() != 0 { sorted.push(( images.swap_remove(0), self.signable.inputs.swap_remove(0), self.decoys.swap_remove(0), self.inputs.swap_remove(0), self.clsags.swap_remove(0), commitments.swap_remove(0) )); } sorted.sort_by(|x, y| key_image_sort(&x.0, &y.0)); let mut rng = ChaCha12Rng::from_seed(self.transcript.rng_seed(b"pseudo_out_masks")); let mut sum_pseudo_outs = Scalar::zero(); while sorted.len() != 0 { let value = sorted.remove(0); let mut mask = random_scalar(&mut rng); if sorted.len() == 0 { mask = output_masks - sum_pseudo_outs; } else { sum_pseudo_outs += mask; } tx.prefix.inputs.push( Input::ToKey { amount: 0, key_offsets: value.2.offsets.clone(), key_image: value.0 } ); *value.3.write().unwrap() = Some( ClsagDetails::new( ClsagInput::new( value.1.commitment, value.2 ).map_err(|_| panic!("Signing an input which isn't present in the ring we created for it"))?, mask ) ); self.clsags.push(value.4); commitments.push(value.5); } let msg = tx.signature_hash(); // Iterate over each CLSAG calling sign let mut serialized = Vec::with_capacity(self.clsags.len() * 32); let clsags = self.clsags.drain(..).map(|clsag| { let (clsag, share) = clsag.sign(commitments.remove(0), &msg)?; serialized.extend(&share); Ok(clsag) }).collect::>()?; Ok((TransactionSignatureMachine { tx, clsags }, serialized)) } } impl SignatureMachine for TransactionSignatureMachine { fn complete(self, mut shares: HashMap) -> Result { let mut tx = self.tx; match tx.rct_signatures.prunable { RctPrunable::Null => panic!("Signing for RctPrunable::Null"), RctPrunable::Clsag { ref mut clsags, ref mut pseudo_outs, .. } => { for clsag in self.clsags { let (clsag, pseudo_out) = clsag.complete( shares.iter_mut().map(|(l, shares)| { let mut buf = [0; 32]; shares.read_exact(&mut buf).map_err(|_| FrostError::InvalidShare(*l))?; Ok((*l, Cursor::new(buf))) }).collect::, _>>()? )?; clsags.push(clsag); pseudo_outs.push(pseudo_out); } } } Ok(tx) } }